151
|
|
152
|
Somkuti J, Mártonfalvi Z, Kellermayer MS, Smeller L. Different pressure–temperature behavior of the structured and unstructured regions of titin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:112-8. [DOI: 10.1016/j.bbapap.2012.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 11/24/2022]
|
153
|
Buckow R, Sikes A, Tume R. Effect of High Pressure on Physicochemical Properties of Meat. Crit Rev Food Sci Nutr 2013; 53:770-86. [DOI: 10.1080/10408398.2011.560296] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
154
|
Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A. Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med 2012; 9:E144-51. [PMID: 23233238 DOI: 10.1002/term.1662] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 01/24/2023]
Abstract
Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.
Collapse
Affiliation(s)
- Jun Negishi
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan
| | - Seiichi Funamoto
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Tsuyoshi Kimura
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Kwangoo Nam
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| | - Tetsuya Higami
- Department of Thoracic and Cardiovascular Surgery, Sapporo Medical University School of Medicine, Japan
| | - Akio Kishida
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.,Japan Science and Technology Agency (CREST), Saitama, Japan
| |
Collapse
|
155
|
Perezzan R, Rey A. Simulating protein unfolding under pressure with a coarse-grained model. J Chem Phys 2012; 137:185102. [DOI: 10.1063/1.4765057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
156
|
Buckow R, Heinz V, Knorr D. Effect of High Hydrostatic Pressure-Temperature Combinations on the Activity of β-Glucanase from Barley Malt. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2005.tb00684.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
157
|
Microscopic analysis of bacterial motility at high pressure. Biophys J 2012; 102:1872-80. [PMID: 22768943 DOI: 10.1016/j.bpj.2012.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/13/2022] Open
Abstract
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment.
Collapse
|
158
|
High pressure processing of dry-cured ham: Ultrastructural and molecular changes affecting sodium and water dynamics. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2012.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
159
|
Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease. Implications for the catalytic mechanism. J Biol Inorg Chem 2012; 17:1123-34. [PMID: 22890689 PMCID: PMC3442171 DOI: 10.1007/s00775-012-0926-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/14/2012] [Indexed: 12/03/2022]
Abstract
Abstract Urease, a Ni-containing metalloenzyme, features an activity that has profound medical and agricultural implications. The mechanism of this activity, however, has not been as yet thoroughly established. Accordingly, to improve its understanding, in this study we analyzed the steady-state kinetic parameters of the enzyme (jack bean), KM and kcat, measured at different temperatures and pressures. Such an analysis is useful as it provides information on the molecular nature of the intermediate and transition states of the catalytic reaction. We measured the parameters in a noninteracting buffer using a stopped-flow technique in the temperature range 15–35 °C and in the pressure range 5–132 MPa, the pressure-dependent measurements being the first of their kind performed for urease. While temperature enhanced the activity of urease, pressure inhibited the enzyme; the inhibition was biphasic. Analyzing KM provided the characteristics of the formation of the ES complex, and analyzing kcat, the characteristics of the activation of ES. From the temperature-dependent measurements, the energetic parameters were derived, i.e. thermodynamic ΔHo and ΔSo for ES formation, and kinetic ΔH≠ and ΔS≠ for ES activation, while from the pressure-dependent measurements, the binding ΔVb and activation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Updelta V_{\rm cat}^{ \ne } $$\end{document} volumes were determined. The thermodynamic and activation parameters obtained are discussed in terms of the current proposals for the mechanism of the urease reaction, and they are found to support the mechanism proposed by Benini et al. (Structure 7:205–216; 1999), in which the Ni–Ni bridging hydroxide—not the terminal hydroxide—is the nucleophile in the catalytic reaction. Graphical abstract ![]()
Collapse
|
160
|
Anema SG. Pressure-induced denaturation of β-lactoglobulin in skim milk: effect of milk concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6565-6570. [PMID: 22676353 DOI: 10.1021/jf301976n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of milk concentration (10-40% TS) on the kinetics of the pressure-induced denaturation of β-lactoglobulin (β-LG) was studied. The denaturation was found to be a second-order process at all milk concentrations and pressures. There was a change in pressure dependence of the rate constants for denaturation at about 300 MPa, and this effect became more pronounced as the milk concentration increased. At pressures ≥300 MPa, a small effect of milk concentration was observed, with small decreases in the rate of denaturation as the milk concentration was increased above 20% TS. This was attributed to the lower pH as the milk concentration was increased. In contrast, at 200 MPa, β-LG denaturation was markedly retarded as the milk solids concentration was increased. This was attributed to the increased lactose concentration at higher milk concentrations. This would promote β-LG dimerization at this pressure and this would stabilize the β-LG to denaturation.
