151
|
Fu MH, Wu CW, Lee YC, Hung CY, Chen IC, Wu KLH. Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the α-synuclein overexpression. Biomed J 2018; 41:169-183. [PMID: 30080657 PMCID: PMC6138761 DOI: 10.1016/j.bj.2018.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND α-synuclein (SNCA) accumulation in the substantia nigra is one of the characteristic pathologies of Parkinson's disease (PD). A53T missense mutations in the SNCA gene has been proved to enhance the expression of SNCA and accelerate the onset of PD. Mitochondrial dysfunction in SNCA aggregation has been under debate for decades but the causal relationship remains uncertain. At a later stage of PD, the cellular dysfunctions are complicated and multiple factors are tangled. Our aim here is to investigate the mitochondrial functional changes and clarify the main causal mechanism at earlier-stage of PD. METHODS We used the mutant A53T SNCA-expressed neuro 2a (N2a) cells without detectable cell death to investigate: 1) whether SNCA overexpression impairs the mitochondrial respiration and biogenesis. 2) The role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signal in SNCA-induced mitochondria dysfunction. RESULTS Accompanying with the increment of SNCA, reactive oxygen species (ROS) accumulation was increased. The maximal respiratory capacity was suppressed. Meanwhile, mitochondrial complex 1 activity and the activity of nicotinamide adenine dinucleotide (NADH) cytochrome C reductase (NCCR) were decreased. Moreover, the mitochondrial DNA (mtDNA) copy number was decreased. On the other hand, the nuclear peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), Nrf2, and the cytosolic mitochondrial transcription factor A (TFAM) were increased at an early stage and declined thereafter. Above factors triggered by SNCA were reversed by tBHQ, a Nrf2 activator. CONCLUSION These results suggested that at an early stage, SNCA-overexpressed increase mtROS accumulation, mitochondrial dysfunction and mtDNA decrement. Nrf2, PGC-1α and TFAM were upregulated to compromise mitochondrial dysfunction. tBHQ effectively reversed the SNCA-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan.
| |
Collapse
|
152
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
153
|
Cote Y, Delarue P, Scheraga HA, Senet P, Maisuradze GG. From a Highly Disordered to a Metastable State: Uncovering Insights of α-Synuclein. ACS Chem Neurosci 2018; 9:1051-1065. [PMID: 29451381 DOI: 10.1021/acschemneuro.7b00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (αS) is a major constituent of Lewy bodies, the insoluble aggregates that are the hallmark of one of the most prevalent neurodegenerative disorders, Parkinson's disease (PD). The vast majority of experiments in vitro and in vivo provide extensive evidence that a disordered monomeric form is the predominant state of αS in water solution, and it undergoes a large-scale disorder-to-helix transition upon binding to vesicles of different types. Recently, another form, tetrameric, of αS with a stable helical structure was identified experimentally. It has been shown that a dynamic intracellular population of metastable αS tetramers and monomers coexists normally; and the tetramer plays an essential role in maintaining αS homeostasis. Therefore, it is of interest to know whether the tetramer can serve as a means of preventing or delaying the start of PD. Before answering this very important question, it is, first, necessary to find out, on an atomistic level, a correlation between tetramers and monomers; what mediates tetramer formation and what makes a tetramer stable. We address these questions here by investigating both monomeric and tetrameric forms of αS. In particular, by examining correlations between the motions of the side chains and the main chain, steric parameters along the amino-acid sequence, and one- and two-dimensional free-energy landscapes along the coarse-grained dihedral angles γ and δ and principal components, respectively, in monomeric and tetrameric αS, we were able to shed light on a fundamental relationship between monomers and tetramers, and the key residues involved in mediating formation of a tetramer. Also, the reasons for the stability of tetrameric αS and inability of monomeric αS to fold are elucidated here.
Collapse
Affiliation(s)
- Yoann Cote
- Department of
Integrative Structural Biology, Institut de Génétique
et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - INSERM
U 964, Université de Strasbourg, 1 rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Patrick Senet
- Laboratoire Interdisciplinaire
Carnot de Bourgogne, UMR 6303 CNRS - Univ. Bourgogne Franche-Comté, 9 Av. Alain Savary, BP 47 870, F-21078 Dijon Cedex, France
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
154
|
Pozo Devoto VM, Falzone TL. Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein? Dis Model Mech 2018; 10:1075-1087. [PMID: 28883016 PMCID: PMC5611962 DOI: 10.1242/dmm.026294] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
The distinctive pathological hallmarks of Parkinson's disease are the progressive death of dopaminergic neurons and the intracellular accumulation of Lewy bodies enriched in α-synuclein protein. Several lines of evidence from the study of sporadic, familial and pharmacologically induced forms of human Parkinson's disease also suggest that mitochondrial dysfunction plays an important role in disease progression. Although many functions have been proposed for α-synuclein, emerging data from human and animal models of Parkinson's disease highlight a role for α-synuclein in the control of neuronal mitochondrial dynamics. Here, we review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial dynamic processes such as fusion-fission, transport and clearance. Drawing on current evidence, we propose that α-synuclein contributes to the mitochondrial defects that are associated with the pathology of this common and progressive neurodegenerative disease. Summary: The authors review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial physiological processes such as fusion-fission, transport and clearance, and propose that α-synuclein contributes to the mitochondrial defects that are associated with Parkinson's disease.
Collapse
Affiliation(s)
- Victorio M Pozo Devoto
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina.,International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691, Brno, Czech Republic
| | - Tomas L Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina .,Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, Buenos Aires, CP1428, Argentina
| |
Collapse
|
155
|
Kim H, Perentis RJ, Caldwell GA, Caldwell KA. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models. Cell Death Dis 2018; 9:555. [PMID: 29748634 PMCID: PMC5945629 DOI: 10.1038/s41419-018-0619-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rylee J Perentis
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
156
|
Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis 2018; 9:481. [PMID: 29705815 PMCID: PMC5924657 DOI: 10.1038/s41419-018-0533-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Human islet amyloid polypeptide (hIAPP), or amylin, has the tendency to aggregate into insoluble amyloid fibrils, a typical feature of islets from type 2 diabetes individuals. Thus, we investigated comparatively the impact of hIAPP on key pathways involved in pancreatic beta survival. INS1E-hIAPP cells present a hyperactivation of MTORC1 and an inhibition of autophagy signaling, those cells showing an increase in cell size. Resveratrol, a MTORC1 inhibitor, can reverse TSC2 degradation that occurs in INS1E-hIAPP cells and diminished MTORC1 hyperactivation with concomitant autophagy stimulation. At the same time, a blockade in mitophagy was found in INS1E-hIAPP cells, as compared with control or INS1E-rIAPP cells. Consistently, human amylin overexpression generates a basal induction of nitrotyrosine levels and polyubiquitinated aggregates. Failure of the protein degradation machinery finally results in an accumulation of damaged and fissioned mitochondria, ROS production, and increased susceptibility to endoplasmic reticulum (ER)-stress-induced apoptosis. Overall, hIAPP overexpression in INS1E cells induced MTORC1 activation and mitophagy inhibition, favoring a pro-fission scenario of damaged mitochondria, these cells turn out to be more susceptible to the ER-stress-induced apoptosis and malfunction.
