151
|
Luo X, Shui Y, Wang F, Yamamoto R, Kato N. Impaired retention of depression-like behavior in a mouse model of Alzheimer's disease. IBRO Rep 2017; 2:81-86. [PMID: 30135936 PMCID: PMC6084821 DOI: 10.1016/j.ibror.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023] Open
Abstract
By using a 5-day forced swimming test (FS) that we previously developed, swim immobility was induced in 3xTg Alzheimer's model mice and wild-type (WT) mice. After the initial 5-day FS, the next and last swimming session was performed at a 4-week interval, during which the immobility was reduced in 3xTg mice, but was maintained fully in WT mice. After FS, context-dependent fear learning was normally induced in WT mice, but was impaired in 3xTg mice, suggesting that FS may exaggerate cognitive deficits typical to 3xTg mice. Hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses was suppressed by FS in WT mice, but not in 3xTg mice, indicating that FS modifies LTP in the WT mouse hippocampus, but not in 3xTg tissue. FS increased excitability of cingulate cortex pyramidal cells similarly in WT and 3xTg mice. Agreeing with our previous finding that expression of Homer1a protein is decreased in the cingulate cortex in harmony with FS-induced immobility, western blot showed that Homer1a expression is reduced by FS in the WT mice. In 3xTg mice, by contrast, FS failed to reduce Homer1a expression. The disrupted endurance of FS-induced immobility in 3xTg mice appears to be attributable to impaired cognition typical to this genotype. Failure of FS to alter LTP magnitude might be related to unaltered Homer1a expression after FS in 3xTg mice.
Collapse
Affiliation(s)
- Xianwen Luo
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Shui
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Furong Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
152
|
Chiamulera C, Marzo CM, Balfour DJK. Metabotropic glutamate receptor 5 as a potential target for smoking cessation. Psychopharmacology (Berl) 2017; 234:1357-1370. [PMID: 27847973 DOI: 10.1007/s00213-016-4487-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. OBJECTIVE The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. RESULTS Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. CONCLUSIONS Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy.
| | - Claudio Marcello Marzo
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | - David J K Balfour
- Division of Neuroscience, University of Dundee Medical School, Mailbox 6, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
153
|
Hu JH, Worley PF, Kammermeier PJ. Dynamic Regulation of Homer Binding to Group I Metabotropic Glutamate Receptors by Preso1 and Converging Kinase Cascades. J Pharmacol Exp Ther 2017; 361:122-129. [PMID: 28179473 PMCID: PMC5363770 DOI: 10.1124/jpet.116.238394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
In rat sympathetic neurons from the superior cervical ganglia (SCG) expressing metabotropic glutamate receptor mGluR1 or mGluR5, overexpression of scaffolding Homer proteins, which bind to a Homer ligand in their C termini, cause receptor clustering and uncoupling from ion channel modulation. In the absence of recombinant Homer protein overexpression, uncoupling of mGluRs from voltage-dependent channels can be induced by expression of Preso1, an adaptor of proline-directed kinases that phosphorylates the Homer ligand and recruits binding of endogenous Homer proteins. Here we show that in SCG neurons expressing mGluR1 and the tyrosine receptor kinase B, treatment with brain-derived neurotrophic factor (BDNF) produces a similar uncoupling of the receptors from calcium channels. We investigated the pathways that mediate this uncoupling and compared it with uncoupling observed with Preso1 expression. Both BDNF- and Preso1-induced uncoupling require residues T1151 and S1154 in the mGluR1 Homer ligand (TPPSPF). Uncoupling via Preso1 but not BDNF was prevented by expression of a dominant negative Cdk5, suggesting that endogenous Cdk5 mediates Preso1-dependent phosphorylation of mGluR1. Dominant negative Cdk5 did not block the BDNF effect but this was sensitive to inhibitors of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade. Interestingly, the BDNF pathway appeared to require native Preso1 binding to mGluR, because overexpression of the Preso1 FERM domain, which mediates the Preso1-mGluR interaction, prevented BDNF-induced uncoupling. These data suggest that the BDNF/tyrosine receptor kinase B and Cdk5 pathways converge at the level of mGluR to similarly induce Homer ligand phosphorylation, recruit Homer binding, and uncouple mGluRs from channel regulation.
Collapse
Affiliation(s)
- Jia-Hua Hu
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
| | - Paul F Worley
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
| | - Paul J Kammermeier
- Section on Molecular Neurophysiology and Biophysics, Eunice Kennedy Shriver National Institutes of Health National Institute of Child Health and Human Development, Rockville, Maryland (J.-H.H.); Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland (P.F.W.); and Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York (P.J.K.)
| |
Collapse
|
154
|
Zimmermann J, Neuhuber WL, Raab M. Homer1 (VesL-1) in the rat esophagus: focus on myenteric plexus and neuromuscular junction. Histochem Cell Biol 2017; 148:189-206. [PMID: 28337539 DOI: 10.1007/s00418-017-1555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
Homer1, a scaffolding protein of the postsynaptic density (PSD), enriched at excitatory synapses is known to anchor and modulate group I metabotropic glutamate receptors (mGluRs) and different channel- and receptor-proteins. Homer proteins are expressed in neurons of different brain regions, but also in non-neuronal tissues like skeletal muscle. Occurrence and location of Homer1 and mGluR5 in myenteric plexus and neuromuscular junctions (NMJ) of rat esophagus have yet not been characterized. We located Homer1 and mGluR5 immunoreactivity (-iry) in rat esophagus and focused on myenteric neurons, intraganglionic laminar endings (IGLEs) and NMJs, using double- and triple-label immunohistochemistry and confocal laser scanning microscopy. Homer1-iry was found in a subpopulation of vesicular glutamate transporter 2 (VGLUT2) positive IGLEs and cholinergic varicosities within myenteric ganglia, but neither in nitrergic nor cholinergic myenteric neuronal cell bodies. Homer1-iry was detected in 63% of esophageal and, for comparison, in 35% of sternomastoid NMJs. Besides the location in the PSD, Homer1-iry colocalized with cholinergic markers, indicating a presynaptic location in coarse VAChT/CGRP/NF200- immunoreactive (-ir) terminals of nucleus ambiguus neurons supplying striated esophageal muscle. mGluR5-iry was found in subpopulations of myenteric neuronal cell bodies, VGLUT2-ir IGLEs and cholinergic varicosities within the myenteric neuropil and NMJs of esophagus and sternomastoid muscles. Thus, Homer1 may anchor mGluR5 at presynaptic sites of cholinergic boutons at esophageal motor endplates, in a small subpopulation of VGLUT2-ir IGLEs and cholinergic varicosities within myenteric ganglia possibly modulating Ca2+-currents and neurotransmitter release.