Collapse
Affiliation(s)
- Skelte G Anema
- Fonterra Research Centre, Palmerston North, New Zealand.
| |
Collapse
|
161
|
Hong GP, Chun JY, Lee SK, Choi MJ. Effects of Non-meat Protein Binders and Acidification on the Efficiency of Cold-Set Pork Restructuring by High Pressure. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.3.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
162
|
Hong GP, Chun JY, Lee SK, Choi MJ. Modelization and Optimization of Quality Characteristics of Pork Treated Various Hydrostatic Pressure Conditions. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.3.274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
163
|
Terefe NS, Sheean P, Fernando S, Versteeg C. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study. Appl Microbiol Biotechnol 2012; 97:2917-28. [PMID: 22644526 DOI: 10.1007/s00253-012-4162-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023]
Abstract
The thermal and the combined high pressure-thermal inactivation kinetics of almond β-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2±8.6 kJ/mol decreasing to 55.2±3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature-pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be -29.6±0.6, -29.8±1.7, -20.6±3.2, -41.2±4.8, -36.5±1.8, -39.6±4.3, -31.0±4.5 and -33.8±3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure-temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.
Collapse
|
164
|
Jolie RP, Christiaens S, De Roeck A, Fraeye I, Houben K, Van Buggenhout S, Van Loey AM, Hendrickx ME. Pectin conversions under high pressure: Implications for the structure-related quality characteristics of plant-based foods. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2011.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
165
|
Nagae T, Kawamura T, Chavas LMG, Niwa K, Hasegawa M, Kato C, Watanabe N. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:300-9. [PMID: 22349232 PMCID: PMC3282623 DOI: 10.1107/s0907444912001862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022]
Abstract
Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.
Collapse
Affiliation(s)
- Takayuki Nagae
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Japan
| | | | - Leonard M. G. Chavas
- Structural Biology Research Center, Photon Factory, High Energy Research Organization (KEK), Japan
| | - Ken Niwa
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Masashi Hasegawa
- Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Chiaki Kato
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Japan
- Synchrotron Radiation Research Center, Nagoya University, Japan
| |
Collapse
|
166
|
Sanfeld A, Sefiane K, Steinchen A. Reactions of dipolar bio-molecules in nano-capsules--example of folding-unfolding process. Adv Colloid Interface Sci 2011; 169:26-39. [PMID: 21867984 DOI: 10.1016/j.cis.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/22/2011] [Accepted: 07/24/2011] [Indexed: 11/29/2022]
Abstract
The confinement of chemical reactions in nano-capsules can lead to a dramatic effect on the equilibrium constant of these latter. Indeed, capillary effects due to the curvature and surface energy of nano-capsules can alter in a noticeable way the evolution of reactions occurring within. Nano-encapsulation of bio-materials has attracted lately wide interest from the scientific community because of the great potential of its applications in biomedical areas and targeted therapies. The present paper focuses one's attention on alterations of conformation mechanisms due to extremely confining and interacting solvated dipolar macromolecules at their isoelectric point. As a specific example studied here, the folding-unfolding reaction of proteins (particularly RNase A and creatine kinase CK) is drastically changed when encapsulated in solid inorganic hollow nano-capsules. The effects demonstrated in this work can be extended to a wide variety of nano-encapsulation situations. The design and sizing of nano-capsules can even make use of the effects shown in the present study to achieve better and more effective encapsulation.
