151
|
Ntie-Kang F, Onguéné PA, Scharfe M, Owono Owono LC, Megnassan E, Mbaze LM, Sippl W, Efange SMN. ConMedNP: a natural product library from Central African medicinal plants for drug discovery. RSC Adv 2014. [DOI: 10.1039/c3ra43754j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
152
|
Abstract
For the past three decades rationale drug design (RDD) has been developing as an innovative, rapid and successful way to discover new drug candidates. Many strategies have been followed and several targets with diverse structures and different biological roles have been investigated. Despite the variety of computational tools available, one can broadly divide them into two major classes that can be adopted either separately or in combination. The first class involves structure-based drug design, when the target's 3-dimensional structure is available or it can be computationally generated using homology modeling. On the other hand, when only a set of active molecules is available, and the structure of the target is unknown, ligand-based drug design tools are usually used. This review describes some recent advances in rational drug design, summarizes a number of their practical applications, and discusses both the advantages and shortcomings of the various techniques used.
Collapse
Affiliation(s)
- Khaled H. Barakat
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada & Department of Engineering, Mathematics and Physics, Fayoum University, Fayoum, Egypt
| | - Michael Houghton
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - D. Lorne Tyrrel
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jack A. Tuszynski
- Department of Oncology, Department of Physics, University of Alberta, Edmonton, Canada
| |
Collapse
|
153
|
Wei NN, Hamza A. SABRE: Ligand/Structure-Based Virtual Screening Approach Using Consensus Molecular-Shape Pattern Recognition. J Chem Inf Model 2013; 54:338-46. [DOI: 10.1021/ci4005496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ning-Ning Wei
- University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United States
- ChemVS LLC, Merrick Drive, Lexington, Kentucky 40502, United States and School of life Science and Medicine, Dalian University of Technology, Panjin, LN 124221, China
| | - Adel Hamza
- University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536, United States
- ChemVS LLC, Merrick Drive, Lexington, Kentucky 40502, United States and School of life Science and Medicine, Dalian University of Technology, Panjin, LN 124221, China
| |
Collapse
|
154
|
Abstract
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein-ligand applications. We summarise the main topics and recent computational and methodological advances in protein-ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.
Collapse
|
155
|
Frączek T, Siwek A, Paneth P. Assessing Molecular Docking Tools for Relative Biological Activity Prediction: A Case Study of Triazole HIV-1 NNRTIs. J Chem Inf Model 2013; 53:3326-42. [DOI: 10.1021/ci400427a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tomasz Frączek
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| | - Agata Siwek
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego
116, 90-924 Lodz, Poland
- Department
of Organic Chemistry, Faculty of Pharmacy, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Piotr Paneth
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego
116, 90-924 Lodz, Poland
| |
Collapse
|
156
|
Shave S, Auer M. CSBB-ConeExclusion, adapting structure based solution virtual screening to libraries on solid support. J Chem Inf Model 2013; 53:3156-62. [PMID: 24266324 DOI: 10.1021/ci400371q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.
Collapse
Affiliation(s)
- Steven Shave
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh , The King's Buildings, CH Waddington Building, Mayfield Road, Edinburgh, Scotland EH9 3JD, U.K
| | | |
Collapse
|
157
|
Zhou ZL, Liu HL, Wu JW, Tsao CW, Chen WH, Liu KT, Ho Y. Computer-aided Discovery of Potential Inhibitors for Transthyretin-related Amyloidosis. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
158
|
Azam SS, Abbasi SW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 2013; 10:63. [PMID: 24156411 PMCID: PMC3819668 DOI: 10.1186/1742-4682-10-63] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/14/2013] [Indexed: 11/15/2022] Open
Abstract
Background N-Acetylserotonin O-methyltransferase (ASMT) is an enzyme which by converting nor-melatonin to melatonin catalyzes the final reaction in melatonin biosynthesis in tryptophan metabolism pathway. High Expression of ASMT gene is evident in PPTs. The presence of abnormally high levels of ASMT in pineal gland could serve as an indication of the existence of pineal parenchymal tumors (PPTs) in the brain (J Neuropathol Exp Neurol 65: 675–684, 2006). Different levels of melatonin are used as a trait marker for prescribing the mood disorders e.g. Seasonal affective disorder, bipolar disorder, or major depressive disorder. In addition, melatonin levels can also be used to calculate the severity of a patient’s illness at a given point in time. Methods Seventy three melatoninergic inhibitors were docked with acetylserotonin-O-methyltransferase in order to identify the potent inhibitor against the enzyme. The chemical nature of the protein and ligands greatly influence the performance of docking routines. Keeping this fact in view, critical evaluation of the performance of four different commonly used docking routines: AutoDock/Vina, GOLD, FlexX and FRED were performed. An evaluation criterion was based on the binding affinities/docking scores and experimental bioactivities. Results and conclusion Results indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for its ligand binding and the compound selected as potent inhibitor is having minimum binding affinity, maximum GoldScore and minimum FlexX energy. The correlation value of r2 = 0. 66 may be useful in the selection of correct docked complexes based on the energy without having prior knowledge of the active site. This may lead to further understanding of structures, their reliability and Biomolecular activity especially in connection with bipolar disorders.
Collapse
Affiliation(s)
- Syed Sikander Azam
- National Center for Bioinformatics, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | | |
Collapse
|
159
|
Vidler LR, Filippakopoulos P, Fedorov O, Picaud S, Martin S, Tomsett M, Woodward H, Brown N, Knapp S, Hoelder S. Discovery of novel small-molecule inhibitors of BRD4 using structure-based virtual screening. J Med Chem 2013; 56:8073-88. [PMID: 24090311 PMCID: PMC3807807 DOI: 10.1021/jm4011302] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Bromodomains
(BRDs) are epigenetic readers that recognize acetylated-lysine
(KAc) on proteins and are implicated in a number of diseases. We describe
a virtual screening approach to identify BRD inhibitors. Key elements
of this approach are the extensive design and use of substructure
queries to compile a set of commercially available compounds featuring
novel putative KAc mimetics and docking this set for final compound
selection. We describe the validation of this approach by applying
it to the first BRD of BRD4. The selection and testing of 143 compounds
lead to the discovery of six novel hits, including four unprecedented
KAc mimetics. We solved the crystal structure of four hits, determined
their binding mode, and improved their potency through synthesis and
the purchase of derivatives. This work provides a validated virtual
screening approach that is applicable to other BRDs and describes
novel KAc mimetics that can be further explored to design more potent
inhibitors.