Collapse
Affiliation(s)
- J Zimmermann
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - W L Neuhuber
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - M Raab
- Institut für Anatomie, Lehrstuhl I, Friedrich-Alexander-Universität, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
155
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
156
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|
157
|
Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 2017; 355:511-515. [PMID: 28154077 DOI: 10.1126/science.aai8355] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Sleep is an essential process that supports learning and memory by acting on synapses through poorly understood molecular mechanisms. Using biochemistry, proteomics, and imaging in mice, we find that during sleep, synapses undergo widespread alterations in composition and signaling, including weakening of synapses through removal and dephosphorylation of synaptic AMPA-type glutamate receptors. These changes are driven by the immediate early gene Homer1a and signaling from group I metabotropic glutamate receptors mGluR1/5. Homer1a serves as a molecular integrator of arousal and sleep need via the wake- and sleep-promoting neuromodulators, noradrenaline and adenosine, respectively. Our data suggest that homeostatic scaling-down, a global form of synaptic plasticity, is active during sleep to remodel synapses and participates in the consolidation of contextual memory.
Collapse
Affiliation(s)
- Graham H Diering
- Solomon Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Raja S Nirujogi
- Department of Biological Chemistry, Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard H Roth
- Solomon Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Paul F Worley
- Solomon Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
158
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
159
|
Castelli V, Brancato A, Cavallaro A, Lavanco G, Cannizzaro C. Homer2 and Alcohol: A Mutual Interaction. Front Psychiatry 2017; 8:268. [PMID: 29249995 PMCID: PMC5714871 DOI: 10.3389/fpsyt.2017.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The past two decades of data derived from addicted individuals and preclinical animal models of addiction implicate a role for the excitatory glutamatergic transmission within the mesolimbic structures in alcoholism. The cellular localization of the glutamatergic receptor subtypes, as well as their signaling efficiency and function, are highly dependent upon discrete functional constituents of the postsynaptic density, including the Homer family of scaffolding proteins. The consequences of repeated alcohol administration on the expression of the Homer family proteins demonstrate a crucial and active role, particularly for the expression of Homer2 isoform, in regulating alcohol-induced behavioral and cellular neuroplasticity. The interaction between Homer2 and alcohol can be defined as a mutual relation: alcohol consumption enhances the expression of Homer2 protein isoform within the nucleus accumbens and the extended amygdala, cerebral areas where, in turn, Homer2 is able to mediate the development of the "pro-alcoholic" behavioral phenotype, as a consequence of the morpho-functional synaptic adaptations. Such findings are relevant for the detection of the strategic molecular components that prompt alcohol-induced functional and behavioral disarrangement as targets for future innovative treatment options.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
160
|
Jiang HZ, Wang SY, Yin X, Jiang HQ, Wang XD, Wang J, Wang TH, Qi Y, Yang YQ, Wang Y, Zhang CT, Feng HL. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid. Int J Mol Sci 2016; 17:ijms17122129. [PMID: 27999308 PMCID: PMC5187929 DOI: 10.3390/ijms17122129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.
Collapse
Affiliation(s)
- Hai-Zhi Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Shu-Yu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiang Yin
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Quan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xu-Dong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jing Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Tian-Hang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yan Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yue-Qing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Chun-Ting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Lin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
161
|
Duncan RS, Hwang SY, Koulen P. Effects of Vesl/Homer Proteins on Intracellular Signaling. Exp Biol Med (Maywood) 2016; 230:527-35. [PMID: 16118402 DOI: 10.1177/153537020523000803] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The clustering of signaling molecules at specialized cellular sites allows cells to effectively convert extracellular signals into intracellular signals and to produce a concerted functional output with specific temporal and spatial patterns. A prime example for these molecules and their effects on cellular signaling are the postsynaptic density proteins of the central nervous system. Recently, one group of these proteins, the Vesl/Homer protein family has received increased attention because of its unique molecular properties that allow both the clustering end functional modulation of a plethora of different binding Proteins. Within multlprotein signaling complexes, Vesl/Homer Proteins influence proteins as diverse as metabotropic glutamate receptors; transient receptor potential channels; intracellular calcium channels; the scaffolding protein, Shank; small GTPases; transcription factors; and cytoskeletal proteins. Furthermore, interaction with such functionally relevant proteins also links Vesl/Homer proteins indirectly to an even larger group of cellular effector proteins, putting the Vesl/Homer Proteins at the crossroads of several critical intracellular signaling processes. In addition to the initial reports of Vesl/Homer protein expression in the central nervous system, members of this protein family have now been identified in other excitable cells in various muscle types and in a large number of nonexcitable cells. The widespread expression of Vesl/Homer proteins in different organs and their functional importance in cellular protein signaling complexes is further evidenced by their conservation in organisms from Drosoohila to humans.
Collapse
Affiliation(s)
- R Scott Duncan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, USA
| | | | | |
Collapse
|
162
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
163
|
Olmo IG, Ferreira-Vieira TH, Ribeiro FM. Dissecting the Signaling Pathways Involved in the Crosstalk between Metabotropic Glutamate 5 and Cannabinoid Type 1 Receptors. Mol Pharmacol 2016; 90:609-619. [PMID: 27338080 DOI: 10.1124/mol.116.104372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The metabotropic glutamate 5 receptor and the cannabinoid type 1 receptor are G protein-coupled receptors that are widely expressed in the central nervous system. Metabotropic glutamate 5 receptors, present at the postsynaptic site, are coupled to Gαq/11 proteins and display an excitatory response upon activation, whereas the cannabinoid type 1 receptor, mainly present at presynaptic terminals, is coupled to the Gi/o protein and triggers an inhibitory response. Recent studies suggest that the glutamatergic and endocannabinoid systems exhibit a functional interaction to modulate several neural processes. In this review, we discuss possible mechanisms involved in this crosstalk and its relationship with physiologic and pathologic conditions, including nociception, addiction, and fragile X syndrome.
Collapse
Affiliation(s)
- Isabella G Olmo
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Talita H Ferreira-Vieira
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
164
|
Srivas S, Thakur MK. Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice. Mol Neurobiol 2016; 54:5107-5119. [PMID: 27553230 DOI: 10.1007/s12035-016-0047-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023]
Abstract
Recently, we reported a correlation of scopolamine mediated decline in memory consolidation with increase in the expression of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in the mouse hippocampus. Memory consolidation is a protein synthesis-dependent process which involves the expression of synaptic plasticity genes, particularly neuronal immediate early genes (IEGs). However, the mechanism of regulation of these genes during decline in memory is poorly understood. Therefore, we have studied the epigenetic regulation of expression of neuronal IEGs in scopolamine-induced amnesic mice. Scopolamine significantly impaired memory consolidation as tested by radial arm maze, and the expression of neuronal IEGs was downregulated in the hippocampus as revealed by qRT-PCR and Western blotting. Further, methylated DNA immunoprecipitation (MeDIP) analysis showed increase in DNA methylation, while chromatin immunoprecipitation (ChIP) revealed decrease in H3K9/14 acetylation at the promoter of neuronal IEGs. Taken together, the present study shows that increased DNA methylation and decreased histone acetylation at the promoter of neuronal IEGs are associated with decline in their expression and memory consolidation during scopolamine-induced amnesia. These findings suggest that the epigenetic regulation through altered DNA methylation and histone acetylation might be explored further to develop potential therapeutic interventions for amnesia.