Collapse
|
157
|
Peelaerts W, Bousset L, Baekelandt V, Melki R. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 2018; 373:195-212. [PMID: 29704213 DOI: 10.1007/s00441-018-2839-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
Abstract
Several age-related neurodegenerative disorders are characterized by the deposition of aberrantly folded endogenous proteins. These proteins have prion-like propagation and amplification properties but so far appear nontransmissible between individuals. Because of the features they share with the prion protein, PrP, the characteristics of pathogenic protein aggregates in several progressive brain disorders, including different types of Lewy body diseases (LBDs), such as Parkinson's disease (PD), multiple system atrophy (MSA) and dementia with Lewy bodies (DLB), have been actively investigated. Even though the pleomorphic nature of these syndromes might suggest different underlying causes, ɑ-synuclein (ɑSyn) appears to play an important role in this heterogeneous group of diseases (the synucleinopathies). An attractive hypothesis is that different types of ɑSyn protein assemblies have a unique and causative role in distinct synucleinopathies. We will discuss the recent research progress on ɑSyn assemblies involved in PD, MSA and DLB; their behavior as strains; current spreading hypotheses; their ability to seed centrally and peripherally; and their implication for disease pathogenesis.
Collapse
Affiliation(s)
- W Peelaerts
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - L Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, 3000, Leuven, Belgium.
| | - R Melki
- Paris-Saclay Institute of Neuroscience, CNRS, 91190, Gif-sur-Yvette, France
| |
Collapse
|
158
|
Vo MT, Choi SH, Lee JH, Hong CH, Kim JS, Lee UH, Chung HM, Lee BJ, Park JW, Cho WJ. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells. Oncotarget 2018; 8:41903-41920. [PMID: 28410208 PMCID: PMC5522037 DOI: 10.18632/oncotarget.16706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics.
Collapse
Affiliation(s)
- Mai-Tram Vo
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Seong Hee Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Ji-Heon Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Chung Hwan Hong
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jong Soo Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul, 143-701, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, 680-749, Korea
| |
Collapse
|
159
|
Ammal Kaidery N, Thomas B. Current perspective of mitochondrial biology in Parkinson's disease. Neurochem Int 2018; 117:91-113. [PMID: 29550604 DOI: 10.1016/j.neuint.2018.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
Collapse
Affiliation(s)
| | - Bobby Thomas
- Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
160
|
Abstract
α-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve terminals. Genetics and neuropathology studies link α-synuclein to Parkinson's disease (PD) and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger aggregates of α-synuclein defines multiple neurodegenerative diseases called synucleinopathies, but the mechanisms by which α-synuclein acts in neurodegeneration are unknown. Moreover, the normal cellular function of α-synuclein remains debated. In this perspective, we review the structural characteristics of α-synuclein, its developmental expression pattern, its cellular and subcellular localization, and its function in neurons. We also discuss recent progress on secretion of α-synuclein, which may contribute to its interneuronal spread in a prion-like fashion, and describe the neurotoxic effects of α-synuclein that are thought to be responsible for its role in neurodegeneration.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Manu Sharma
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
161
|
Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat Commun 2018; 9:817. [PMID: 29483518 PMCID: PMC5827019 DOI: 10.1038/s41467-018-03241-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface. Whereas exposed cardiolipin specifically binds to and facilitates refolding of α-syn fibrils, prolonged cardiolipin exposure in SNCA-mutants initiates recruitment of LC3 to the mitochondria and mitophagy. Moreover, we find that co-culture of SNCA-mutant neurons with their isogenic controls results in transmission of α-syn pathology coincident with mitochondrial pathology in control neurons. Transmission of pathology is effectively blocked using an anti-α-syn monoclonal antibody (mAb), consistent with cell-to-cell seeding of α-syn.
Collapse
|
162
|
Martinez JH, Alaimo A, Gorojod RM, Porte Alcon S, Fuentes F, Coluccio Leskow F, Kotler ML. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein. Mol Cell Neurosci 2018; 88:107-117. [PMID: 29414102 DOI: 10.1016/j.mcn.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration.
Collapse
Affiliation(s)
- Jimena Hebe Martinez
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Agustina Alaimo
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Coluccio Leskow
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
163
|
Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
164
|
Freeze B, Acosta D, Pandya S, Zhao Y, Raj A. Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. NEUROIMAGE-CLINICAL 2018; 18:456-466. [PMID: 29868450 PMCID: PMC5984599 DOI: 10.1016/j.nicl.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Multiple genes have been implicated in Parkinson disease pathogenesis, but the relationship between regional expression of these genes and regional dysfunction across the brain is unknown. We address this question by joint analysis of high resolution magnetic resonance imaging data from the Parkinson's Progression Markers Initiative and regional genetic microarray expression data from the Allen Brain Atlas. Regional brain atrophy and genetic expression was co-registered to a common 86 region brain atlas and robust multivariable regression analysis was performed to identify genetic predictors of regional brain atrophy. Top candidate genes from GWAS analysis, as well as genes implicated in trans-synaptic alpha-synuclein transfer and autosomal recessive PD were included in our analysis. We identify three genes with expression patterns that are highly significant predictors of regional brain atrophy. The two most significant predictors are LAG3 and RAB5A, genes implicated in trans-synaptic synuclein transfer. Other well-validated PD-related genes do not have expression patterns that predict regional atrophy, suggesting that they may serve other roles such as disease initiation factors. Joint volumetric and microarray analysis identifies gene expression patterns that predict the PD atrophy pattern. The most highly predictive genes, LAG3 and RAB5A, are implicated in trans-synaptic alpha-synuclein transfer. The expression patterns of alpha-synuclein and otherPD-related genes do not predict atrophy.
Collapse
Affiliation(s)
- Benjamin Freeze
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States.
| | - Diana Acosta
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States
| | - Sneha Pandya
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States
| | - Yize Zhao
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, United States
| | - Ashish Raj
- Department of Radiology, NewYork-Presbyterian Hospital/Weill Cornell Medicine, United States; Department of Radiology, University of California, San Francisco, United States
| |
Collapse
|
165
|
DJ-1 deficiency impairs synaptic vesicle endocytosis and reavailability at nerve terminals. Proc Natl Acad Sci U S A 2018; 115:1629-1634. [PMID: 29386384 DOI: 10.1073/pnas.1708754115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in DJ-1 (PARK7) are a known cause of early-onset autosomal recessive Parkinson's disease (PD). Accumulating evidence indicates that abnormalities of synaptic vesicle trafficking underlie the pathophysiological mechanism of PD. In the present study, we explored whether DJ-1 is involved in CNS synaptic function. DJ-1 deficiency impaired synaptic vesicle endocytosis and reavailability without inducing structural alterations in synapses. Familial mutants of DJ-1 (M26I, E64D, and L166P) were unable to rescue defective endocytosis of synaptic vesicles, whereas WT DJ-1 expression completely restored endocytic function in DJ-1 KO neurons. The defective synaptic endocytosis shown in DJ-1 KO neurons may be attributable to alterations in membrane cholesterol level. Thus, DJ-1 appears essential for synaptic vesicle endocytosis and reavailability, and impairment of this function by familial mutants of DJ-1 may be related to the pathogenesis of PD.