Collapse
Affiliation(s)
- Lewis R Vidler
- Division of Cancer Therapeutics, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research , 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Durrant JD, Friedman AJ, Rogers KE, McCammon JA. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model 2013; 53:1726-35. [PMID: 23734946 PMCID: PMC3735370 DOI: 10.1021/ci400042y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 11/29/2022]
Abstract
We compare established docking programs, AutoDock Vina and Schrödinger's Glide, to the recently published NNScore scoring functions. As expected, the best protocol to use in a virtual-screening project is highly dependent on the target receptor being studied. However, the mean screening performance obtained when candidate ligands are docked with Vina and rescored with NNScore 1.0 is not statistically different than the mean performance obtained when docking and scoring with Glide. We further demonstrate that the Vina and NNScore docking scores both correlate with chemical properties like small-molecule size and polarizability. Compensating for these potential biases leads to improvements in virtual screen performance. Composite NNScore-based scoring functions suited to a specific receptor further improve performance. We are hopeful that the current study will prove useful for those interested in computer-aided drug design.
Collapse
Affiliation(s)
- Jacob D Durrant
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
161
|
Bauer MR, Ibrahim TM, Vogel SM, Boeckler FM. Evaluation and Optimization of Virtual Screening Workflows with DEKOIS 2.0 – A Public Library of Challenging Docking Benchmark Sets. J Chem Inf Model 2013; 53:1447-62. [DOI: 10.1021/ci400115b] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthias R. Bauer
- Laboratory
for Molecular Design and Pharmaceutical
Biophysics, Department of Pharmaceutical and
Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
| | - Tamer M. Ibrahim
- Laboratory
for Molecular Design and Pharmaceutical
Biophysics, Department of Pharmaceutical and
Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
| | - Simon M. Vogel
- Laboratory
for Molecular Design and Pharmaceutical
Biophysics, Department of Pharmaceutical and
Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
| | - Frank M. Boeckler
- Laboratory
for Molecular Design and Pharmaceutical
Biophysics, Department of Pharmaceutical and
Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle
8, 72076 Tuebingen, Germany
| |
Collapse
|
162
|
Liu J, He X, Zhang JZH. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. J Chem Inf Model 2013; 53:1306-14. [PMID: 23651068 DOI: 10.1021/ci400067c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Docking programs that use scoring functions to estimate binding affinities of small molecules to biological targets are widely applied in drug design and drug screening with partial success. But accurate and efficient scoring functions for protein-ligand binding affinity still present a grand challenge to computational chemists. In this study, the polarized protein-specific charge model (PPC) is incorporated into the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method to rescore the binding poses of some protein-ligand complexes, for which docking programs, such as Autodock, could not predict their binding modes correctly. Different sampling techniques (single minimized conformation and multiple molecular dynamics (MD) snapshots) are used to test the performance of MM/PBSA combined with the PPC model. Our results show the availability and effectiveness of this approach in correctly ranking the binding poses. More importantly, the bridging water molecules are found to play an important role in correctly determining the protein-ligand binding modes. Explicitly including these bridging water molecules in MM/PBSA calculations improves the prediction accuracy significantly. Our study sheds light on the importance of both bridging water molecules and the electronic polarization in the development of more reliable scoring functions for predicting molecular docking and protein-ligand binding affinity.
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
163
|
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27:221-34. [DOI: 10.1007/s10822-013-9644-8] [Citation(s) in RCA: 4084] [Impact Index Per Article: 340.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
|
164
|
Petrie M, Lynch KL, Ekins S, Chang JS, Goetz RJ, Wu AHB, Krasowski MD. Cross-reactivity studies and predictive modeling of "Bath Salts" and other amphetamine-type stimulants with amphetamine screening immunoassays. Clin Toxicol (Phila) 2013; 51:83-91. [PMID: 23387345 DOI: 10.3109/15563650.2013.768344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The increasing abuse of amphetamine-like compounds presents a challenge for clinicians and clinical laboratories. Although these compounds may be identified by mass spectrometry-based assays, most clinical laboratories use amphetamine immunoassays that have unknown cross-reactivity with novel amphetamine-like drugs. To date, there has been a little systematic study of amphetamine immunoassay cross-reactivity with structurally diverse amphetamine-like drugs or of computational tools to predict cross-reactivity. METHODS Cross-reactivities of 42 amphetamines and amphetamine-like drugs with three amphetamines screening immunoassays (AxSYM(®) Amphetamine/Methamphetamine II, CEDIA(®) amphetamine/Ecstasy, and EMIT(®) II Plus Amphetamines) were determined. Two- and three-dimensional molecular similarity and modeling approaches were evaluated for the ability to predict cross-reactivity using receiver-operator characteristic curve analysis. RESULTS Overall, 34%-46% of the drugs tested positive on the immunoassay screens using a concentration of 20,000 ng/mL. The three immunoassays showed differential detection of the various classes of amphetamine-like drugs. Only the CEDIA assay detected piperazines well, while only the EMIT assay cross-reacted with the 2C class. All three immunoassays detected 4-substituted amphetamines. For the AxSYM and EMIT assays, two-dimensional molecular similarity methods that combined similarity to amphetamine/methamphetamine and 3,4-methylenedioxymethampetamine most accurately predicted cross-reactivity. For the CEDIA assay, three-dimensional pharmacophore methods performed best in predicting cross-reactivity. Using the best performing models, cross-reactivities of an additional 261 amphetamine-like compounds were predicted. CONCLUSIONS Existing amphetamines immunoassays unevenly detect amphetamine-like drugs, particularly in the 2C, piperazine, and β-keto classes. Computational similarity methods perform well in predicting cross-reactivity and can help prioritize testing of additional compounds in the future.