Collapse
Affiliation(s)
- Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
165
|
Jones OD. Do group I metabotropic glutamate receptors mediate LTD? Neurobiol Learn Mem 2016; 138:85-97. [PMID: 27545442 DOI: 10.1016/j.nlm.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
Synapses undergo significant structural and functional reorganization in response to varying patterns of stimulation. These forms of plasticity are considered fundamental to cognition and neuronal homeostasis. An increasing number of reports highlight the importance of activity-dependent synaptic strengthening (long term potentiation: LTP) for learning. However, the functional significance of activity-dependent weakening of synapses (long term depression: LTD) remains relatively poorly understood. One form of synaptic weakening, induced by group I metabotropic glutamate receptors (mGluRs), has received significant attention from a mechanistic point of view and because of its augmentation in a murine model of Fragile X Syndrome. Yet, studies of this form of plasticity often yield confusing, contradictory results. These conflicting findings are likely attributable to the bulk stimulation and recording techniques often used to study synaptic plasticity (typically involving evoked extracellular recordings, which represent the summed activity of many synapses). Such studies inherently blur the identity of the synapses undergoing change, thus giving the illusion that synapses per se are being modified when in fact this may only be true of a specific subset of synapses. Indeed, studies employing minimal synaptic activation paint a fundamentally different picture of what is commonly called "mGluR-LTD". Here, I review the evidence in favour of group I mGluRs as mediators of various forms of synaptic downregulation and attempt to explain discrepancies in the literature. I argue that, while multiple forms of synaptic weakening may be triggered by these receptors, the canonical form of group I mGluR-mediated depression, mGluR-LTD, is in fact not a depression of basal synaptic responses. Rather, it is a reversal of established LTP and thus a form of depotentiation. Far from being arbitrary, this distinction has significant implications for the role of group I mGluRs in cognition, both in the healthy brain and in pathological conditions. Further, the differential actions of group I mGluRs at naïve and potentiated synapses suggest these receptors signal in a state-dependent manner to regulate various stages of the learning process.
Collapse
Affiliation(s)
- Owen D Jones
- Department of Psychology, Brain Health Research Centre & Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
166
|
Guo ZY, Zhang YH, Xie GQ, Liu CX, Zhou R, Shi W. Down-regulation of Homer1 attenuates t-BHP-induced oxidative stress through regulating calcium homeostasis and ER stress in brain endothelial cells. Biochem Biophys Res Commun 2016; 477:970-976. [PMID: 27396622 DOI: 10.1016/j.bbrc.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Endothelial dysfunction in brain endothelial cells contributes to vasogenic cerebral edema and increased mortality after various neurological diseases. The postsynaptic density protein Homer1 plays an important role in neuronal synaptic activity and is extensively involved in neurological disorders. The present study investigated the role of Homer1 in modulating cell survival using an in vitro endothelial dysfunction model in murine brain endothelial cells (mBECs). Treatment with tert-butyl hydroperoxide (t-BHP) induced a dose-dependent toxicity in mBECs, with no effects on Homer1 expression and distribution. Knockdown of Homer1 using specific siRNA significantly alleviated lactate dehydrogenase (LDH) release, increased cell viability, and ultimately decreased apoptosis after t-BHP treatment. Moreover, Homer1 knockdown attenuated t-BHP-induced ROS generation, lipid peroxidation and mitochondrial dysfunction, as evidenced by loss of mitochondrial membrane potential (MMP), ATP synthesis collapse and mitochondrial swelling. The results of Ca(2+) imaging showed that Homer1 was involved in inositol trisphosphate receptors (IP3R)- and ryanodine receptor (RyR)-mediated intracellular Ca(2+) release, and also mediated t-BHP-induced Ca(2+) release from the endoplasmic reticulum (ER). In addition, knockdown of Homer1 significantly prevented activation of ER stress markers induced by t-BHP exposure. All these results showed that Homer1 is involved in t-BHP-induced endothelial dysfunction in mBECs, and may be an ideal candidate for searching gene intervention strategy for preventing endothelial oxidative stress in vitro.
Collapse
Affiliation(s)
- Zhen-Yu Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710004, China
| | - Ya-Hong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710004, China
| | - Guo-Qiang Xie
- Department of Neurosurgery, Shaanxi Nuclear Industry 215 Hospital, Baoji, Shaanxi 712000, China
| | - Chong-Xiao Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710004, China
| | - Ren Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710004, China
| | - Wei Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiao Tong University, Xi'an, Shaanxi Province 710004, China.
| |
Collapse
|
167
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
168
|
Abstract
Recent work on hippocampal LTP has focused on gene expression induced with high-frequency stimulation, as well as the signal transduction cascades responsible for the induction of these genes. Many scenarios for LTP lasting for greater than 5 hours include some or all of the following processes: 1) tagging of potentiated synapses, possibly by phosphorylation; 2) signaling to the nucleus; 3) kinase cascades and transcription factors in the nucleus;, 4) expression of immediate-early genes and/or synaptic proteins; and, finally, 5) targeting of newly synthesized proteins (or RNAs) to the potentiated synapses (and not to the unpotentiated synapses). Unfortunately, most scenarios proposed for the late-phase expression of LTP are still highly speculative at this time. A critical review of the literature relating to the role of gene expression in hippocampal LTP and a discussion of recent work on the subject will be presented.
Collapse
Affiliation(s)
- Serena M Dudek
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, Bethesda, Maryland
| | - R Douglas Fields
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
169
|
Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. J Neurosci 2016; 36:2131-47. [PMID: 26888925 DOI: 10.1523/jneurosci.2921-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.
Collapse
|
170
|
Haas LT, Strittmatter SM. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease. J Biol Chem 2016; 291:17112-21. [PMID: 27325698 DOI: 10.1074/jbc.m116.720664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling.
Collapse
Affiliation(s)
- Laura T Haas
- From the Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536 and the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Stephen M Strittmatter
- From the Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536 and
| |
Collapse
|
171
|
Rao S, Lam MHB, Yeung VSY, Wing YK, Waye MMY. Association of HOMER1 rs2290639 with suicide attempts in Hong Kong Chinese and the potentially functional role of this polymorphism. SPRINGERPLUS 2016; 5:767. [PMID: 27386253 PMCID: PMC4912501 DOI: 10.1186/s40064-016-2404-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Animal evidence and genetic studies suggest that HOMER1 (homer homolog 1) is involved in the etiology of suicidal behavior and major depression disorder (MDD). However, most of genetic studies were performed in Caucasians and the potentially functional role of associated polymorphisms in HOMER1 was seldom reported. The purpose of this study was to investigate the association of a HOMER1 polymorphism rs2290639 with suicide attempts (SA) and MDD in Hong Kong Chinese, and then briefly elucidate the potentially functional role of the associated polymorphism. METHODS NEO personality inventory, impulsiveness and depression rating scales were completed by the subjects. The association studies of HOMER1 rs2290639 with SA or MDD were performed by case-control association studies. The bioinformatics analyses were adapted to predict potential transcription factors binding sites for the associated polymorphism. RESULTS The association studies and meta-analysis suggested that the HOMER1 rs2290639 was significantly associated with susceptibility to SA but seemed not to be associated with MDD in Hong Kong Chinese. This polymorphism might affect the transcription of the HOMER1 gene through interacting with a reliable transcription factor as found by three of four bioinformatics tools. In addition, close correlations between impulsiveness and NEO personality five factors were found in SA and MDD patients, which provide a possible way to assess the impulsiveness of patients through subjects' personality profiles for Hong Kong Chinese. CONCLUSIONS The HOMER1 rs2290639 polymorphism was significantly associated with susceptibility to SA in Hong Kong Chinese affected by psychiatric disorders, which might be explained by the potentially functional role of this polymorphism.