Collapse
Affiliation(s)
- A Sanfeld
- ISM2-AD2M, UMR 6263, Universitė Paul Cezanne, Bd Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France
| | | | | |
Collapse
|
167
|
Rosenbaum E, Gabel F, Durá MA, Finet S, Cléry-Barraud C, Masson P, Franzetti B. Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch Biochem Biophys 2011; 517:104-10. [PMID: 21896270 DOI: 10.1016/j.abb.2011.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
While molecular adaptation to high temperature has been extensively studied, the effect of hydrostatic pressure on protein structure and enzymatic activity is still poorly understood. We have studied the influence of pressure on both the quaternary structure and enzymatic activity of the dodecameric TET3 peptidase from Pyrococcus horikoshii. Small angle X-ray scattering (SAXS) revealed a high robustness of the oligomer under high pressure of up to 300 MPa at 25°C as well as at 90°C. The enzymatic activity of TET3 was enhanced by pressure up to 180 MPa. From the pressure behavior of the different rate-constants we have determined the volume changes associated with substrate binding and catalysis. Based on these results we propose that a change in the rate-limiting step occurs around 180 MPa.
Collapse
Affiliation(s)
- Eva Rosenbaum
- Group Extremophiles and Large Molecular Assemblies (ELMA), CEA, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
168
|
Heinrich M, Kulozik U. Study of chymosin hydrolysis of casein micelles under ultra high pressure: Effect on re-association upon pressure release. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
169
|
Wang JM, Yang XQ, Yin SW, Zhang Y, Tang CH, Li BS, Yuan DB, Guo J. Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7324-7332. [PMID: 21609024 DOI: 10.1021/jf201957r] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effects of high hydrostatic pressure (HHP) treatment (100-500 MPa) on solubility and structural properties of ethanol (EtOH)-denatured soy β-conglycinin and glycinin were investigated using differential scanning calorimetry, Fourier transform infrared and ultraviolet spectroscopy. HHP treatment above 200 MPa, especially at neutral and alkaline pH as well as low ionic strength, significantly improved the solubility of denatured soy proteins. Structural rearrangements of denatured β-conglycinin subjected to high pressure were confirmed, as evidenced by the increase in enthalpy value (ΔH) and the formation of the ordered supramolecular structure with stronger intramolecular hydrogen bond. HHP treatment (200-400 MPa) caused an increase in surface hydrophobicity (F(max)) of β-conglycinin, partially attributable to the exposure of the Tyr and Phe residues, whereas higher pressure (500 MPa) induced the decrease in F(max) due to hydrophobic rearrangements. The Trp residues in β-conglycinin gradually transferred into a hydrophobic environment, which might further support the finding of structural rearrangements. In contrast, increasing pressure induced the progressive unfolding of denatured glycinin, accompanied by the movement of the Tyr and Phe residues to the molecular surface of protein. These results suggested that EtOH-denatured β-conglycinin and glycinin were involved in different pathways of structural changes during HHP treatment.
Collapse
Affiliation(s)
- Jin-Mei Wang
- Department of Food Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Demco DE, Utiu L, Tillmann W, Blümich B, Popescu C. Morphology and molecular dynamics of hard α-keratin under pressure by 1H and 13C solid-state NMR. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
171
|
A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production. Appl Microbiol Biotechnol 2011; 90:1953-62. [PMID: 21468714 DOI: 10.1007/s00253-011-3208-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
L-aspartate dehydrogenase (EC 1.4.1.21; L: -AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative L-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for L-aspartate (L-Asp) and oxaloacetate (OAA) of 127 and 147 U mg(-1), respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T (m) value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K (m) values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The L-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of L-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of L-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of L-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.