Collapse
Affiliation(s)
- M Petrie
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Lü S, Zheng W, Ji L, Luo Q, Hao X, Li X, Wang F. Synthesis, characterization, screening and docking analysis of 4-anilinoquinazoline derivatives as tyrosine kinase inhibitors. Eur J Med Chem 2013; 61:84-94. [DOI: 10.1016/j.ejmech.2012.07.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/16/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
166
|
Pyrazolo[3,4-d]pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A 2 : insight from molecular docking studies. J Biol Phys 2013; 39:419-38. [PMID: 23860918 DOI: 10.1007/s10867-013-9299-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 12/22/2022] Open
Abstract
Phospholipase A2 (PLA2), isolated from Daboia russelli pulchella (Russell's viper), is enzymatically active as well as induces several pharmacological disorders including neurotoxicity, myotoxicity, cardiotoxicity, anti-coagulant, hemolytic, and platelet effects. Indomethacin reduces the effects of anti-coagulant and pro-inflammatory actions of PLA2. Pyrazolo[3,4-d]pyrimidines constitute a class of naturally occurring fused uracils that posses diverse biological activities. The in-silico docking studies of nine pyrazolo[3,4-d]pyrimidine molecules have been carried out with the X-ray crystal structure of Russell's viper PLA2 (PDB ID: 3H1X) to predict the binding affinity, molecular recognition, and to explicate the binding modes, using AUTODOCK and GLIDE (Standard precision and Extra precision) modules, respectively. Docking results through each method make obvious that pyrazolo[3,4-d]pyrimidine molecules with trimethylene linker can bind with both anti-coagulation and enzymatic regions of PLA2.
Collapse
|
167
|
Schröder J, Klinger A, Oellien F, Marhöfer RJ, Duszenko M, Selzer PM. Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach. J Med Chem 2013; 56:1478-90. [PMID: 23350811 DOI: 10.1021/jm3013932] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In pharmaceutical industry, lead discovery strategies and screening collections have been predominantly tailored to discover compounds that modulate target proteins through noncovalent interactions. Conversely, covalent linkage formation is an important mechanism for a quantity of successful drugs in the market, which are discovered in most cases by hindsight instead of systematical design. In this article, the implementation of a docking-based virtual screening workflow for the retrieval of covalent binders is presented considering human cathepsin K as a test case. By use of the docking conditions that led to the best enrichment of known actives, 44 candidate compounds with unknown activity on cathepsin K were finally selected for experimental evaluation. The most potent inhibitor, 4-(N-phenylanilino)-6-pyrrolidin-1-yl-1,3,5-triazine-2-carbonitrile (CP243522), showed a K(i) of 21 nM and was confirmed to have a covalent reversible mechanism of inhibition. The presented approach will have great potential in cases where covalent inhibition is the desired drug discovery strategy.
Collapse
Affiliation(s)
- Jörg Schröder
- MSD Animal Health Innovation GmbH, Zur Propstei, D-55270 Schwabenheim, Germany
| | | | | | | | | | | |
Collapse
|
168
|
Wang H, Liu P, Xie H. An empirical molecular docking study of a di-iron binding protein with iron ions. ACTA ACUST UNITED AC 2013. [DOI: 10.1631/jzus.c1200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
169
|
Target based virtual screening by docking into automatically generated GPCR models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 914:255-70. [PMID: 22976033 DOI: 10.1007/978-1-62703-023-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Target based virtual screening (VS) combined with high-throughput measurements is an extremely useful tool to identify small molecule hits for proteins and in particular for G-protein coupled receptors (GPCRs). However, this is a quite difficult process for GPCRs due to the paucity of 3D structural information on these receptors. Therefore, the only possibility for target based VS is to build a structural model of the GPCR to be used for docking. However, GPCR model building is a very time consuming process, if the model should be able to explain all experimental findings and this investment is not always justified, if the model is only used for VS. Thus, a fully automated workflow is presented here, where a large number of GPCR models is built, and the best model is identified to be used for docking. The workflow leads to moderate enrichments with a very low effort. The inputs required are the sequence of the targeted GPCR, a reference ligand with experimental information and a database of small molecules to be used for docking. Manual intervention is recommended at various points, but it is strictly speaking not necessary.
Collapse
|
170
|
Jiang J, Kang H, Song X, Huang S, Li S, Xu J. A model of interaction between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and apocynin analogues by docking method. Int J Mol Sci 2013; 14:807-17. [PMID: 23344042 PMCID: PMC3565292 DOI: 10.3390/ijms14010807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/11/2012] [Accepted: 12/24/2012] [Indexed: 12/04/2022] Open
Abstract
Some apocynin analogues have exhibited outstanding inhibition to NADPH oxidase. In this study, the key interactions between apocynin analogues and NADPH oxidase were analyzed by the docking method. The potential active site was first identified by the SiteID program combining with the key residue CYS378. Afterwards, the compounds in the training set were docked into NADPH oxidase (1K4U) under specific docking constraints to discuss the key interactions between ligands and the receptor. These key interactions were then validated by the consistence between the docking result and the experimental result of the test set. The result reveals that the Pi interaction between apocynin analogues and NADPH oxidase has a direct contribution to inhibition activities, except for H-bond formation and docking score. The key interactions might be valuable to discover and screen apocynin analogues as potent inhibitors of NADPH oxidase.
Collapse
Affiliation(s)
- Jie Jiang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Hongjun Kang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Xiaoliang Song
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Sichao Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
| | - Sha Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (J.J.); (H.K.); (X.S.); (S.H.)