Collapse
Affiliation(s)
- Shitao Rao
- />Croucher Laboratory for Human Genomics, Rm324A, Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Area 39; The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| | - Marco H. B. Lam
- />Department of Psychiatry, Shatin Hospital, The Chinese University of Hong Kong, 33 Ah Kong Kok Street, Shatin, N.T. Hong Kong
| | - Venus S. Y. Yeung
- />Croucher Laboratory for Human Genomics, Rm324A, Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Area 39; The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| | - Yun Kwok Wing
- />Department of Psychiatry, Shatin Hospital, The Chinese University of Hong Kong, 33 Ah Kong Kok Street, Shatin, N.T. Hong Kong
| | - Mary Miu Yee Waye
- />Croucher Laboratory for Human Genomics, Rm324A, Lo Kwee-Seong Integrated Biomedical Sciences Building, School of Biomedical Sciences, Area 39; The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
| |
Collapse
|
172
|
Ruegsegger C, Stucki DM, Steiner S, Angliker N, Radecke J, Keller E, Zuber B, Rüegg MA, Saxena S. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron 2016; 89:129-46. [PMID: 26748090 DOI: 10.1016/j.neuron.2015.11.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1), due to the expansion of a polyglutamine repeat within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), the cause of which is poorly understood. Here, we identified the unique proteomic signature of Sca1(154Q/2Q) PCs at an early stage of disease, highlighting extensive alterations in proteins associated with synaptic functioning, maintenance, and transmission. Focusing on Homer-3, a PC-enriched scaffold protein regulating neuronal activity, revealed an early decline in its expression. Impaired climbing fiber-mediated synaptic transmission diminished mTORC1 signaling, paralleling Homer-3 reduction in Sca1(154Q/2Q) PCs. Ablating mTORC1 within PCs or pharmacological inhibition of mTORC1 identified Homer-3 as its downstream target. mTORC1 knockout in Sca1(154Q/2Q) PCs exacerbated and accelerated pathology. Reinstating Homer-3 expression in Sca1(154Q/2Q) PCs attenuated cellular dysfunctions and improved motor deficits. Our work reveals that impaired mTORC1-Homer-3 activity underlies PC susceptibility in SCA1 and presents a promising therapeutic target.
Collapse
Affiliation(s)
- Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - David M Stucki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Silvio Steiner
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Nico Angliker
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Eva Keller
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
173
|
Immunostaining for Homer reveals the majority of excitatory synapses in laminae I-III of the mouse spinal dorsal horn. Neuroscience 2016; 329:171-81. [PMID: 27185486 PMCID: PMC4915440 DOI: 10.1016/j.neuroscience.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/01/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Identifying glutamatergic synapses is important for tracing synaptic circuits. Most proteins at glutamatergic synapses are masked by tissue fixation. Homer can reveal glutamatergic synapses without the need for antigen retrieval.
The spinal dorsal horn processes somatosensory information before conveying it to the brain. The neuronal organization of the dorsal horn is still poorly understood, although recent studies have defined several distinct populations among the interneurons, which account for most of its constituent neurons. All primary afferents, and the great majority of neurons in laminae I–III are glutamatergic, and a major factor limiting our understanding of the synaptic circuitry has been the difficulty in identifying glutamatergic synapses with light microscopy. Although there are numerous potential targets for antibodies, these are difficult to visualize with immunocytochemistry, because of protein cross-linking following tissue fixation. Although this can be overcome by antigen retrieval methods, these lead to difficulty in detecting other antigens. The aim of this study was to test whether the postsynaptic protein Homer can be used to reveal glutamatergic synapses in the dorsal horn. Immunostaining for Homer gave punctate labeling when viewed by confocal microscopy, and this was restricted to synapses at the ultrastructural level. We found that Homer puncta were colocalized with the AMPA receptor GluR2 subunit, but not with the inhibitory synapse-associated protein gephyrin. We also examined several populations of glutamatergic axons and found that most boutons were in contact with at least one Homer punctum. These results suggest that Homer antibodies can be used to reveal the great majority of glutamatergic synapses without antigen retrieval. This will be of considerable value in tracing synaptic circuits, and also in investigating plasticity of glutamatergic synapses in pain states.
Collapse
|
174
|
Sun X, Lin Y. Npas4: Linking Neuronal Activity to Memory. Trends Neurosci 2016; 39:264-275. [PMID: 26987258 DOI: 10.1016/j.tins.2016.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Immediate-early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be crucial for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity, and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discuss their implications.
Collapse
Affiliation(s)
- Xiaochen Sun
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Molecular and Cellular Neuroscience Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
175
|
Lenka A, Arumugham SS, Christopher R, Pal PK. Genetic substrates of psychosis in patients with Parkinson's disease: A critical review. J Neurol Sci 2016; 364:33-41. [PMID: 27084212 DOI: 10.1016/j.jns.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
Patients with Parkinson's disease (PD) may develop several non-motor symptoms such as psychosis, depression, cognitive impairment, autonomic disturbances and sleep disturbances. Psychosis is one of the common non-motor symptoms, which commonly manifests as visual hallucinations and minor hallucinations such as sense of passage and presence. Though long-term dopaminergic therapy, longer duration of PD and cognitive impairment have been described as risk factors for emergence of psychosis in PD, predicting psychosis in PD remains challenging. Multiple studies have explored the genetic basis of psychosis in PD by studying polymorphisms of several genes. Most of the studies have focused on apolipoprotein E polymorphism followed by polymorphisms in cholecystokinin (CCK) system, dopamine receptors and transporters, HOMER gene, serotonin, catechol-o-methyltransferase, angiotensin converting enzyme and tau. Other than the studies on polymorphisms of CCK, most of the studies have reported conflicting results regarding association with psychosis in PD. Three out of four studies on CCK polymorphism have reported significant association of -45C>T polymorphism with the presence of hallucinations. The discrepancies in the results across the studies reviewed are possibly due to racial differences as well as differences in the patient characteristics. This review critically analyzes the published studies on genetic polymorphisms in patients with PD and psychosis.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India; Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| |
Collapse
|
176
|