Collapse
|
172
|
Demazeau G, Rivalain N. The development of high hydrostatic pressure processes as an alternative to other pathogen reduction methods. J Appl Microbiol 2011; 110:1359-69. [DOI: 10.1111/j.1365-2672.2011.05000.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
173
|
Influence of reaction conditions on the enantioselectivity of biocatalyzed C–C bond formations under high pressure conditions. J Biotechnol 2011; 152:87-92. [DOI: 10.1016/j.jbiotec.2011.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 11/22/2022]
|
174
|
Weiss EM, Meister S, Janko C, Ebel N, Schlücker E, Meyer-Pittroff R, Fietkau R, Herrmann M, Gaipl US, Frey B. High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J Immunotoxicol 2011; 7:194-204. [PMID: 20205624 DOI: 10.3109/15476911003657414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most of the classical therapies for solid tumors have limitations in achieving long-lasting anti-tumor responses. Therefore, treatment of cancer requires additional and multimodal therapeutic strategies. One option is based on the vaccination of cancer patients with autologous inactivated intact tumor cells. The master requirements of cell-based therapeutic tumor vaccines are the: (a) complete inactivation of the tumor cells; (b) preservation of their immunogenicity; and (c) need to remain in accordance with statutory provisions. Physical treatments like freeze-thawing and chemotherapeutics are currently used to inactivate tumor cells for vaccination purposes, but these techniques have methodological, therapeutic, or legal restrictions. For this reason, we have proposed the use of a high hydrostatic pressure (HHP) treatment (p >or= 100 MPa) as an alternative method for the inactivation of tumor cells. HHP is a technique that has been known for more than 100 years to successfully inactivate micro-organisms and to alter biomolecules. In the studies here, we show that the treatment of MCF7, B16-F10, and CT26 tumor cells with HHP >or= 300 MPa results in mainly necrotic tumor cell death forms displaying degraded DNA. Only CT26 cells yielded a notable amount of apoptotic cells after the application of HHP. All tumor cells treated with >or= 200 MPa lost their ability to form colonies in vitro. Furthermore, the pressure-inactivated cells retained their immunogenicity, as tested in a xenogeneic as well as syngeneic mouse models. We conclude that the complete tumor cell inactivation, the degradation of the cell's nuclei, and the retention of the immunogeneic potential of these dead tumor cells induced by HHP favor the use of this technique as a powerful and low-cost technique for the inactivation of tumor cells to be used as a vaccine.
Collapse
Affiliation(s)
- E M Weiss
- Department of Radiation Oncology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Zhou C, Jiang B, Sheng Z, Zhu S, Shen S. Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0412-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
176
|
High hydrostatic pressure and biology: a brief history. Appl Microbiol Biotechnol 2010; 89:1305-14. [DOI: 10.1007/s00253-010-3070-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
|
177
|
Weiss EM, Frey B, Rödel F, Herrmann M, Schlücker E, Voll RE, Fietkau R, Gaipl US. Ex vivo- and in vivo-induced dead tumor cells as modulators of antitumor responses. Ann N Y Acad Sci 2010; 1209:109-17. [PMID: 20958323 DOI: 10.1111/j.1749-6632.2010.05743.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Joint application of standard tumor therapies like radiotherapy and/or chemotherapy with immune therapy has long been considered not to fit. However, it has become accepted that immune responses may contribute to the elimination of cancer cells. We present how in vivo-induced tumor cell death by irradiation, chemotherapeutic agents, or hyperthermia can be rendered more immunogenic. High hydrostatic pressure is introduced as an innovative inactivation method for tumor cells used as vaccines. Annexin A5, being a natural occurring ligand for phosphatidylserine that is exposed by dying tumor cells, renders apoptotic tumor cells immunogenic and induces tumor regression. Combinations of irradiation with hyperthermia may also foster antitumor responses. For preparation of autologous tumor cell vaccines, high hydrostatic pressure is suitable to induce immunogenic cancer cell death. Future work will be aimed toward evaluating which combination and chronological sequence of radiotherapy, chemotherapy, hyperthermia, annexin A5, and/or autologous tumor cell vaccines will induce specific and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Eva-Maria Weiss
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao YH, Quan C, Joshi A, Harris RJ, Motchnik P. Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs 2010; 2:613-24. [PMID: 20818176 DOI: 10.4161/mabs.2.6.13333] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7-9.1 and was composed of about 20% acidic variants, 12% basic variants, and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic, and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences, and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs, and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity, or the PK properties in rats.