- Authors to whom correspondence should be addressed; E-Mails: (S.L.); (J.X.); Tel.: +86-020-8522-3784 (S.L.); +86-020-8522-3704 (J.X.)
| | - Jun Xu
- College of Medicine, Jinan University, Guangzhou 510632, China
- Authors to whom correspondence should be addressed; E-Mails: (S.L.); (J.X.); Tel.: +86-020-8522-3784 (S.L.); +86-020-8522-3704 (J.X.)
| |
Collapse
|
171
|
Hou X, Du J, Zhang J, Du L, Fang H, Li M. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials. J Chem Inf Model 2013; 53:188-200. [PMID: 23244516 DOI: 10.1021/ci300417y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular docking, which is the indispensable emphasis in predicting binding conformations and energies of ligands to receptors, constructs the high-throughput virtual screening available. So far, increasingly numerous molecular docking programs have been released, and among them, AutoDock 4.2 is a widely used docking program with exceptional accuracy. It has heretofore been substantiated that the calculation of partial charge is very fundamental for the accurate conformation search and binding energy estimation. However, no systematic comparison of the significances of electrostatic potentials on docking accuracy of AutoDock 4.2 has been determined. In this paper, nine different charge-assigning methods, including AM1-BCC, Del-Re, formal, Gasteiger-Hückel, Gasteiger-Marsili, Hückel, Merck molecular force field (MMFF), and Pullman, as well as the ab initio Hartree-Fock charge, were sufficiently explored for their molecular docking performance by using AutoDock4.2. The results clearly demonstrated that the empirical Gasteiger-Hückel charge is the most applicable in virtual screening for large database; meanwhile, the semiempirical AM1-BCC charge is practicable in lead compound optimization as well as accurate virtual screening for small databases.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
172
|
Kooistra AJ, Roumen L, Leurs R, de Esch IJ, de Graaf C. From Heptahelical Bundle to Hits from the Haystack. Methods Enzymol 2013; 522:279-336. [DOI: 10.1016/b978-0-12-407865-9.00015-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
173
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
174
|
Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem 2012; 58:431-40. [DOI: 10.1016/j.ejmech.2012.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 11/16/2022]
|
175
|
Hamza A, Wei NN, Hao C, Xiu Z, Zhan CG. A novel and efficient ligand-based virtual screening approach using the HWZ scoring function and an enhanced shape-density model. J Biomol Struct Dyn 2012; 31:1236-50. [PMID: 23140256 DOI: 10.1080/07391102.2012.732341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, we extend our previous ligand shape-based virtual screening approach by using the scoring function Hamza-Wei-Zhan (HWZ) score and an enhanced molecular shape-density model for the ligands. The performance of the method has been tested against the 40 targets in the Database of Useful Decoys and compared with the performance of our previous HWZ score method. The virtual screening results using the novel ligand shape-based approach demonstrated a favorable improvement (area under the receiver operator characteristics curve AUC = .89 ± .02) and effectiveness (hit rate HR(1%) = 53.0% ± 6.3 and HR(10%) = 71.1% ± 4.9). The comparison of the overall performance of our ligand shape-based method with the highest ligand shape-based virtual screening approach using the data fusion of multi queries showed that our strategy takes into account deeper the chemical information of the set of active ligands. Furthermore, the results indicated that our method are suitable for virtual screening and yields superior prediction accuracy than the other study derived from the data fusion using five queries. Therefore, our novel ligand shape-based screening method constitutes a robust and efficient approach to the 3D similarity screening of small compounds and open the door to a whole new approach to drug design by implementing the method in the structure-based virtual screening.
Collapse
Affiliation(s)
- Adel Hamza
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington , KY , 40536 , USA
| | | | | | | | | |
Collapse
|
176
|
Al-Sha'er MA, Taha MO. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model 2012; 18:4843-4863. [PMID: 22707278 DOI: 10.1007/s00894-012-1479-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/21/2012] [Indexed: 12/23/2022]
Abstract
Heat shock protein (Hsp90α) has been recently implicated in cancer, prompting several attempts to discover and optimize new Hsp90α inhibitors. Towards this end, we docked 83 diverse Hsp90α inhibitors into the ATP-binding site of this chaperone using several docking-scoring settings. Subsequently, we applied our newly developed computational tool--docking-based comparative intramolecular contacts analysis (dbCICA)--to assess the different docking conditions and select the best settings. dbCICA is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration based on its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands, and vice versa. The optimal dbCICA models were translated into valid pharmacophore models that were used as 3D search queries to mine the National Cancer Institute's structural database for new inhibitors of Hsp90α that could potentially be used as anticancer agents. The process culminated in 15 micromolar Hsp90α ATPase inhibitors.
Collapse
|
177
|
Hu G, Li X, Zhang X, Li Y, Ma L, Yang LM, Liu G, Li W, Huang J, Shen X, Hu L, Zheng YT, Tang Y. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem 2012; 55:10108-17. [PMID: 23046280 DOI: 10.1021/jm301226a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aims to identify inhibitors that bind at the interface of HIV-1 integrase (IN) and human LEDGF/p75, which represents a novel target for anti-HIV therapy. To date, only a few such inhibitors have been reported. Here structure-based virtual screening was performed to search for the inhibitors from an in-house library of natural products and their derivatives. Among the 38 compounds selected by our strategy, 18 hits were discovered. The two most potent inhibitors showed IC(50) values at 0.32 and 0.26 μM, respectively. Three compounds were subsequently selected for anti-HIV assays, among which (E)-3-(2-chlorophenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one (NPD170) showed the highest antiviral activity (EC(50) = 1.81 μM). The antiviral mechanism of these compounds was further explored, and the results validated that the compounds interrupted the binding of transfected IN to endogenous LEDGF/p75. These findings could be helpful for anti-HIV drug discovery.