Collapse
|
166
|
Akiyama H, Nakadate K, Sakakibara SI. Synaptic localization of the SUMOylation-regulating protease SENP5 in the adult mouse brain. J Comp Neurol 2018; 526:990-1005. [DOI: 10.1002/cne.24384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences; Waseda University; Tokorozawa Saitama 359-1192 Japan
| | - Kazuhiko Nakadate
- Department of Basic Science; Educational and Research Center for Pharmacy, Meiji Pharmaceutical University; Kiyose Tokyo 204-858 Japan
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences; Waseda University; Tokorozawa Saitama 359-1192 Japan
| |
Collapse
|
167
|
Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2018; 8:161-181. [PMID: 29614701 PMCID: PMC6004921 DOI: 10.3233/jpd-171296] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Daniel W Curry
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bernardo Stutz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zane B Andrews
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
168
|
Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 2018; 109:249-257. [DOI: 10.1016/j.nbd.2017.04.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
|
169
|
Morgan AH, Rees DJ, Andrews ZB, Davies JS. Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease? Neuropharmacology 2017; 136:317-326. [PMID: 29277488 DOI: 10.1016/j.neuropharm.2017.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is a common age-related neurodegenerative disorder affecting 10 million people worldwide, but the mechanisms underlying its pathogenesis are still unclear. The disease is characterised by dopamine nerve cell loss in the mid-brain and intra-cellular accumulation of α-synuclein that results in motor and non-motor dysfunction. In this review, we discuss the neuroprotective effects of the stomach hormone, ghrelin, in models of Parkinson's disease. Recent findings suggest that it may modulate mitochondrial function and autophagic clearance of impaired organelle in response to changes in cellular energy balance. We consider the putative cellular mechanisms underlying ghrelin-action and the possible role of ghrelin mimetics in slowing or preventing Parkinson's disease progression. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Alwena H Morgan
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Daniel J Rees
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Zane B Andrews
- Biomedicine Discovery Institute & Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK.
| |
Collapse
|
170
|
Autophagy impairment in Parkinson's disease. Essays Biochem 2017; 61:711-720. [PMID: 29233880 DOI: 10.1042/ebc20170023] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder typically associated with the accumulation of intracytoplasmic aggregate prone protein deposits. Over recent years, increasing evidence has led to the suggestion that the mutations underlying certain forms of PD impair autophagy. Autophagy is a degradative pathway that delivers cytoplasmic content to lysosomes for degradation and represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Autophagy up-regulation is a promising therapeutic strategy that is being explored for its potential to protect cells against the toxicity of aggregate-prone proteins in neurodegenerative diseases. Here, we describe how the mutations in different subtypes of PD can affect different stages of autophagy.
Collapse
|
171
|
Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Front Genet 2017; 8:177. [PMID: 29204154 PMCID: PMC5698285 DOI: 10.3389/fgene.2017.00177] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurological movement disorder. Since its first discovery 200 years ago, genetic and environmental factors have been identified to play a role in PD development and progression. Although genetic studies have been the predominant driving force in PD research over the last few decades, currently only a small fraction of PD cases can be directly linked to monogenic mutations. The remaining cases have been attributed to other risk associated genes, environmental exposures and gene-environment interactions, making PD a multifactorial disorder with a complex etiology. However, enormous efforts from global research have yielded significant insights into pathogenic mechanisms and potential therapeutic targets for PD. This review will highlight mitochondrial dysfunction as a common pathway involved in both genetic mutations and environmental toxicants linked to PD.
Collapse
Affiliation(s)
- Martin P. Helley
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Jennifer Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, United Kingdom
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
172
|
El Haddad S, Serrano A, Normand T, Robin C, Dubois M, Brulé-Morabito F, Mollet L, Charpentier S, Legrand A. Interaction of Alpha-synuclein with Cytogaligin, a protein encoded by the proapoptotic gene GALIG. Biochem Biophys Res Commun 2017; 495:787-792. [PMID: 29137980 DOI: 10.1016/j.bbrc.2017.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022]
Abstract
GALIG, an internal gene to the human galectin-3 gene, encodes two distinct proteins, Mitogaligin and Cytogaligin through translation of a unique mRNA in two overlapping alternative reading frames. When overexpressed GALIG induces apoptosis. In cultured cells, Mitogaligin destabilizes mitochondria membranes through interaction with cardiolipin. Little is known regarding the role of Cytogaligin. This protein displays multiple subcellular localizations; cytosol, nucleus, and mitochondria. We illustrate here that Cytogaligin is also secreted in the extracellular medium. Cytogaligin is shown to interact with α-Synuclein, the major component of Lewy bodies in Parkinson's disease. Overexpression of Cytogaligin reduces α-Synuclein dimerization raising a possible role in the evolution of α-Synuclein aggregation, a key molecular event underlying the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Saïd El Haddad
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Chloé Robin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Martine Dubois
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Fabienne Brulé-Morabito
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Lucile Mollet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Stéphane Charpentier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Alain Legrand
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Affiliated with the Université d'Orléans - Pôle Universitaire Centre Val de Loire, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| |
Collapse
|
173
|
Bobela W, Nazeeruddin S, Knott G, Aebischer P, Schneider BL. Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity. Mol Neurodegener 2017; 12:80. [PMID: 29100525 PMCID: PMC5670705 DOI: 10.1186/s13024-017-0220-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
Abstract
Background Metabolic perturbations and slower renewal of cellular components associated with aging increase the risk of Parkinson’s disease (PD). Declining activity of AMPK, a critical cellular energy sensor, may therefore contribute to neurodegeneration. Methods Here, we overexpress various genetic variants of the catalytic AMPKα subunit to determine how AMPK activity affects the survival and function of neurons overexpressing human α-synuclein in vivo. Results Both AMPKα1 and α2 subunits have neuroprotective effects against human α-synuclein toxicity in nigral dopaminergic neurons. Remarkably, a modified variant of AMPKα1 (T172Dα1) with constitutive low activity most effectively prevents the loss of dopamine neurons, as well as the motor impairments caused by α-synuclein accumulation. In the striatum, T172Dα1 decreases the formation of dystrophic axons, which contain aggregated α-synuclein. In primary cortical neurons, overexpression of human α-synuclein perturbs mitochondrial and lysosomal activities. Co-expressing AMPKα with α-synuclein induces compensatory changes, which limit the accumulation of lysosomal material and increase the mitochondrial mass. Conclusions Together, these results indicate that modulating AMPK activity can mitigate α-synuclein toxicity in nigral dopamine neurons, which may have implications for the development of neuroprotective treatments against PD. Electronic supplementary material The online version of this article (10.1186/s13024-017-0220-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wojciech Bobela
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Sameer Nazeeruddin
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Graham Knott
- Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
174
|
van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics 2017; 207:843-871. [PMID: 29097398 PMCID: PMC5676242 DOI: 10.1534/genetics.117.300262] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| |
Collapse
|
175
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
176
|
Pink1 interacts with α-synuclein and abrogates α-synuclein-induced neurotoxicity by activating autophagy. Cell Death Dis 2017; 8:e3056. [PMID: 28933786 PMCID: PMC5636973 DOI: 10.1038/cddis.2017.427] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, characterized by degeneration of dopaminergic neurons in the substantia nigra. α-synuclein (α-syn) and PTEN-induced putative kinase (PINK)1 are two critical proteins associated with the pathogenesis of PD. α-syn induces mitochondrial deficits and apoptosis, PINK1 was found to alleviate α-syn-induced toxicity, but the mechanistic details remain obscure. Here, we show that PINK1 interacts with α-syn mainly in the cytoplasm, where it initiates autophagy. This interaction was dependent on the kinase activity of PINK1 and was abolished by deletion of the kinase domain or a G309D point mutation, an inactivating mutation in the kinase domain. Interaction between PINK1 and α-syn stimulated the removal of excess α-syn, which prevented mitochondrial deficits and apoptosis. Our findings provide evidence for a novel mechanism underlying the protective effects of PINK1 against α-syn-induced neurodegeneration and highlight a novel therapeutic target for PD treatment.