Collapse
Affiliation(s)
- Leslie A Khawli
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, Inc., South San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Chen C, Wang R, Sun G, Fang H, Ma D, Yi S. Effects of high pressure level and holding time on properties of duck muscle gels containing 1% curdlan. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2010.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
180
|
Gonzalez ME, Anthon GE, Barrett DM. Onion Cells After High Pressure and Thermal Processing: Comparison of Membrane Integrity Changes Using Different Analytical Methods and Impact on Tissue Texture. J Food Sci 2010; 75:E426-32. [DOI: 10.1111/j.1750-3841.2010.01767.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
181
|
Girard E, Marchal S, Perez J, Finet S, Kahn R, Fourme R, Marassio G, Dhaussy AC, Prangé T, Giffard M, Dulin F, Bonneté F, Lange R, Abraini JH, Mezouar M, Colloc'h N. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Biophys J 2010; 98:2365-73. [PMID: 20483346 DOI: 10.1016/j.bpj.2010.01.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022] Open
Abstract
Structure-function relationships in the tetrameric enzyme urate oxidase were investigated using pressure perturbation. As the active sites are located at the interfaces between monomers, enzyme activity is directly related to the integrity of the tetramer. The effect of hydrostatic pressure on the enzyme was investigated by x-ray crystallography, small-angle x-ray scattering, and fluorescence spectroscopy. Enzymatic activity was also measured under pressure and after decompression. A global model, consistent with all measurements, discloses structural and functional details of the pressure-induced dissociation of the tetramer. Before dissociating, the pressurized protein adopts a conformational substate characterized by an expansion of its substrate binding pocket at the expense of a large neighboring hydrophobic cavity. This substate should be adopted by the enzyme during its catalytic mechanism, where the active site has to accommodate larger intermediates and product. The approach, combining several high-pressure techniques, offers a new (to our knowledge) means of exploring structural and functional properties of transient states relevant to protein mechanisms.
Collapse
Affiliation(s)
- Eric Girard
- Institut de Biologie Structurale J.-P. Ebel UMR 5075 CEA CNRS UJF, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
García MTA, González ELM. Natural antioxidants protect against cadmium-induced damage during pregnancy and lactation in rats' pups. J Food Sci 2010; 75:R121-30. [PMID: 20492210 PMCID: PMC2995313 DOI: 10.1111/j.1750-3841.2010.01763.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (1H-NMR).
Collapse
|
183
|
Winter R. Exploring the Energy and Conformational Landscape of Biomolecules Under Extreme Conditions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-9258-8_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
184
|
Integrative analytical approach by capillary electrophoresis and kinetics under high pressure optimized for deciphering intrinsic and extrinsic cofactors that modulate activity and stability of human paraoxonase (PON1). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1346-55. [DOI: 10.1016/j.jchromb.2009.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 11/21/2022]
|
185
|
|
186
|
Rivalain N, Roquain J, Demazeau G. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 2010; 28:659-72. [PMID: 20398747 DOI: 10.1016/j.biotechadv.2010.04.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022]
Abstract
Compared to temperature, the development of pressure as a tool in the research field has emerged only recently (at the end of the XIXth century). Following several developments in Physics and Chemistry during the first half of the XXth century (in particular the synthesis of diamond in 1953-1954), high pressures were applied in Food Science, especially in Japan. The main objective was then to achieve the decontamination of foods while preserving their organoleptic properties. Now, a new step is engaged: the biological applications of high pressures, from food to pharmaceuticals and biomedical applications. This paper will focus on three main points: (i) a brief presentation of the pressure parameter and its characteristics, (ii) a description of the pressure effects on biological constituents from simple to more complex structures and (iii) a review of the different domains for which the application of high pressures is able to initiate potential developments in Biotechnologies.