Banerjee A, Luong JA, Ho A, Saib AO, Ploski JE. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol Autism 2016; 7:16. [PMID: 26929812 PMCID: PMC4770673 DOI: 10.1186/s13229-016-0077-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) represent a heterogeneous group of disorders with a wide range of behavioral impairments including social and communication deficits. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety, and some studies indicate that a subset of ASD individuals have a reduced ability to be fear conditioned. Deciphering the molecular basis of ASD has been considerably challenging and it currently remains poorly understood. In this study we examined the molecular basis of autism-like impairments in an environmentally induced animal model of ASD, where pregnant rats are exposed to the known teratogen, valproic acid (VPA), on day 12.5 of gestation and the subsequent progeny exhibit ASD-like symptoms. We focused our analysis on the basal and lateral nucleus of the amygdala (BLA), a region of the brain found to be associated with ASD pathology. Methods We performed whole genome gene expression analysis on the BLA using DNA microarrays to examine differences in gene expression within the amygdala of VPA-exposed animals. We validated one VPA-dysregulated candidate gene (Homer1a) using both quantitative PCR (qRT-PCR) and western blot. Finally, we overexpressed Homer1a within the basal and lateral amygdala of naïve animals utilizing adeno-associated viruses (AAV) and subsequently examined these animals in a battery of behavioral tests associated with ASD, including auditory fear conditioning, social interaction and open field. Results Our microarray data indicated that Homer1a was one of the genes which exhibited a significant upregulation within the amygdala. We observed an increase in Homer1a messenger RNA (mRNA) and protein in multiple cohorts of VPA-exposed animals indicating that dysregulation of Homer1a levels might underlie some of the symptoms exhibited by VPA-exposed animals. To test this hypothesis, we overexpressed Homer1a within BLA neurons utilizing a viral-mediated approach and found that overexpression of Homer1a impaired auditory fear conditioning and reduced social interaction, while having no influence on open-field behavior. Conclusions This study indicates that dysregulation of amygdala Homer1a might contribute to some autism-like symptoms induced by VPA exposure. These findings are interesting in part because Homer1a influences the functioning of Shank3, metabotropic glutamate receptors (mGluR5), and Homer1, and these proteins have previously been associated with ASD, indicating that these differing models of ASD may have a similar molecular basis. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University, 615 Michael St. WBRB #415, Atlanta, GA 30322 USA
| | - Jonathan A Luong
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Aeshah O Saib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| |
Collapse
|
177
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
178
|
Shim HG, Jang SS, Jang DC, Jin Y, Chang W, Park JM, Kim SJ. mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells. J Neurophysiol 2016; 115:2446-55. [PMID: 26912592 DOI: 10.1152/jn.00566.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/21/2016] [Indexed: 01/14/2023] Open
Abstract
Homeostatic intrinsic plasticity is a cellular mechanism for maintaining a stable neuronal activity level in response to developmental or activity-dependent changes. Type 1 metabotropic glutamate receptor (mGlu1 receptor) has been widely known to monitor neuronal activity, which plays a role as a modulator of intrinsic and synaptic plasticity of neurons. Whether mGlu1 receptor contributes to the compensatory adjustment of Purkinje cells (PCs), the sole output of the cerebellar cortex, in response to chronic changes in excitability remains unclear. Here, we demonstrate that the mGlu1 receptor is involved in homeostatic intrinsic plasticity through the upregulation of the hyperpolarization-activated current (Ih) in cerebellar PCs. This plasticity was prevented by inhibiting the mGlu1 receptor with Bay 36-7620, an mGlu1 receptor inverse agonist, but not with CPCCOEt, a neutral antagonist. Chronic inactivation with tetrodotoxin (TTX) increased the components of Ih in the PCs, and ZD 7288, a hyperpolarization-activated cyclic nucleotide-gated channel selective inhibitor, fully restored reduction of firing rates in the deprived neurons. The homeostatic elevation of Ih was also prevented by BAY 36-7620, but not CPCCOEt. Furthermore, KT 5720, a blocker of protein kinase A (PKA), prevented the effect of TTX reducing the evoked firing rates, indicating the reduction in excitability of PCs due to PKA activation. Our study shows that both the mGlu1 receptor and the PKA pathway are involved in the homeostatic intrinsic plasticity of PCs after chronic blockade of the network activity, which provides a novel understanding on how cerebellar PCs can preserve the homeostatic state under activity-deprived conditions.
Collapse
Affiliation(s)
- Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Science, Seoul National University, Kwanak-gu, Seoul, Republic of Korea
| | - Yunju Jin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Wonseok Chang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea; and
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
179
|
Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain 2015; 139:526-46. [PMID: 26667279 DOI: 10.1093/brain/awv356] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/17/2015] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.
Collapse
Affiliation(s)
- Laura T Haas
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA 2 Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, D-72074 Tuebingen, Germany
| | - Santiago V Salazar
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mikhail A Kostylev
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ji Won Um
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Adam C Kaufman
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
180
|
Chikusetsu saponin IVa confers cardioprotection via SIRT1/ERK1/2 and Homer1a pathway. Sci Rep 2015; 5:18123. [PMID: 26648253 PMCID: PMC4673450 DOI: 10.1038/srep18123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
Hyperglycemia-induced reactive oxygen species (ROS) generation and Ca2+ overload contribute to the development of diabetic cardiomyopathy. In this study, we aimed to study the protective effects of Chikusetsu saponin IVa (CHS) from Aralia taibaiensis against hyperglycemia-induced myocardial injuries. Treatment of H9c2 cells with high glucose (HG) for 24 h resulted in a loss of cell viability and increase of ROS, LDH and Ca2+ levels, and also induced cell apoptosis, and those changes were all markedly reversed by the administration of CHS. In further studies, CHS dose-dependently increased the expression of Homer1a, ERK1/2 and SIRT1 in both H9c2 cells and rat primary cardiomyocytes. However, transfection of Homer1a-specific siRNA abolished the ability of CHS in controlling the ROS and Ca2+ homeostasis. Moreover, specific SIRT1 inhibitors or siRNA significantly suppressed the enhanced phosphorylation of ERK1/2 and expression of Homer1a induced by CHS as well as its cytoprotective effect. CHS induced Homer1a expression was also suppressed by siERK1/2. Additionally, results in diabetic mice also showed that CHS protected myocardium from I/R-introduced apoptosis by activating the SIRT1/ERK1/2/Homer1a pathway. These results demonstrated that CHS protected against hyperglycemia-induced myocardial injury through SIRT1/ERK1/2 and Homer1a pathway in vivo and in vitro.
Collapse
|
181
|
Alteration by p11 of mGluR5 localization regulates depression-like behaviors. Mol Psychiatry 2015; 20:1546-56. [PMID: 26370144 PMCID: PMC4907335 DOI: 10.1038/mp.2015.132] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/26/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
Mood disorders and antidepressant therapy involve alterations of monoaminergic and glutamatergic transmission. The protein S100A10 (p11) was identified as a regulator of serotonin receptors, and it has been implicated in the etiology of depression and in mediating the antidepressant actions of selective serotonin reuptake inhibitors. Here we report that p11 can also regulate depression-like behaviors via regulation of a glutamatergic receptor in mice. p11 directly binds to the cytoplasmic tail of metabotropic glutamate receptor 5 (mGluR5). p11 and mGluR5 mutually facilitate their accumulation at the plasma membrane, and p11 increases cell surface availability of the receptor. Whereas p11 overexpression potentiates mGluR5 agonist-induced calcium responses, overexpression of mGluR5 mutant, which does not interact with p11, diminishes the calcium responses in cultured cells. Knockout of mGluR5 or p11 specifically in glutamatergic neurons in mice causes depression-like behaviors. Conversely, knockout of mGluR5 or p11 in GABAergic neurons causes antidepressant-like behaviors. Inhibition of mGluR5 with an antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), induces antidepressant-like behaviors in a p11-dependent manner. Notably, the antidepressant-like action of MPEP is mediated by parvalbumin-positive GABAergic interneurons, resulting in a decrease of inhibitory neuronal firing with a resultant increase of excitatory neuronal firing. These results identify a molecular and cellular basis by which mGluR5 antagonism achieves its antidepressant-like activity.