Collapse
Affiliation(s)
- Guoping Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Dixit A, Verkhivker GM. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations. J Chem Inf Model 2012; 52:2501-15. [PMID: 22992037 DOI: 10.1021/ci3002638] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The rapidly growing wealth of structural and functional information about kinase genes and kinase inhibitors that is fueled by a significant therapeutic role of this protein family provides a significant impetus for development of targeted computational screening approaches. In this work, we explore an ensemble-based, protein-centric approach that allows for simultaneous virtual ligand screening against multiple kinase genes and multiple kinase receptor conformations. We systematically analyze and compare the results of ligand-based and protein-centric screening approaches using both single-receptor and ensemble-based docking protocols. A panel of protein kinase targets that includes ABL, EGFR, P38, CDK2, TK, and VEGFR2 kinases is used in this comparative analysis. By applying various performance metrics we have shown that ligand-centric shape matching can provide an effective enrichment of active compounds outperforming single-receptor docking screening. However, ligand-based approaches can be highly sensitive to the choice of inhibitor queries. Employment of multiple inhibitor queries combined with parallel selection ranking criteria can improve the performance and efficiency of ligand-based virtual screening. We also demonstrated that replica-exchange Monte Carlo docking with kinome-based ensembles of multiple crystal structures can provide a superior early enrichment on the kinase targets. The central finding of this study is that incorporation of the template-based structural information about kinase inhibitors and protein kinase structures in diverse functional states can significantly enhance the overall performance and robustness of both ligand and protein-centric screening strategies. The results of this study may be useful in virtual screening of kinase inhibitors potentially offering a beneficial spectrum of therapeutic activities across multiple disease states.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
179
|
Awasthi P, Sharma P. In silico screening of the juvabione category of juvenile hormone analogues with juvenile hormone binding protein of Galleria mellonella--a docking study. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:607-625. [PMID: 22799597 DOI: 10.1080/1062936x.2012.665384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Juvabione, dehydrojuvabione and their aromatic analogues act as juvenile hormone mimics against diverse strains of insect species. Large numbers of modified juvenoids containing the juvabione skeleton, with various structural variations, are synthesized. Some of these compounds exhibit a very high degree of juvenile hormone activity and are presently in use. In this paper we report a comparative molecular docking study of synthesized juvabione, natural juvenile hormone III and synthetic insect growth regulators (fenoxycarb, S-21149, Compound 1, pyriproxyfen) with the juvenile hormone binding protein of Galleria mellonella. The study clearly indicates a higher binding affinity of nitro-substituted juvabione over natural juvenile hormone III and synthetic insect growth regulators such as fenoxycarb and S-21149.
Collapse
Affiliation(s)
- P Awasthi
- Department of Chemistry, National Institute of Technology, Hamirpur, India.
| | | |
Collapse
|
180
|
Miri R, Razzaghi-asl N, Mohammadi MK. QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J Mol Model 2012; 19:727-35. [PMID: 23053004 DOI: 10.1007/s00894-012-1586-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/28/2012] [Indexed: 01/02/2023]
Abstract
Isatin is an important compound from the biological aspect of view. It is an endogenous substance and moreover; various pharmacological activities have been reported for isatin and its derivatives. In-vitro cytotoxic effects of the prepared isatin Schiff bases toward HeLa, LS180 and Raji human cancer cell lines has been reported in our previous work. 3-(2-(4-nitrophenyl)hydrazono) indolin-2-one was found to be the most potent one among the studied compounds (IC(30) =12.2 and 21.8 μM in HeLa and LS-180 cell lines, respectively). Obtained biological data could be well interpreted using docking binding energies toward vascular endothelial growth factor receptor (VEGFR-2); a key anticancer target being biologically investigated against various isatin derivatives. In the present work, quantum mechanical (QM) method including functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP) was used to estimate individual ligand-residue interaction energies for the docked 3-(2-(4-nitrophenyl)hydrazono) indolin-2-one into VEGFR-2 active site. Results were further interpreted via calculated polarization effects induced by individual amino acids of the receptor active site. A fairly good correlation could be found between polarization effects and estimated binding energies (R(2) =0.7227). Conformational analysis revealed that 3-(2-(4-nitrophenyl) hydrazono) indolin-2-one might not necessarily interact with the VEGFR-2 active site in its minimum energy conformation.
Collapse
Affiliation(s)
- Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 3288-71345, Shiraz, Iran
| | | | | |
Collapse
|
181
|
Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin 2012; 33:1131-40. [PMID: 22922346 PMCID: PMC4003107 DOI: 10.1038/aps.2012.109] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/08/2012] [Indexed: 01/09/2023]
Abstract
Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field.
Collapse
Affiliation(s)
- Si-sheng Ou-Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun-yan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang-qian Kong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhong-jie Liang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
182
|
Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 2012; 55:6582-94. [PMID: 22716043 PMCID: PMC3405771 DOI: 10.1021/jm300687e] [Citation(s) in RCA: 1477] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
A key metric to assess molecular docking remains ligand
enrichment
against challenging decoys. Whereas the directory of useful decoys
(DUD) has been widely used, clear areas for optimization have emerged.
Here we describe an improved benchmarking set that includes more diverse
targets such as GPCRs and ion channels, totaling 102 proteins with
22886 clustered ligands drawn from ChEMBL, each with 50 property-matched
decoys drawn from ZINC. To ensure chemotype diversity, we cluster
each target’s ligands by their Bemis–Murcko atomic frameworks.
We add net charge to the matched physicochemical properties and include
only the most dissimilar decoys, by topology, from the ligands. An
online automated tool (http://decoys.docking.org) generates
these improved matched decoys for user-supplied ligands. We test this
data set by docking all 102 targets, using the results to improve
the balance between ligand desolvation and electrostatics in DOCK
3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org.