Collapse
Affiliation(s)
- Nolwennig Rivalain
- ICMCB-CNRS - Université de Bordeaux - 87, avenue du Dr. Albert Schweitzer, PESSAC Cedex, France
| | | | | |
Collapse
|
187
|
Orlowska M, Utzig E, Randzio SL. Thermogravimetric study of water state in wheat starch gels obtained under high pressures. Ann N Y Acad Sci 2010; 1189:55-61. [DOI: 10.1111/j.1749-6632.2009.05200.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
188
|
Nishiyama M, Shimoda Y, Hasumi M, Kimura Y, Terazima M. Microtubule depolymerization at high pressure. Ann N Y Acad Sci 2010; 1189:86-90. [DOI: 10.1111/j.1749-6632.2009.05411.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
189
|
Speroni F, Jung S, de Lamballerie M. Effects of calcium and pressure treatment on thermal gelation of soybean protein. J Food Sci 2010; 75:E30-8. [PMID: 20492163 DOI: 10.1111/j.1750-3841.2009.01390.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of calcium and high-pressure (HP) treatment on the heat gelation of soybean proteins was investigated. In the presence of calcium (2 to 25 mM), the gelation of dispersions of soybean protein isolate (SPI), a beta-conglycinin-enriched fraction (7SEF), and a glycinin-enriched fraction (11SEF) started with protein having a lower degree of denaturation. The gels from these dispersions had greater stiffness than the samples without added calcium. HP treatment had different effects on heat-induced gelation depending on the presence of calcium and on the nature of the proteins. In the absence of calcium, gels with low stiffness were formed after HP treatment, compared with untreated samples, and regardless of the sample type (SPI, 7SEF, 11SEF). In the presence of calcium, gel stiffness was increased after HP treatment of dispersions containing beta-conglycinin (SPI and 7SEF), while the opposite effect was observed for 11SEF. In the presence of calcium, HP treatment promoted a greater contribution of hydrophobic interactions in SPI and 7SEF. In the dispersions containing beta-conglycinin, these conditions also promoted the appearance of a heterogeneous distribution of molecular sizes, from enormous aggregates to dissociated species. Our results suggest that, in the presence of calcium, HP treatment has an opposite effect on the ability of glycinin and beta-conglycinin to participate in the formation of a 3-dimensional network upon heating.
Collapse
Affiliation(s)
- F Speroni
- CIDCA Calle 47 y 116-1900, CTT La Plata, CONICET, Argentina
| | | | | |
Collapse
|
190
|
|
191
|
Kyaw N, de Mesquita RF, Kameda E, Neto JCDQ, Langone MAP, Coelho MAZ. Characterization of commercial amylases for the removal of filter cake on petroleum wells. Appl Biochem Biotechnol 2009; 161:171-80. [PMID: 19802735 DOI: 10.1007/s12010-009-8773-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/09/2009] [Indexed: 11/24/2022]
Abstract
Drilling fluid has many functions, such as carry cuttings from the hole permitting their separation at the surface, cool and clean the bit, reduce friction between the drill pipe and wellbore, maintain the stability of the wellbore, and prevent the inflow of fluids from the wellbore and form a thin, low-permeable filter cake. Filter cake removal is an important step concerning both production and injection in wells, mainly concerning horizontal completion. The drilling fluids are typically comprised of starch, the most important component of the filter cake. A common approach to remove this filter cake is the use of acid solutions. However, these are non-specific reactants. A possible alternative is the use of enzymatic preparations, like amylases, that are able to hydrolyze starch. Wells usually operate in drastic conditions for enzymatic preparations, such as high temperature, high salt concentration, and high pressure. Thus, the main objective of this work was to characterize four enzymatic preparations for filter cake removal under open hole conditions. The results showed that high salt concentrations (204,000 ppm NaCl) in completion fluid decreased amylolytic activity. All enzymatic preparations were able to catalyze starch hydrolysis at all temperatures tested (30, 65, 80, and 95 degrees C). An increase of amylolytic activity was observed with the increase of pressure (100, 500 and 1,000 psi) for one commercial amylase.