Collapse
|
182
|
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficiency of maternally inherited UBE3A, an ubiquitin E3 ligase. Despite recent progress in understanding the mechanism underlying UBE3A imprinting, there is no effective treatment. Further investigation of the roles played by UBE3A in the central nervous system (CNS) is needed for developing effective therapies. AREA COVERED This review covers the literature related to genetic classifications of AS, recent discoveries regarding the regulation of UBE3A imprinting, alterations in cell signaling in various brain regions and potential therapeutic approaches. Since a large proportion of AS patients exhibit comorbid autism spectrum disorder (ASD), potential common molecular bases are discussed. EXPERT OPINION Advances in understanding UBE3A imprinting provide a unique opportunity to induce paternal UBE3A expression, thus targeting the syndrome at its 'root.' However, such efforts have yielded less-than-expected rescue effects in AS mouse models, raising the concern that activation of paternal UBE3A after a critical period cannot correct all the CNS defects that developed in a UBE3A-deficient environment. On the other hand, targeting abnormal downstream cell signaling pathways has provided promising rescue effects in preclinical research. Thus, combined reinstatement of paternal UBE3A expression with targeting abnormal signaling pathways should provide better therapeutic effects.
Collapse
Affiliation(s)
- Xiaoning Bi
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Jiandong Sun
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Angela X Ji
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Michel Baudry
- b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
183
|
Burkhardt P. The origin and evolution of synaptic proteins - choanoflagellates lead the way. ACTA ACUST UNITED AC 2015; 218:506-14. [PMID: 25696814 DOI: 10.1242/jeb.110247] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
184
|
Preparation of core-shell structure Fe3O4@SiO2superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification. Biomed Chromatogr 2015; 30:566-73. [DOI: 10.1002/bmc.3584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/26/2015] [Accepted: 08/04/2015] [Indexed: 01/23/2023]
|
185
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
186
|
Smothers CT, Szumlinski KK, Worley PF, Woodward JJ. Altered NMDA receptor function in primary cultures of hippocampal neurons from mice lacking the Homer2 gene. Synapse 2015; 70:33-9. [PMID: 26426435 DOI: 10.1002/syn.21869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022]
Abstract
N-Methyl-D-Aspartate (NMDA) receptors are inhibited during acute exposure to ethanol and are involved in changes in neuronal plasticity following repeated ethanol exposure. The postsynaptic scaffolding protein Homer2 can regulate the cell surface expression of NMDA receptors in vivo, and mice with a null mutation of the Homer2 gene exhibit an alcohol-avoiding and -intolerant phenotype that is accompanied by a lack of ethanol-induced glutamate sensitization. Thus, Homer2 deletion may perturb the function or acute ethanol sensitivity of the NMDA receptor. In this study, the function and ethanol sensitivity of glutamate receptors in cultured hippocampal neurons from wild-type (WT) and Homer2 knock-out (KO) mice were examined at 7 and 14 days in vitro (DIV) using standard whole-cell voltage-clamp electrophysiology. As compared with wild-type controls, NMDA receptor current density was reduced in cultured hippocampal neurons from Homer2 KO mice at 14 DIV, but not at 7 DIV. There were no genotype-dependent changes in whole-cell capacitance or in currents evoked by kainic acid. The GluN2B-selective antagonist ifenprodil inhibited NMDA-evoked currents to a similar extent in both wild-type and Homer2 KO neurons and inhibition was greater at 7 versus 14 DIV. NMDA receptor currents from both WT and KO mice were inhibited by ethanol (10-100 mM) and the degree of inhibition did not differ as a function of genotype. In conclusion, NMDA receptor function, but not ethanol sensitivity, is reduced in hippocampal neurons lacking the Homer2 gene.
Collapse
Affiliation(s)
- C Thetford Smothers
- Department of Neuroscience and Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, MSC 861, Charleston, South Carolina, 29425
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, California, 93106-9660
| | - Paul F Worley
- Departments of Neuroscience & Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - John J Woodward
- Departments of Neuroscience & Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
187
|
Jarius S, Wildemann B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation 2015; 12:166. [PMID: 26377085 PMCID: PMC4574226 DOI: 10.1186/s12974-015-0356-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
188
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
189
|
Nakamura NH, Sauvage MM. Encoding and reactivation patterns predictive of successful memory performance are topographically organized along the longitudinal axis of the hippocampus. Hippocampus 2015; 26:67-75. [PMID: 26174148 DOI: 10.1002/hipo.22491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/11/2022]
Abstract
An ongoing debate in human memory research is whether the encoding and the retrieval of memory engage the same part of the hippocampus and the same cells, or whether encoding preferentially involves the anterior part of the hippocampus and retrieval its posterior part. Here, we used a human to rat translational behavioral approach combined to high-resolution molecular imaging to address this issue. We showed that successful memory performance is predicted by encoding and reactivation patterns only in the dorsal part of the rat hippocampus (posterior part in humans), but not in the ventral part (anterior part in humans). Our findings support the view that the encoding and the retrieval processes per se are not segregated along the longitudinal axis of the hippocampus, but that activity predictive of successful memory is and concerns specifically the dorsal part of the hippocampus. In addition, we found evidence that these processes are likely to be mediated by the activation/reactivation of the same cells at this level. Given the translational character of the task, our results suggest that both the encoding and the retrieval processes take place in the same cells of the posterior part of the human hippocampus.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Functional Architecture of Memory Unit, Mercator Research Group "Structure Of Memory", Medical Faculty, Ruhr University Bochum, Bochum, 44801, Germany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Unit, Mercator Research Group "Structure Of Memory", Medical Faculty, Ruhr University Bochum, Bochum, 44801, Germany
| |
Collapse
|
190
|
Wang Y, Rao W, Zhang C, Zhang C, Liu MD, Han F, Yao LB, Han H, Luo P, Su N, Fei Z. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury. Cell Death Dis 2015; 6:e1843. [PMID: 26247728 PMCID: PMC4558508 DOI: 10.1038/cddis.2015.216] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 01/18/2023]
Abstract
Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a−/−) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a−/− mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs.