Collapse
|
177
|
Bido S, Soria FN, Fan RZ, Bezard E, Tieu K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson's disease. Sci Rep 2017; 7:7495. [PMID: 28790323 PMCID: PMC5548731 DOI: 10.1038/s41598-017-07181-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
Alpha-synuclein (α-syn) is involved in both familial and sporadic Parkinson’s disease (PD). One of the proposed pathogenic mechanisms of α-syn mutations is mitochondrial dysfunction. However, it is not entirely clear the impact of impaired mitochondrial dynamics induced by α-syn on neurodegeneration and whether targeting this pathway has therapeutic potential. In this study we evaluated whether inhibition of mitochondrial fission is neuroprotective against α-syn overexpression in vivo. To accomplish this goal, we overexpressed human A53T-α- synuclein (hA53T-α-syn) in the rat nigrostriatal pathway, with or without treatment using the small molecule Mitochondrial Division Inhibitor-1 (mdivi-1), a putative inhibitor of the mitochondrial fission Dynamin-Related Protein-1 (Drp1). We show here that mdivi-1 reduced neurodegeneration, α-syn aggregates and normalized motor function. Mechanistically, mdivi-1 reduced mitochondrial fragmentation, mitochondrial dysfunction and oxidative stress. These in vivo results support the negative role of mutant α-syn in mitochondrial function and indicate that mdivi-1 has a high therapeutic potential for PD.
Collapse
Affiliation(s)
- Simone Bido
- University of Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Federico N Soria
- University of Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Rebecca Z Fan
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom.,Florida International University, Miami, Florida, USA
| | - Erwan Bezard
- University of Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France. .,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Kim Tieu
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom. .,Florida International University, Miami, Florida, USA.
| |
Collapse
|
178
|
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2017; 25:5148-5166. [PMID: 27677309 DOI: 10.1093/hmg/ddw330] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of our study was to understand the protective effects of reduced expression of dynamin-related protein (Drp1) against amyloid beta (Aβ) induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD) progression and pathogenesis. Our recent molecular and biochemical studies revealed that impaired mitochondrial dynamics-increased mitochondrial fragmentation and decreased fusion-in neurons from autopsy brains of AD patients and from transgenic AD mice and neurons expressing Aβ, suggesting that Aβ causes mitochondrial fragmentation in AD. Further, our recent co-immunoprecipitation and immunostaining analysis revealed that the mitochondrial fission protein Drp1 interacted with Aβ, and this interaction increased as AD progressed. Based on these findings, we hypothesize that a partial deficiency of Drp1 inhibits Drp1-Aβ interactions and protects Aβ-induced mitochondrial and synaptic toxicities, and maintains mitochondrial dynamics and neuronal function in AD neurons. We crossed Drp1+/- mice with APP transgenic mice (Tg2576 line) and created double mutant (APPXDrp1+/-) mice. Using real-time RT-PCR and immunoblotting analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics, mitochondrial biogenesis and synapses from 6-month-old Drp1+/-, APP, APPXDrp1+/- and wild-type (WT) mice. Using biochemical methods, we also studied mitochondrial function and measured soluble Aβ in brain tissues from all lines of mice in our study. Decreased mRNA expressions and protein levels of Drp1 and Fis1 (fission) and CypD (matrix) genes, and increased levels of Mfn1, Mfn2 and Opa1 (fusion), Nrf1, Nrf2, PGC1α, TFAM (biogenesis) and synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin (synaptic) were found in 6-month-old APPXDrp1+/- mice relative to APP mice. Mitochondrial functional assays revealed that mitochondrial dysfunction is reduced in APPXDrp1+/- mice relative to APP mice, suggesting that reduced Drp1enhances mitochondrial function in AD neurons. Sandwich ELISA assay revealed that soluble Aβ levels were significantly reduced in APPXDrp1+/- mice relative to APP mice, indicating that reduced Drp1 decreases soluble Aβ production in AD progression. These findings suggest that a partial reduction of Drp1 reduces Aβ production, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in APP mice. These findings may have implications for the development of Drp1 based therapeutics for AD patients.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department.,Pharmacology & Neuroscience Department.,Neurology Department.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
179
|
Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9860841. [PMID: 28811869 PMCID: PMC5546064 DOI: 10.1155/2017/9860841] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.
Collapse
|
180
|
Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 2017; 19:241-255. [PMID: 28721669 DOI: 10.1007/s12017-017-8454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.