Collapse
Affiliation(s)
- Michael M Mysinger
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158-2330, USA
| | | | | | | |
Collapse
|
183
|
Liu S, Fu R, Zhou LH, Chen SP. Application of consensus scoring and principal component analysis for virtual screening against β-secretase (BACE-1). PLoS One 2012; 7:e38086. [PMID: 22701601 PMCID: PMC3372491 DOI: 10.1371/journal.pone.0038086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 05/03/2012] [Indexed: 01/19/2023] Open
Abstract
Background In order to identify novel chemical classes of β-secretase (BACE-1) inhibitors, an alternative scoring protocol, Principal Component Analysis (PCA), was proposed to summarize most of the information from the original scoring functions and re-rank the results from the virtual screening against BACE-1. Method Given a training set (50 BACE-1 inhibitors and 9950 inactive diverse compounds), three rank-based virtual screening methods, individual scoring, conventional consensus scoring and PCA, were judged by the hit number in the top 1% of the ranked list. The docking poses were generated by Surflex, five scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, and PMF_Score) were used for pose extraction. For each pose group, twelve scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, PMF_Score, LigScore1, LigScore2, PLP1, PLP2, jain, Ludi_1, and Ludi_2) were used for the pose rank. For a test set, 113,228 chemical compounds (Sigma-Aldrich® corporate chemical directory) were docked by Surflex, then ranked by the same three ranking methods motioned above to select the potential active compounds for experimental test. Results For the training set, the PCA approach yielded consistently superior rankings compared to conventional consensus scoring and single scoring. For the test set, the top 20 compounds according to conventional consensus scoring were experimentally tested, no inhibitor was found. Then, we relied on PCA scoring protocol to test another different top 20 compounds and two low micromolar inhibitors (S450588 and 276065) were emerged through the BACE-1 fluorescence resonance energy transfer (FRET) assay. Conclusion The PCA method extends the conventional consensus scoring in a quantitative statistical manner and would appear to have considerable potential for chemical screening applications.
Collapse
Affiliation(s)
- Shu Liu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail: (S-PC); (SL)
| | - Rao Fu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Sheng-Ping Chen
- Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail: (S-PC); (SL)
| |
Collapse
|
184
|
Osguthorpe DJ, Sherman W, Hagler AT. Generation of Receptor Structural Ensembles for Virtual Screening Using Binding Site Shape Analysis and Clustering. Chem Biol Drug Des 2012; 80:182-93. [DOI: 10.1111/j.1747-0285.2012.01396.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
185
|
In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase. Methods Mol Biol 2012; 796:351-67. [PMID: 22052500 DOI: 10.1007/978-1-61779-334-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK).
Collapse
|
186
|
Spitzer R, Jain AN. Surflex-Dock: Docking benchmarks and real-world application. J Comput Aided Mol Des 2012; 26:687-99. [PMID: 22569590 DOI: 10.1007/s10822-011-9533-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/12/2011] [Indexed: 12/01/2022]
Abstract
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.
Collapse
Affiliation(s)
- Russell Spitzer
- Deparment of Bioengineering and Therapeutic Sciences, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
187
|
Mahasenan KV, Li C. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. J Chem Inf Model 2012; 52:1345-55. [PMID: 22540736 DOI: 10.1021/ci300040c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Kinase targets have been demonstrated to undergo major conformational reorganization upon ligand binding. Such protein conformational plasticity remains a significant challenge in structure-based virtual screening methodology and may be approximated by screening against an ensemble of diverse protein conformations. Maternal embryonic leucine zipper kinase (MELK), a member of serine-threonine kinase family, has been recently found to be involved in the tumerogenic state of glioblastoma, breast, ovarian, and colon cancers. We therefore modeled several conformers of MELK utilizing the available chemogenomic and crystallographic data of homologous kinases. We carried out docking pose prediction and virtual screening enrichment studies with these conformers. The performances of the ensembles were evaluated by their ability to reproduce known inhibitor bioactive conformations and to efficiently recover known active compounds early in the virtual screen when seeded with decoy sets. A few of the individual MELK conformers performed satisfactorily in reproducing the native protein-ligand pharmacophoric interactions up to 50% of the cases. By selecting an ensemble of a few representative conformational states, most of the known inhibitor binding poses could be rationalized. For example, a four conformer ensemble is able to recover 95% of the studied actives, especially with imperfect scoring function(s). The virtual screening enrichment varied considerably among different MELK conformers. Enrichment appears to improve by selection of a proper protein conformation. For example, several holo and unliganded active conformations are better to accommodate diverse chemotypes than ATP-bound conformer. These results prove that using an ensemble of diverse conformations could give a better performance. Applying this approach, we were able to screen a commercially available library of half a million compounds against three conformers to discover three novel inhibitors of MELK, one from each template. Among the three compounds validated via experimental enzyme inhibition assays, one is relatively potent (15; K(d) = 0.37 μM), one moderately active (12; K(d) = 3.2 μM), and one weak but very selective (9; K(d) = 18 μM). These novel hits may be utilized to assist in the development of small molecule therapeutic agents useful in diseases caused by deregulated MELK, and perhaps more importantly, the approach demonstrates the advantages of choosing an appropriate ensemble of a few conformers in pursuing compound potency, selectivity, and novel chemotypes over using single target conformation for structure-based drug design in general.
Collapse
Affiliation(s)
- Kiran V Mahasenan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
188
|
Bohari MH, Sastry GN. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J Mol Model 2012; 18:4263-74. [PMID: 22562231 DOI: 10.1007/s00894-012-1416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/26/2012] [Indexed: 11/29/2022]
Abstract
Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.