Collapse
Affiliation(s)
- Y Wang
- 1] Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China [2] Department of Neurosurgery, Wuhan Zhong Xin Hospital, Wuhan, P.R. China
| | - W Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - C Zhang
- Department of Neurology, Second Artillery General Hospital of PLA, Beijing, P.R. China
| | - C Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - M-D Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - F Han
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - L-b Yao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, P.R. China
| | - H Han
- Department of Medical Genetics and Developmental Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - P Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - N Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Z Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
191
|
Matosin N, Fernandez-Enright F, Lum JS, Andrews JL, Engel M, Huang XF, Newell KA. Metabotropic glutamate receptor 5, and its trafficking molecules Norbin and Tamalin, are increased in the CA1 hippocampal region of subjects with schizophrenia. Schizophr Res 2015; 166:212-8. [PMID: 26048293 DOI: 10.1016/j.schres.2015.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/14/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is involved in hippocampal-dependent learning and memory, which are processes disrupted in schizophrenia. Recent evidence from human genetic and animal studies suggests that the regulation of mGluR5, including its interaction with trafficking molecules, may be altered in the disorder. However there have been no investigations of hippocampal mGluR5 or mGluR5 trafficking molecules in the postmortem schizophrenia brain to confirm this. In the present study, we investigated whether protein expression of mGluR5, as well as Norbin and Tamalin (modulators of mGluR5 signalling and trafficking), might be altered in the schizophrenia brain, using postmortem samples from the hippocampal CA1 region of schizophrenia subjects and matched controls (n=20/group). Protein levels of mGluR5 (total: 42%, p<0.001; monomer: 25%, p=0.011; dimer: 52%, p<0.001) and mGluR5 trafficking molecules (Norbin: 47%, p<0.001; Tamalin: 34%, p=0.009) were significantly higher in schizophrenia subjects compared to controls. To determine any influence of antipsychotic drug treatment, all proteins were also correlated with lifetime chlorpromazine equivalents in patients, and separately measured in the hippocampus of rats exposed to haloperidol or olanzapine treatment. mGluR5 was negatively correlated with lifetime antipsychotic drug exposure in schizophrenia patients, suggesting antipsychotic drugs could reduce mGluR5 protein in schizophrenia subjects. In contrast, mGluR5 and mGluR5 trafficking molecules were not altered in the hippocampus of antipsychotic drug treated rats. This investigation provides strong support for the hypothesis that mGluR5 is involved in the pathology of schizophrenia, and that alterations to mGluR5 trafficking might contribute to the hippocampal-dependent cognitive dysfunctions associated with this disorder.
Collapse
Affiliation(s)
- Natalie Matosin
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Jeremy S Lum
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Martin Engel
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Xu-Feng Huang
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| | - Kelly A Newell
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Schizophrenia Research Institute, Sydney, NSW 2010, Australia.
| |
Collapse
|
192
|
Homer1a-dependent recovery from depression-like behavior by photic stimulation in mice. Physiol Behav 2015; 147:334-41. [DOI: 10.1016/j.physbeh.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022]
|
193
|
Marton TM, Hussain Shuler MG, Worley PF. Homer 1a and mGluR5 phosphorylation in reward-sensitive metaplasticity: A hypothesis of neuronal selection and bidirectional synaptic plasticity. Brain Res 2015; 1628:17-28. [PMID: 26187757 DOI: 10.1016/j.brainres.2015.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
Drug addiction and reward learning both involve mechanisms in which reinforcing neuromodulators participate in changing synaptic strength. For example, dopamine receptor activation modulates corticostriatal plasticity through a mechanism involving the induction of the immediate early gene Homer 1a, the phosphorylation of metabotropic glutamate receptor 5 (mGluR5)'s Homer ligand, and the enhancement of an NMDA receptor-dependent current. Inspired by hypotheses that Homer 1a functions selectively in recently-active synapses, we propose that Homer 1a is recruited by a synaptic tag to functionally discriminate between synapses that predict reward and those that do not. The involvement of Homer 1a in this mechanism further suggests that decaminutes-old firing patterns can define which synapses encode new information.
Collapse
Affiliation(s)
- Tanya M Marton
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Marshall G Hussain Shuler
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
194
|
Barker-Haliski M, White HS. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022863. [PMID: 26101204 PMCID: PMC4526718 DOI: 10.1101/cshperspect.a022863] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is broadly characterized by aberrant neuronal excitability. Glutamate is the predominant excitatory neurotransmitter in the adult mammalian brain; thus, much of past epilepsy research has attempted to understand the role of glutamate in seizures and epilepsy. Seizures induce elevations in extracellular glutamate, which then contribute to excitotoxic damage. Chronic seizures can alter neuronal and glial expression of glutamate receptors and uptake transporters, further contributing to epileptogenesis. Evidence points to a shared glutamate pathology for epilepsy and other central nervous system (CNS) disorders, including depression, which is often a comorbidity of epilepsy. Therapies that target glutamatergic neurotransmission are available, but many have met with difficulty because of untoward adverse effects. Better understanding of this system has generated novel therapeutic targets that directly and indirectly modulate glutamatergic signaling. Thus, future efforts to manage the epileptic patient with glutamatergic-centric treatments now hold greater potential.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| | - H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84108
| |
Collapse
|
195
|
Wang F, Zhang Y, Wang L, Sun P, Luo X, Ishigaki Y, Sugai T, Yamamoto R, Kato N. Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice. Neuropharmacology 2015; 97:210-9. [PMID: 26051398 DOI: 10.1016/j.neuropharm.2015.05.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
Transcranial magnetic stimulation (TMS) is fragmentarily reported to be beneficial to Alzheimer's patients. Its underlying mechanism was investigated. TMS was applied at 1, 10 or 15 Hz daily for 4 weeks to young Alzheimer's disease model mice (3xTg), in which intracellular soluble amyloid-β is notably accumulated. Hippocampal long-term potentiation (LTP) was tested after behavior. TMS ameliorated spatial learning deficits and enhanced LTP in the same frequency-dependent manner. Activity of the large conductance calcium-activated potassium (Big-K; BK) channels was suppressed in 3xTg mice and recovered by TMS frequency-dependently. These suppression and recovery were accompanied by increase and decrease in cortical excitability, respectively. TMS frequency-dependently enhanced the expression of the activity-dependently expressed scaffold protein Homer1a, which turned out to enhance BK channel activity. Isopimaric acid, an activator of the BK channel, magnified LTP. Amyloid-β lowering was detected after TMS in 3xTg mice. In 3xTg mice with Homer1a knocked out, amyloid-β lowering was not detected, though the TMS effects on BK channel and LTP remained. We concluded that TMS facilitates BK channels both Homer1a-dependently and -independently, thereby enhancing hippocampal LTP and decreasing cortical excitability. Reduced excitability contributed to amyloid-β lowering. A cascade of these correlated processes, triggered by TMS, was likely to improve learning in 3xTg mice.
Collapse
Affiliation(s)
- Furong Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Medical College, Qinghai University, Xinin 810016, China
| | - Li Wang
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Sun
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianwen Luo
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
196
|
Wagner KV, Hartmann J, Labermaier C, Häusl AS, Zhao G, Harbich D, Schmid B, Wang XD, Santarelli S, Kohl C, Gassen NC, Matosin N, Schieven M, Webhofer C, Turck CW, Lindemann L, Jaschke G, Wettstein JG, Rein T, Müller MB, Schmidt MV. Homer1/mGluR5 activity moderates vulnerability to chronic social stress. Neuropsychopharmacology 2015; 40:1222-33. [PMID: 25409593 PMCID: PMC4367467 DOI: 10.1038/npp.2014.308] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents.