Collapse
Affiliation(s)
- Fernanda Martins Lopes
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. .,Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Lisbôa da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
181
|
Pozo Devoto VM, Dimopoulos N, Alloatti M, Pardi MB, Saez TM, Otero MG, Cromberg LE, Marín-Burgin A, Scassa ME, Stokin GB, Schinder AF, Sevlever G, Falzone TL. αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson's disease. Sci Rep 2017; 7:5042. [PMID: 28698628 PMCID: PMC5506004 DOI: 10.1038/s41598-017-05334-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023] Open
Abstract
The etiology of Parkinson’s disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities. A53T αSyn was enriched in mitochondrial fractions, inducing significant mitochondrial transport defects and fragmentation, while milder defects were elicited by WT and A30P. We found that αSyn-mediated mitochondrial fragmentation was linked to expression levels in WT and A53T variants. Targeted delivery of WT and A53T αSyn to the outer mitochondrial membrane further increased fragmentation, whereas A30P did not. Genomic editing to disrupt the N-terminal domain of αSyn, which is important for membrane association, resulted in mitochondrial elongation without changes in fusion-fission protein levels, suggesting that αSyn plays a direct physiological role in mitochondrial size maintenance. Thus, we demonstrate that the association of αSyn with the mitochondria, which is modulated by protein mutation and dosage, influences mitochondrial transport and morphology, highlighting its relevance in a common pathway impaired in PD.
Collapse
Affiliation(s)
- Victorio Martin Pozo Devoto
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina.,International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691, Brno, Czech Republic
| | - Nicolas Dimopoulos
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Montañeses 2325, Buenos Aires, C1428AQK, Argentina
| | - Matías Alloatti
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - María Belén Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Trinidad M Saez
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina.,Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP, 1428, Argentina
| | - María Gabriela Otero
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Lucas Eneas Cromberg
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Antonia Marín-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maria Elida Scassa
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Montañeses 2325, Buenos Aires, C1428AQK, Argentina
| | - Gorazd B Stokin
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691, Brno, Czech Republic
| | - Alejandro F Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir (IIBBA - CONICET), Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Gustavo Sevlever
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Montañeses 2325, Buenos Aires, C1428AQK, Argentina
| | - Tomás Luis Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Buenos Aires, CP1121, Argentina. .,Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP, 1428, Argentina.
| |
Collapse
|
182
|
Koo JH, Cho JY. Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease. Neurotox Res 2017; 32:473-486. [DOI: 10.1007/s12640-017-9770-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022]
|
183
|
Wang W, Ma X, Zhou L, Liu J, Zhu X. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson's disease model. Hum Mol Genet 2017; 26:781-789. [PMID: 28040727 DOI: 10.1093/hmg/ddw430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Impaired mitochondria dynamics and quality control are involved in mitochondrial dysfunction and pathogenesis of Parkinson's disease (PD). VPS35 mutations cause autosomal dominant PD and we recently demonstrated that fPD-associated VPS35 mutants can cause mitochondrial fragmentation through enhanced VPS35-DLP1 interaction. In this study, we focused on the specific sites on DLP1 responsible for the VPS35-DLP1 interaction. A highly conserved FLV motif was identified in the C-terminus of DLP1, mutation of which significantly reduced VPS35-DLP1 interaction. A decoy peptide design based on this FLV motif could block the VPS35-DLP1 interaction and inhibit the recycling of mitochondrial DLP1 complexes. Importantly, VPS35 D620N mutant-induced mitochondrial fragmentation and respiratory deficits could be rescued by the treatment of this decoy peptide in both M17 cells overexpressing D620N or PD fibroblasts bearing this mutation. Overall, our results lend further support to the notion that VPS35-DLP1 interaction is key to the retromer-dependent recycling of mitochondrial DLP1 complex during mitochondrial fission and provide a novel therapeutic target to control excessive fission and associated mitochondrial deficits.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leping Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, People's Republic of China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, People's Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
184
|
Martinez BA, Caldwell KA, Caldwell GA. C . elegans as a model system to accelerate discovery for Parkinson disease. Curr Opin Genet Dev 2017; 44:102-109. [DOI: 10.1016/j.gde.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023]
|
185
|
Kim T, Vemuganti R. Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. J Cereb Blood Flow Metab 2017; 37:1910-1926. [PMID: 28273718 PMCID: PMC5444552 DOI: 10.1177/0271678x17694186] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death. Emerging evidence indicates that several proteins associated with early-onset familial PD play critical roles in mediating the neuronal death. Importantly, mutations in the genes encoding Parkin, PTEN-induced putative kinase 1 and DJ-1 mediate autosomal recessive forms of PD, whereas mutations in the genes encoding leucine-rich repeat kinase 2 and α-synuclein are responsible for autosomal dominant PD. This review discusses the significance of these proteins with the emphasis on the role of α-synuclein in mediating post-ischemic brain damage.
Collapse
Affiliation(s)
- TaeHee Kim
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA
| | - Raghu Vemuganti
- 1 Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,2 Neuroscience Training Program, Madison, WI, USA.,3 Cellular & Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,4 William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
186
|
Tapias V, Hu X, Luk KC, Sanders LH, Lee VM, Greenamyre JT. Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci 2017; 74:2851-2874. [PMID: 28534083 DOI: 10.1007/s00018-017-2541-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Intracellular accumulation of α-synuclein (α-syn) are hallmarks of synucleinopathies, including Parkinson's disease (PD). Exogenous addition of preformed α-syn fibrils (PFFs) into primary hippocampal neurons induced α-syn aggregation and accumulation. Likewise, intrastriatal inoculation of PFFs into mice and non-human primates generates Lewy bodies and Lewy neurites associated with PD-like neurodegeneration. Herein, we investigate the putative effects of synthetic human PFFs on cultured rat ventral midbrain dopamine (DA) neurons. A time- and dose-dependent accumulation of α-syn was observed following PFFs exposure that also underwent phosphorylation at serine 129. PFFs treatment decreased the expression levels of synaptic proteins, caused alterations in axonal transport-related proteins, and increased H2AX Ser139 phosphorylation. Mitochondrial impairment (including modulation of mitochondrial dynamics-associated protein content), enhanced oxidative stress, and an inflammatory response were also detected in our experimental paradigm. In attempt to unravel a potential molecular mechanism of PFFs neurotoxicity, the expression of inducible nitric oxide synthase was blocked; a significant decline in protein nitration levels and protection against PFFs-induced DA neuron death were observed. Combined exposure to PFFs and rotenone resulted in an additive toxicity. Strikingly, many of the harmful effects found were more prominent in DA rather than non-DA neurons, suggestive of higher susceptibility to degenerate. These findings provide new insights into the role of α-syn in the pathogenesis of PD and could represent a novel and valuable model to study DA-related neurodegeneration.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology and Neuroscience, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA. .,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| | - Xiaoping Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Laurie H Sanders
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Virginia M Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA.,Pittsburgh VA Healthcare System, Pittsburgh, PA, 15206, USA
| |
Collapse
|
187
|
Inhibition of Drp1 Ameliorates Synaptic Depression, Aβ Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. J Neurosci 2017; 37:5099-5110. [PMID: 28432138 DOI: 10.1523/jneurosci.2385-16.2017] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
Excessive mitochondrial fission is a prominent early event and contributes to mitochondrial dysfunction, synaptic failure, and neuronal cell death in the progression of Alzheimer's disease (AD). However, it remains to be determined whether inhibition of excessive mitochondrial fission is beneficial in mammal models of AD. To determine whether dynamin-related protein 1 (Drp1), a key regulator of mitochondrial fragmentation, can be a disease-modifying therapeutic target for AD, we examined the effects of Drp1 inhibitor on mitochondrial and synaptic dysfunctions induced by oligomeric amyloid-β (Aβ) in neurons and neuropathology and cognitive functions in Aβ precursor protein/presenilin 1 double-transgenic AD mice. Inhibition of Drp1 alleviates mitochondrial fragmentation, loss of mitochondrial membrane potential, reactive oxygen species production, ATP reduction, and synaptic depression in Aβ-treated neurons. Furthermore, Drp1 inhibition significantly improves learning and memory and prevents mitochondrial fragmentation, lipid peroxidation, BACE1 expression, and Aβ deposition in the brain in the AD model. These results provide evidence that Drp1 plays an important role in Aβ-mediated and AD-related neuropathology and in cognitive decline in an AD animal model. Therefore, inhibiting excessive Drp1-mediated mitochondrial fission may be an efficient therapeutic avenue for AD.SIGNIFICANCE STATEMENT Mitochondrial fission relies on the evolutionary conserved dynamin-related protein 1 (Drp1). Drp1 activity and mitochondria fragmentation are significantly elevated in the brains of sporadic Alzheimer's disease (AD) cases. In the present study, we first demonstrated that the inhibition of Drp1 restored amyloid-β (Aβ)-mediated mitochondrial dysfunctions and synaptic depression in neurons and significantly reduced lipid peroxidation, BACE1 expression, and Aβ deposition in the brain of AD mice. As a result, memory deficits in AD mice were rescued by Drp1 inhibition. These results suggest that neuropathology and combined cognitive decline can be attributed to hyperactivation of Drp1 in the pathogenesis of AD. Therefore, inhibitors of excessive mitochondrial fission, such as Drp1 inhibitors, may be a new strategy for AD.