Collapse
Affiliation(s)
- Mohammed H Bohari
- Molecular Modeling Group, Indian Institute of Chemical Technology, Hyderabad,, 500 607, Andhra Pradesh, India
| | | |
Collapse
|
189
|
In silico screening of quadruplex-binding ligands. Methods 2012; 57:106-14. [DOI: 10.1016/j.ymeth.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
|
190
|
Hamza A, Wei NN, Zhan CG. Ligand-based virtual screening approach using a new scoring function. J Chem Inf Model 2012; 52:963-74. [PMID: 22486340 DOI: 10.1021/ci200617d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we aimed to develop a new ligand-based virtual screening approach using an effective shape-overlapping procedure and a more robust scoring function (denoted by the HWZ score for convenience). The HWZ score-based virtual screening approach was tested against the compounds for 40 protein targets available in the Database of Useful Decoys (DUD; dud.docking.org/jahn/ ), and the virtual screening performance was evaluated in terms of the area under the receiver operator characteristic (ROC) curve (AUC), enrichment factor (EF), and hit rate (HR), demonstrating an improved overall performance compared to other popularly used approaches examined. In particular, the HWZ score-based virtual screening led to an average AUC value of 0.84 ± 0.02 (95% confidence interval) for the 40 targets. The average HR values at the top 1% and 10% of the active compounds for the 40 targets were 46.3% ± 6.7% and 59.2% ± 4.7%, respectively. In addition, the performance of the HWZ score-based virtual screening approach is less sensitive to the choice of the target.
Collapse
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | | | | |
Collapse
|
191
|
Udatha DBRKG, Sugaya N, Olsson L, Panagiotou G. How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases. Sci Rep 2012; 2:323. [PMID: 22435086 PMCID: PMC3308130 DOI: 10.1038/srep00323] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/02/2012] [Indexed: 11/13/2022] Open
Abstract
Molecular docking is the most commonly used technique in the modern drug discovery process where computational approaches involving docking algorithms are used to dock small molecules into macromolecular target structures. Over the recent years several evaluation studies have been reported by independent scientists comparing the performance of the docking programs by using default ‘black box’ protocols supplied by the software companies. Such studies have to be considered carefully as the docking programs can be tweaked towards optimum performance by selecting the parameters suitable for the target of interest. In this study we address the problem of selecting an appropriate docking and scoring function combination (88 docking algorithm-scoring functions) for substrate specificity predictions for feruloyl esterases, an industrially relevant enzyme family. We also propose the ‘Key Interaction Score System’ (KISS), a more biochemically meaningful measure for evaluation of docking programs based on pose prediction accuracy.
Collapse
|
192
|
Molecular docking studies of protein-nucleotide complexes using MOLSDOCK (mutually orthogonal Latin squares DOCK). J Mol Model 2012; 18:3705-22. [PMID: 22382575 DOI: 10.1007/s00894-012-1369-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
Abstract
Understanding the principles of protein receptor recognition, interaction, and association with molecular substrates and inhibitors is of principal importance in the drug discovery process. MOLSDOCK is a molecular docking method that we have recently developed. It uses mutually orthogonal Latin square sampling (together with a variant of the mean field technique) to identify the optimal docking conformation and pose of a small molecule ligand in the appropriate receptor site. Here we report the application of this method to simultaneously identify both the low energy conformation and the one with the best pose in the case of 62 protein-bound nucleotide ligands. The experimental structures of all these complexes are known. We have compared our results with those obtained from two other well-known molecular docking software, viz. AutoDock 4.2.3 and GOLD 5.1. The results show that the MOLSDOCK method was able to sample a wide range of binding modes for these ligands and also scores them well.
Collapse
|
193
|
Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One 2012; 7:e31610. [PMID: 22384042 PMCID: PMC3285636 DOI: 10.1371/journal.pone.0031610] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.
Collapse
Affiliation(s)
- Frederick Daidone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Riccardo Montioli
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Barbara Cellini
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Antonio Macchiarulo
- Department of Chemistry and Drug Technology, University of Perugia, Perugia, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Francesco Bossa
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | | |
Collapse
|
194
|
Schneider N, Hindle S, Lange G, Klein R, Albrecht J, Briem H, Beyer K, Claußen H, Gastreich M, Lemmen C, Rarey M. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J Comput Aided Mol Des 2011; 26:701-23. [PMID: 22203423 DOI: 10.1007/s10822-011-9531-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/12/2011] [Indexed: 12/16/2022]
Abstract
The HYDE scoring function consistently describes hydrogen bonding, the hydrophobic effect and desolvation. It relies on HYdration and DEsolvation terms which are calibrated using octanol/water partition coefficients of small molecules. We do not use affinity data for calibration, therefore HYDE is generally applicable to all protein targets. HYDE reflects the Gibbs free energy of binding while only considering the essential interactions of protein-ligand complexes. The greatest benefit of HYDE is that it yields a very intuitive atom-based score, which can be mapped onto the ligand and protein atoms. This allows the direct visualization of the score and consequently facilitates analysis of protein-ligand complexes during the lead optimization process. In this study, we validated our new scoring function by applying it in large-scale docking experiments. We could successfully predict the correct binding mode in 93% of complexes in redocking calculations on the Astex diverse set, while our performance in virtual screening experiments using the DUD dataset showed significant enrichment values with a mean AUC of 0.77 across all protein targets with little or no structural defects. As part of these studies, we also carried out a very detailed analysis of the data that revealed interesting pitfalls, which we highlight here and which should be addressed in future benchmark datasets.
Collapse
Affiliation(s)
- Nadine Schneider
- Center for Bioinformatics, University of Hamburg, Bundesstr. 43, 20146, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Therrien E, Englebienne P, Arrowsmith AG, Mendoza-Sanchez R, Corbeil CR, Weill N, Campagna-Slater V, Moitessier N. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery. J Chem Inf Model 2011; 52:210-24. [PMID: 22133077 DOI: 10.1021/ci2004779] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal (i.e., experimental, intuitive) chemistry to take advantage of the full potential of both. For this purpose, we have developed a Web-based platform, Forecaster, and a number of programs (e.g., Prepare, React, Select) with the aim of combining computational chemistry and medicinal chemistry expertise to facilitate drug discovery and development and more specifically to integrate synthesis into computer-aided drug design. In our quest for potent SERMs, this platform was used to build virtual combinatorial libraries, filter and extract a highly diverse library from the NCI database, and dock them to the estrogen receptor (ER), with all of these steps being fully automated by computational chemists for use by medicinal chemists. As a result, virtual screening of a diverse library seeded with active compounds followed by a search for analogs yielded an enrichment factor of 129, with 98% of the seeded active compounds recovered, while the screening of a designed virtual combinatorial library including known actives yielded an area under the receiver operating characteristic (AU-ROC) of 0.78. The lead optimization proved less successful, further demonstrating the challenge to simulate structure activity relationship studies.