Collapse
Affiliation(s)
- Klaus V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jakob Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christiana Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexander S Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gengjing Zhao
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christine Kohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Sydney NSW, Australia
| | - Marcel Schieven
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christian Webhofer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Georg Jaschke
- Roche Pharmaceutical Research and Early Development, Discovery Chemistry, Basel, Switzerland
| | - Joseph G Wettstein
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Theo Rein
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marianne B Müller
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany, Tel: +49 89 30622 519, Fax: +49 89 30622 610, E-mail:
| |
Collapse
|
197
|
Homer1a disruption increases vulnerability to predictable subtle stress normally sub-threshold for behavioral changes. Brain Res 2015; 1605:70-5. [DOI: 10.1016/j.brainres.2015.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
|
198
|
Raka F, Di Sebastiano AR, Kulhawy SC, Ribeiro FM, Godin CM, Caetano FA, Angers S, Ferguson SSG. Ca(2+)/calmodulin-dependent protein kinase II interacts with group I metabotropic glutamate and facilitates receptor endocytosis and ERK1/2 signaling: role of β-amyloid. Mol Brain 2015; 8:21. [PMID: 25885040 PMCID: PMC4378271 DOI: 10.1186/s13041-015-0111-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Agonist stimulation of Group I metabotropic glutamate receptors (mGluRs) initiates their coupling to the heterotrimeric G protein, Gαq/11, resulting in the activation of phospholipase C, the release of Ca(2+) from intracellular stores and the subsequent activation of protein kinase C. However, it is now recognized that mGluR5a also functions as a receptor for cellular prion protein (PrP(C)) and β-amyloid peptide (Aβ42) oligomers to facilitate intracellular signaling via the resulting protein complex. Intracellular mGluR5a signaling is also regulated by its association with a wide variety of intracellular regulation proteins. RESULTS In the present study, we utilized mass spectroscopy to identify calmodulin kinase IIα (CaMKIIα) as a protein that interacts with the second intracellular loop domain of mGluR5. We show that CaMKIIα interacts with both mGluR1a and mGluR5a in an agonist-independent manner and is co-immunoprecipitated with mGluR5a from hippocampal mouse brain. CaMKIIα positively regulates both mGluR1a and mGluR5a endocytosis, but selectively attenuates mGluR5a but not mGluR1a-stimulated ERK1/2 phosphorylation in a kinase activity-dependent manner. We also find that Aβ42 oligomers stimulate the association of CaMKIIα with mGluR5a and activate ERK1/2 in an mGluR5a-dependent manner. However, Aβ42 oligomer-stimulated ERK1/2 phosphorylation is not regulated by mGluR5a/CaMKIIα interactions suggesting that agonist and Aβ42 oligomers stabilize distinct mGluR5a activation states that are differentially regulated by CaMKIIα. The expression of both mGluR5a and PrP(C) together, but not alone resulted in the agonist-stimulated subcellular distribution of CaMKIIα into cytoplasmic puncta. CONCLUSIONS Taken together these results indicate that CaMKIIα selectively regulates mGluR1a and mGluR5a ERK1/2 signaling. As mGluR5 and CaMKIIα are involved in learning and memory and Aβ and mGluR5 are implicated in Alzheimer's disease, results of these studies could provide insight into potential pharmacological targets for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Fitore Raka
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Andrea R Di Sebastiano
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Stephanie C Kulhawy
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Christina M Godin
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Fabiana A Caetano
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Room 901 144 College Street, Toronto, Ontario, Canada.
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, and the Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr. London, Ontario, N6A 5K8, Canada.
| |
Collapse
|
199
|
Regulation of GPCR Anterograde Trafficking by Molecular Chaperones and Motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:289-305. [PMID: 26055064 DOI: 10.1016/bs.pmbts.2015.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) make up a superfamily of integral membrane proteins that respond to a wide variety of extracellular stimuli, giving them an important role in cell function and survival. They have also proven to be valuable targets in the fight against various diseases. As such, GPCR signal regulation has received considerable attention over the last few decades. With the amplitude of signaling being determined in large part by receptor density at the plasma membrane, several endogenous mechanisms for modulating GPCR expression at the cell surface have come to light. It has been shown that cell surface expression is determined by both exocytic and endocytic processes. However, the body of knowledge surrounding GPCR trafficking from the endoplasmic reticulum to the plasma membrane, commonly known as anterograde trafficking, has considerable room for growth. We focus here on the current paradigms of anterograde GPCR trafficking. We will discuss the regulatory role of both the general and "nonclassical private" chaperone systems in GPCR trafficking as well as conserved motifs that serve as modulators of GPCR export from the endoplasmic reticulum and Golgi apparatus. Together, these topics summarize some of the known mechanisms by which the cell regulates anterograde GPCR trafficking.
Collapse
|
200
|
Cavarsan CF, Matsuo A, Blanco MM, Mello LE. Maximal electroshock-induced seizures are able to induce Homer1a mRNA expression but not pentylenetetrazole-induced seizures. Epilepsy Behav 2015; 44:90-5. [PMID: 25659045 DOI: 10.1016/j.yebeh.2014.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Homer1a is a protein that regulates metabotropic glutamate receptors involved in neural plasticity processes. Recently, we demonstrated that Homer1a mRNA is enhanced after pilocarpine-induced status epilepticus. Here, we investigated whether a single acute seizure triggered by means of pentylenetetrazole (PTZ) injection or maximal electroshock (MES) stimulation (2 different seizure models) would alter Homer1a expression in the hippocampus. METHODS Male Wistar rats subjected to the PTZ or MES model were analyzed 2h, 8h, 24h, and 7days after seizure induction. Homer1a, mGluR1, and mGluR5 mRNA expression levels in hippocampal extracts were analyzed by quantitative PCR. RESULTS Quantitative PCR revealed Homer1a overexpression at 2h after MES-induced tonic-clonic seizures compared to control, but the overexpression did not remain elevated after 8h. Pentylenetetrazole-induced seizures, in contrast, were not able to change Homer1a mRNA expression. No differences were observed at these time points after seizures for mGluR1 and mGluR5 mRNA expression in any of the models. SIGNIFICANCE Our data indicate that the levels of Homer1a mRNA were transiently increased only after MES-induced tonic-clonic seizures (and not after PTZ-induced seizures). We suggest that Homer1a expression may be dependent on seizure intensity or on specific brain circuit activation. We suggest that Homer1a may contribute to counteract hyperexcitability processes.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, Pedro de Toledo St, 669, 3rd floor, 04039-032 São Paulo, SP, Brazil
| | - Alisson Matsuo
- UNONEX, Department of Microbiology, Immunology, and Parasitology, Universidade Federal de São Paulo, Building Prof. Dr. Antonio C. Mattos Paiva, Botucatu St, 862, 8th floor, Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Miriam M Blanco
- Department of Physiology, Universidade Federal de São Paulo, Pedro de Toledo St, 669, 3rd floor, 04039-032 São Paulo, SP, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo, Pedro de Toledo St, 669, 3rd floor, 04039-032 São Paulo, SP, Brazil.
| |
Collapse
|