Collapse
|
188
|
Orr AL, Rutaganira FU, de Roulet D, Huang EJ, Hertz NT, Shokat KM, Nakamura K. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochem Int 2017; 109:106-116. [PMID: 28434973 DOI: 10.1016/j.neuint.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Mutations in the mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) cause Parkinson's disease (PD), likely by disrupting PINK1's kinase activity. Although the mechanism(s) underlying how this loss of activity causes degeneration remains unclear, increasing PINK1 activity may therapeutically benefit some forms of PD. However, we must first learn whether restoring PINK1 function prevents degeneration in patients harboring PINK1 mutations, or whether boosting PINK1 function can offer protection in more common causes of PD. To test these hypotheses in preclinical rodent models of PD, we used kinetin triphosphate, a small-molecule that activates both wild-type and mutant forms of PINK1, which affects mitochondrial function and protects neural cells in culture. We chronically fed kinetin, the precursor of kinetin triphosphate, to PINK1-null rats in which PINK1 was reintroduced into their midbrain, and also to rodent models overexpressing α-synuclein. The highest tolerated dose of oral kinetin increased brain levels of kinetin for up to 6 months, without adversely affecting the survival of nigrostriatal dopamine neurons. However, there was no degeneration of midbrain dopamine neurons lacking PINK1, which precluded an assessment of neuroprotection and raised questions about the robustness of the PINK1 KO rat model of PD. In two rodent models of α-synuclein-induced toxicity, boosting PINK1 activity with oral kinetin provided no protective effects. Our results suggest that oral kinetin is unlikely to protect against α-synuclein toxicity, and thus fail to provide evidence that kinetin will protect in sporadic models of PD. Kinetin may protect in cases of PINK1 deficiency, but this possibility requires a more robust PINK1 KO model that can be validated by proof-of-principle genetic correction in adult animals.
Collapse
Affiliation(s)
- Adam L Orr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Mitokinin LLC, 2 Wall Street, 4th Floor, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
189
|
Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:797-810. [PMID: 28352155 PMCID: PMC5358994 DOI: 10.2147/dddt.s130514] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer’s disease and Parkinson’s disease are two common neurodegenerative diseases of the elderly people that have devastating effects in terms of morbidity and mortality. The predominant form of the disease in either case is sporadic with uncertain etiology. The clinical features of Parkinson’s disease are primarily motor deficits, while the patients of Alzheimer’s disease present with dementia and cognitive impairment. Though neuronal death is a common element in both the disorders, the postmortem histopathology of the brain is very characteristic in each case and different from each other. In terms of molecular pathogenesis, however, both the diseases have a significant commonality, and proteinopathy (abnormal accumulation of misfolded proteins), mitochondrial dysfunction and oxidative stress are the cardinal features in either case. These three damage mechanisms work in concert, reinforcing each other to drive the pathology in the aging brain for both the diseases; very interestingly, the nature of interactions among these three damage mechanisms is very similar in both the diseases, and this review attempts to highlight these aspects. In the case of Alzheimer’s disease, the peptide amyloid beta (Aβ) is responsible for the proteinopathy, while α-synuclein plays a similar role in Parkinson’s disease. The expression levels of these two proteins and their aggregation processes are modulated by reactive oxygen radicals and transition metal ions in a similar manner. In turn, these proteins – as oligomers or in aggregated forms – cause mitochondrial impairment by apparently following similar mechanisms. Understanding the common nature of these interactions may, therefore, help us to identify putative neuroprotective strategies that would be beneficial in both the clinical conditions.
Collapse
Affiliation(s)
- Gargi Ganguly
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata
| | - Sasanka Chakrabarti
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, West Bengal, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
190
|
α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 2017; 20:681-689. [PMID: 28288128 PMCID: PMC5404982 DOI: 10.1038/nn.4529] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/05/2017] [Indexed: 01/08/2023]
Abstract
The protein α-synuclein has a central role in the pathogenesis of Parkinson’s disease (PD). Similar to other proteins that accumulate in neurodegenerative disease, however, the function of α-synuclein remains unknown. Localization to the nerve terminal suggests a role in neurotransmitter release and over-expression inhibits regulated exocytosis, but previous work has failed to identify a clear physiological defect in mice lacking all three synuclein isoforms. Using adrenal chromaffin cells and neurons, we now find that both over-expressed and endogenous synuclein serve to accelerate the kinetics of individual exocytotic events, promoting cargo discharge and reducing pore closure (‘kiss-and-run’). Thus, synuclein exerts dose-dependent effects on dilation of the exocytotic fusion pore. Remarkably, mutations that cause PD abrogate this property of α-synuclein without impairing its ability to inhibit exocytosis when over-expressed, indicating a selective defect in normal function.