Collapse
Affiliation(s)
- Nattascha Kyaw
- Centro de Tecnologia, Escola de Química, Universidade Federal do Rio de Janeiro, Bloco E, Lab 103, Cidade Universitária, 21949-900, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
192
|
Buckow R, Weiss U, Knorr D. Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. INNOV FOOD SCI EMERG 2009. [DOI: 10.1016/j.ifset.2009.05.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
193
|
High pressure stabilization of collagen structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1151-8. [DOI: 10.1016/j.bbapap.2009.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022]
|
194
|
Marasmius scorodonius extracellular dimeric peroxidase — Exploring its temperature and pressure stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1091-8. [DOI: 10.1016/j.bbapap.2009.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
|
195
|
Speroni F, Beaumal V, de Lamballerie M, Anton M, Añón M, Puppo M. Gelation of soybean proteins induced by sequential high-pressure and thermal treatments. Food Hydrocoll 2009. [DOI: 10.1016/j.foodhyd.2008.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
196
|
Chu XQ, Faraone A, Kim C, Fratini E, Baglioni P, Leao JB, Chen SH. Proteins remain soft at lower temperatures under pressure. J Phys Chem B 2009; 113:5001-6. [PMID: 19323465 DOI: 10.1021/jp900557w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The low-temperature behavior of proteins under high pressure is not as extensively investigated as that at ambient pressure. In this paper, we study the dynamics of a hydrated protein under moderately high pressures at low temperatures using the quasielastic neutron scattering method. We show that when applying pressure to the protein-water system, the dynamics of the protein hydration water does not slow down but becomes faster instead. The degree of "softness" of the protein, which is intimately related to the enzymatic activity of the protein, shows the same trend as its hydration water as a function of temperature at different pressures. These two results taken together suggest that at lower temperatures, the protein remains soft and active under pressure.
Collapse
Affiliation(s)
- Xiang-Qiang Chu
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
ZHANG HONGKANG, LI LITE, MITTAL G. EFFECTS OF HIGH PRESSURE PROCESSING ON SOYBEAN BETA-CONGLYCININ. J FOOD PROCESS ENG 2009. [DOI: 10.1111/j.1745-4530.2010.00607.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
198
|
Exploring the structural and functional stabilities of different paraoxonase-1 formulations through electrophoretic mobilities and enzyme activity parameters under hydrostatic pressure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:680-8. [DOI: 10.1016/j.bbapap.2009.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/23/2022]
|
199
|
Sachdeva A, Cai S. Structural differences of proteins between solution state and solid state probed by attenuated total reflection Fourier transform infrared spectroscopy. APPLIED SPECTROSCOPY 2009; 63:458-464. [PMID: 19366513 DOI: 10.1366/000370209787944316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A Fourier transform infrared (FT-IR) spectroscopic method combined with an attenuated total reflection (ATR) sampling technique has been developed to analyze protein secondary structure in both solid and solution states. The method has been applied to analyze the protein structural differences between solution state and solid state. For alpha-helix dominant proteins, beta-sheet structures increase significantly in the solid state, with significant decrease in alpha-helical structures. For beta-sheet dominant proteins, beta-sheet structures increase only moderately in the solid state. When proteins are re-dissolved in solution, their structures are re-natured to their native structures, as suggested by the fact that their structures in solution state are similar to those determined by X-ray crystallography or other spectroscopic methods in solution state. The ATR sampling technique avoids the high pressure and chemicals that are needed for the conventional potassium bromide (KBr) disc method for solid samples in FT-IR spectroscopy. Our approach from this study demonstrated that ATR sampling is more appropriate for analysis of protein structures in the solid state.
Collapse
Affiliation(s)
- Amita Sachdeva
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA
| | | |
Collapse
|
200
|
Jung S, Mahfuz A, Maurer D. Structure, Protein Interactions and In Vitro Protease Accessibility of Extruded and Pressurized Full‐Fat Soybean Flakes. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1371-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Stephanie Jung
- Department of Food Science and Human Nutrition, Center for Crops Utilization ResearchIowa State University AmesIA50010‐1061USA
| | - Abdullah Mahfuz
- Department of Food Science and Human Nutrition, Center for Crops Utilization ResearchIowa State University AmesIA50010‐1061USA
| | - Devin Maurer
- Department of Food Science and Human Nutrition, Center for Crops Utilization ResearchIowa State University AmesIA50010‐1061USA
| |
Collapse
|