Collapse
Affiliation(s)
- Eric Therrien
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada H3A 2K6
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Gatica EA, Cavasotto CN. Ligand and decoy sets for docking to G protein-coupled receptors. J Chem Inf Model 2011; 52:1-6. [PMID: 22168315 DOI: 10.1021/ci200412p] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We compiled a G protein-coupled receptor (GPCR) ligand library (GLL) for 147 targets, selecting for each ligand 39 decoy molecules, collected in the GPCR Decoy Database (GDD). Decoys were chosen ensuring a ligand-decoy similarity of six physical properties, while enforcing ligand-decoy chemical dissimilarity. The performance in docking of the GDD was evaluated on 19 GPCRs, showing a marked decrease in enrichment compared to bias-uncorrected decoy sets. Both the GLL and GDD are freely available for the scientific community.
Collapse
Affiliation(s)
- Edgar A Gatica
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St., Houston, Texas 77030, USA
| | | |
Collapse
|
197
|
Gangwar S, Baig MS, Shah P, Biswas S, Batra S, Siddiqi MI, Goyal N. Identification of Novel Inhibitors of Dipeptidylcarboxypeptidase of Leishmania donovani via Ligand-Based Virtual Screening and Biological Evaluation. Chem Biol Drug Des 2011; 79:149-56. [DOI: 10.1111/j.1747-0285.2011.01262.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
198
|
Synthesis and docking study of 2-phenylaminopyrimidine Abl tyrosine kinase inhibitors. Bioorg Med Chem Lett 2011; 21:6964-8. [PMID: 22033461 DOI: 10.1016/j.bmcl.2011.09.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022]
Abstract
Six analogs of imatinib, an Abl kinase inhibitor clinically used as a first-line therapeutic agent for chronic myeloid leukaemia (CML), have been synthesized and characterized. And their potency as Abl kinase inhibitors have been screened by a robust virtual screening method developed based on the crystal structure (PDB code 2hyy) of Abl-imatinib complex using Surflex-Docking. The docking results are consistent with the inhibitory potency of the compounds characterized by MS method. And the H-bonds between imatinib analogs and Thr315 and Met318 residues in Abl kinase are shown to be crucial for achieving accurate poses and high binding affinities for the ATP-competitive kinase inhibitors.
Collapse
|
199
|
Huang SY, Zou X. Construction and test of ligand decoy sets using MDock: community structure-activity resource benchmarks for binding mode prediction. J Chem Inf Model 2011; 51:2107-14. [PMID: 21755952 PMCID: PMC3190646 DOI: 10.1021/ci200080g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two sets of ligand binding decoys have been constructed for the community structure-activity resource (CSAR) benchmark by using the MDock and DOCK programs for rigid- and flexible-ligand docking, respectively. The decoys generated for each complex in the benchmark thoroughly cover the binding site and also contain a certain number of near-native binding modes. A few scoring functions have been evaluated using the ligand binding decoy sets for their abilities of predicting near-native binding modes. Among them, ITScore achieved a success rate of 86.7% for the rigid-ligand decoys and 79.7% for the flexible-ligand decoys, under the common definition of a successful prediction as root-mean-square deviation <2.0 Å from the native structure if the top-scored binding mode was considered. The decoy sets may serve as benchmarks for binding mode prediction of a scoring function, which are available at the CSAR Web site ( http://www.csardock.org/).
Collapse
Affiliation(s)
- Sheng-You Huang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Xiaoqin Zou
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
200
|
Smith RD, Dunbar JB, Ung PMU, Esposito EX, Yang CY, Wang S, Carlson HA. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model 2011; 51:2115-31. [PMID: 21809884 PMCID: PMC3186041 DOI: 10.1021/ci200269q] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
As part of the Community Structure-Activity Resource (CSAR) center, a set of 343 high-quality, protein–ligand crystal structures were assembled with experimentally determined Kd or Ki information from the literature. We encouraged the community to score the crystallographic poses of the complexes by any method of their choice. The goal of the exercise was to (1) evaluate the current ability of the field to predict activity from structure and (2) investigate the properties of the complexes and methods that appear to hinder scoring. A total of 19 different methods were submitted with numerous parameter variations for a total of 64 sets of scores from 16 participating groups. Linear regression and nonparametric tests were used to correlate scores to the experimental values. Correlation to experiment for the various methods ranged R2 = 0.58–0.12, Spearman ρ = 0.74–0.37, Kendall τ = 0.55–0.25, and median unsigned error = 1.00–1.68 pKd units. All types of scoring functions—force field based, knowledge based, and empirical—had examples with high and low correlation, showing no bias/advantage for any particular approach. The data across all the participants were combined to identify 63 complexes that were poorly scored across the majority of the scoring methods and 123 complexes that were scored well across the majority. The two sets were compared using a Wilcoxon rank-sum test to assess any significant difference in the distributions of >400 physicochemical properties of the ligands and the proteins. Poorly scored complexes were found to have ligands that were the same size as those in well-scored complexes, but hydrogen bonding and torsional strain were significantly different. These comparisons point to a need for CSAR to develop data sets of congeneric series with a range of hydrogen-bonding and hydrophobic characteristics and a range of rotatable bonds.
Collapse
Affiliation(s)
- Richard D Smith
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | | | | | | | |
Collapse
|