Collapse
|
191
|
Giannoccaro MP, La Morgia C, Rizzo G, Carelli V. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson's disease. Mov Disord 2017; 32:346-363. [PMID: 28251677 DOI: 10.1002/mds.26966] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
In 1979, it was observed that parkinsonism could be induced by a toxin inhibiting mitochondrial respiratory complex I. This initiated the long-standing hypothesis that mitochondrial dysfunction may play a key role in the pathogenesis of Parkinson's disease (PD). This hypothesis evolved, with accumulating evidence pointing to complex I dysfunction, which could be caused by environmental or genetic factors. Attention was focused on the mitochondrial DNA, considering the occurrence of mutations, polymorphic haplogroup-specific variants, and defective mitochondrial DNA maintenance with the accumulation of multiple deletions and a reduction of copy number. Genetically determined diseases of mitochondrial DNA maintenance frequently manifest with parkinsonism, but the age-related accumulation of somatic mitochondrial DNA errors also represents a major driving mechanism for PD. Recently, the discovery of the genetic cause of rare inherited forms of PD highlighted an extremely complex homeostatic control over mitochondria, involving their dynamic fission/fusion cycle, the balancing of mitobiogenesis and mitophagy, and consequently the quality control surveillance that corrects faulty mitochondrial DNA maintenance. Many genes came into play, including the PINK1/parkin axis, but also OPA1, as pieces of the same puzzle, together with mitochondrial DNA damage, complex I deficiency and increased oxidative stress. The search for answers will drive future research to reach the understanding necessary to provide therapeutic options directed not only at limiting the clinical evolution of symptoms but also finally addressing the pathogenic mechanisms of neurodegeneration in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Rizzo
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
192
|
Pathak D, Berthet A, Bendor JT, Yu K, Sellnow RC, Orr AL, Nguyen MK, Edwards RH, Manfredsson FP, Nakamura K. Loss of α-Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent Neurons. eNeuro 2017; 4:ENEURO.0216-16.2017. [PMID: 28462393 PMCID: PMC5409983 DOI: 10.1523/eneuro.0216-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/02/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
Increased α-synuclein (αsyn) and mitochondrial dysfunction play central roles in the pathogenesis of Parkinson's disease (PD), and lowering αsyn is under intensive investigation as a therapeutic strategy for PD. Increased αsyn levels disrupt mitochondria and impair respiration, while reduced αsyn protects against mitochondrial toxins, suggesting that interactions between αsyn and mitochondria influences the pathologic and physiologic functions of αsyn. However, we do not know if αsyn affects normal mitochondrial function or if lowering αsyn levels impacts bioenergetic function, especially at the nerve terminal where αsyn is enriched. To determine if αsyn is required for normal mitochondrial function in neurons, we comprehensively evaluated how lowering αsyn affects mitochondrial function. We found that αsyn knockout (KO) does not affect the respiration of cultured hippocampal neurons or cortical and dopaminergic synaptosomes, and that neither loss of αsyn nor all three (α, β and γ) syn isoforms decreased mitochondria-derived ATP levels at the synapse. Similarly, neither αsyn KO nor knockdown altered the capacity of synaptic mitochondria to meet the energy requirements of synaptic vesicle cycling or influenced the localization of mitochondria to dopamine (DA) synapses in vivo. Finally, αsyn KO did not affect overall energy metabolism in mice assessed with a Comprehensive Lab Animal Monitoring System. These studies suggest either that αsyn has little or no significant physiological effect on mitochondrial bioenergetic function, or that any such functions are fully compensated for when lost. These results implicate that αsyn levels can be reduced in neurons without impairing (or improving) mitochondrial bioenergetics or distribution.
Collapse
Affiliation(s)
- Divya Pathak
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Jacob T. Bendor
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California 94158
| | - Katharine Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Rhyomi C. Sellnow
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI 49503
| | - Adam L. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Robert H. Edwards
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California 94158
| | - Fredric P. Manfredsson
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI 49503
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158
- Department of Neurology and Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
193
|
Braun AR, Lacy MM, Ducas VC, Rhoades E, Sachs JN. α-Synuclein's Uniquely Long Amphipathic Helix Enhances its Membrane Binding and Remodeling Capacity. J Membr Biol 2017; 250:183-193. [PMID: 28239748 DOI: 10.1007/s00232-017-9946-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
α-Synuclein is the primary protein found in Lewy bodies, the protein and lipid aggregates associated with Parkinson's disease and Lewy body dementia. The protein folds into a uniquely long amphipathic α-helix (AH) when bound to a membrane, and at high enough concentrations, it induces large-scale remodeling of membranes (tubulation and vesiculation). By engineering a less hydrophobic variant of α-Synuclein, we previously showed that the energy associated with binding of α-Synuclein's AH correlates with the extent of membrane remodeling (Braun et al. in J Am Chem Soc 136:9962-9972, 2014). In this study, we combine fluorescence correlation spectroscopy, electron microscopy, and vesicle clearance assays with coarse-grained molecular dynamics simulations to test the impact of decreasing the length of the amphipathic helix on membrane binding energy and tubulation. We show that truncation of α-Synuclein's AH length by approximately 15% reduces both its membrane binding affinity (by fivefold) and membrane remodeling capacity (by nearly 50% on per mole of bound protein basis). Results from simulations correlate well with the experiments and lend support to the idea that at high protein density there is a stabilization of individual, protein-induced membrane curvature fields. The extent to which these curvature fields are stabilized, a function of binding energy, dictates the extent of tubulation. Somewhat surprisingly, we find that this stabilization does not correlate directly with the geometric distribution of the proteins on the membrane surface.
Collapse
Affiliation(s)
- Anthony R Braun
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Vanessa C Ducas
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
194
|
Menges S, Minakaki G, Schaefer PM, Meixner H, Prots I, Schlötzer-Schrehardt U, Friedland K, Winner B, Outeiro TF, Winklhofer KF, von Arnim CAF, Xiang W, Winkler J, Klucken J. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep 2017; 7:42942. [PMID: 28224980 PMCID: PMC5320486 DOI: 10.1038/srep42942] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress (OS), mitochondrial dysfunction, and dysregulation of alpha-synuclein (aSyn) homeostasis are key pathogenic factors in Parkinson's disease. Nevertheless, the role of aSyn in mitochondrial physiology remains elusive. Thus, we addressed the impact of aSyn specifically on mitochondrial response to OS in neural cells. We characterize a distinct type of mitochondrial fragmentation, following H2O2 or 6-OHDA-induced OS, defined by spherically-shaped and hyperpolarized mitochondria, termed "mitospheres". Mitosphere formation mechanistically depended on the fission factor Drp1, and was paralleled by reduced mitochondrial fusion. Furthermore, mitospheres were linked to a decrease in mitochondrial activity, and preceded Caspase3 activation. Even though fragmentation of dysfunctional mitochondria is considered to be a prerequisite for mitochondrial degradation, mitospheres were not degraded via Parkin-mediated mitophagy. Importantly, we provide compelling evidence that aSyn prevents mitosphere formation and reduces apoptosis under OS. In contrast, aSyn did not protect against Rotenone, which led to a different, previously described donut-shaped mitochondrial morphology. Our findings reveal a dichotomic role of aSyn in mitochondrial biology, which is linked to distinct types of stress-induced mitochondrial fragmentation. Specifically, aSyn may be part of a cellular defense mechanism preserving neural mitochondrial homeostasis in the presence of increased OS levels, while not protecting against stressors directly affecting mitochondrial function.
Collapse
Affiliation(s)
- Stefanie Menges
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Holger Meixner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Kristina Friedland
- Molecular and Clinical Pharmacy, Department of Chemistry and Pharmacy, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, 37073 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | | | - Wei Xiang
- Institute of Biochemistry, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
195
|
Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, Zhu X. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1359-1370. [PMID: 28215578 DOI: 10.1016/j.bbadis.2017.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial dynamics and quality control play a critical role in the maintenance of mitochondrial homeostasis and function. Pathogenic mutations of many genes associated with familial Parkinson's disease (PD) caused abnormal mitochondrial dynamics, suggesting a likely involvement of disturbed mitochondrial fission/fusion in the pathogenesis of PD. In this study, we focused on the potential role of mitochondrial fission/fusion in idiopathic PD patients and in neuronal cells and animals exposed to paraquat (PQ), a commonly used herbicide and PD-related neurotoxin, as models for idiopathic PD. Significantly increased expression of dynamin-like protein 1 (DLP1) and a trend towards reduced expression of Mfn1 and Mfn2 were noted in the substantia nigra tissues from idiopathic PD cases. Interestingly, PQ treatment led to similar changes in the expression of fission/fusion proteins both in vitro and in vivo which was accompanied by extensive mitochondrial fragmentation and mitochondrial dysfunction. Blockage of PQ-induced mitochondrial fragmentation by Mfn2 overexpression protected neurons against PQ-induced mitochondrial dysfunction in vitro. More importantly, PQ-induced oxidative damage and stress signaling as well as selective loss of dopaminergic (DA) neurons in the substantia nigra and axonal terminals in striatum was also inhibited in transgenic mice overexpressing hMfn2. Overall, our study demonstrated that disturbed mitochondrial dynamics mediates PQ-induced mitochondrial dysfunction and neurotoxicity both in vitro and in vivo and is also likely involved in the pathogenesis of idiopathic PD which make them a promising therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chunyu Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurology, The second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
196
|
Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 2017; 23:1-13. [PMID: 28170377 PMCID: PMC8480197 DOI: 10.1038/nm.4269] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Alterations in α-synuclein dosage lead to familial Parkinson's disease (PD), and its accumulation results in synucleinopathies that include PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Furthermore, α-synuclein contributes to the fibrilization of amyloid-b and tau, two key proteins in Alzheimer's disease, which suggests a central role for α-synuclein toxicity in neurodegeneration. Recent studies of factors contributing to α-synuclein toxicity and its disruption of downstream cellular pathways have expanded our understanding of disease pathogenesis in synucleinopathies. In this Review, we discuss these emerging themes, including the contributions of aging, selective vulnerability and non-cell-autonomous factors such as α-synuclein cell-to-cell propagation and neuroinflammation. Finally, we summarize recent efforts toward the development of targeted therapies for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
197
|
Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, Majounie E, Gibbs JR, Nalls MA, Ryten M, Botia JA, Vandrovcova J, Simon-Sanchez J, Castillo-Lizardo M, Rizzu P, Blauwendraat C, Chouhan AK, Li Y, Yogi P, Amin N, van Duijn CM, Morris HR, Brice A, Singleton AB, David DC, Nollen EA, Jain S, Shulman JM, Heutink P. Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biol 2017; 18:22. [PMID: 28137300 PMCID: PMC5282828 DOI: 10.1186/s13059-017-1147-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.
Collapse
Affiliation(s)
- Iris E. Jansen
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1081HZ The Netherlands
| | - Hui Ye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Sasja Heetveld
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Graduate School of Cellular & Molecular Neuroscience, Tübingen, 72074 Germany
| | - Helen Michels
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Renée I. Seinstra
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Steven J. Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
- Northwestern University Feinberg School of Medicine, Ken and Ruth Davee Department of Neurology, Chicago, IL USA
| | - Valérie Drouet
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Suzanne Lesage
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Elisa Majounie
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD USA
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD USA
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Medical & Molecular Genetics, King’s College London, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Melissa Castillo-Lizardo
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Cornelis Blauwendraat
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Amit K. Chouhan
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Yarong Li
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Puja Yogi
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Huw R. Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Alexis Brice
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | | | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Ellen A. Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, Groningen, 9700AD The Netherlands
| | - Shushant Jain
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund St., N.1150, Houston, TX 77030 USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen, 72076 Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1081HZ The Netherlands
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
198
|
Koo JH, Cho JY, Lee UB. Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson's disease. Exp Gerontol 2017; 89:20-29. [PMID: 28062370 DOI: 10.1016/j.exger.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/26/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
Abstract
Alpha-synuclein (α-Syn) accumulation is significantly correlated with motor deficits and mitochondrial dysfunction in Parkinson's disease (PD), but the molecular mechanism underlying its pathogenesis is unclear. In this study, we investigated the effects of treadmill exercise on motor deficits and mitochondrial dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treadmill exercise inhibited dopaminergic neuron loss by promoting the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) and seemed to improve cell survival by reducing α-Syn expression. Most importantly, treadmill exercise increased expression of the mitochondrial import machinery proteins TOM-40, TOM-20, and TIM-23. This was associated with decreased α-Syn expression and subsequent upregulation of the mitochondrial proteins COX-I, COX-IV, and mtHSP70. Taken together, these results indicate that treadmill exercise may ameliorate motor deficits and improve mitochondrial dysfunction by reducing α-Syn expression in the MPTP-induced mouse model of PD.
Collapse
Affiliation(s)
- Jung-Hoon Koo
- Department of Exercise Biochemistry, Korea National Sport University, Seoul 138-763, Republic of Korea; Institute of Sport Science, Korea National Sport University, Seoul, 138-763, Republic of Korea
| | - Joon-Yong Cho
- Department of Exercise Biochemistry, Korea National Sport University, Seoul 138-763, Republic of Korea
| | - Ung-Bae Lee
- Department of Beauty Health Science, Shinhan University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
199
|
Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology? JOURNAL OF PARKINSON'S DISEASE 2017; 7:13-29. [PMID: 27911343 PMCID: PMC5302033 DOI: 10.3233/jpd-160989] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/12/2022]
Abstract
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Dominika Truban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
200
|
Abstract
In 2017, it is two hundred years since James Parkinson provided the first complete clinical description of the disease named after him, fifty years since the introduction of high-dose D,L-DOPA treatment and twenty years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here we review our work, which led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies, as well as what has happened since. Some of the experiments described were carried out in collaboration with ML Schmidt, JQ Trojanowski and VMY Lee.
Collapse
Affiliation(s)
| | - Ross Jakes
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|