151
|
Hsiao V, Hori Y, Rothemund PW, Murray RM. A population-based temporal logic gate for timing and recording chemical events. Mol Syst Biol 2016; 12:869. [PMID: 27193783 PMCID: PMC5289221 DOI: 10.15252/msb.20156663] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two‐input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single‐cell responses that translated into analog population responses. Furthermore, when single‐cell genetic states were aggregated into population‐level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub‐populations could be used to deduce order, timing, and duration of transient chemical events.
Collapse
Affiliation(s)
- Victoria Hsiao
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yutaka Hori
- Applied Physics and Physico-Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Paul Wk Rothemund
- Computation & Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Richard M Murray
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
152
|
Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science 2016; 352:aac7341. [PMID: 27034378 DOI: 10.1126/science.aac7341] [Citation(s) in RCA: 613] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/21/2016] [Indexed: 12/12/2022]
Abstract
Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.
Collapse
Affiliation(s)
- Alec A K Nielsen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan S Der
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Jonghyeon Shin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant Vaidyanathan
- Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Vanya Paralanov
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - Elizabeth A Strychalski
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - David Ross
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA
| | - Douglas Densmore
- Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
153
|
Nakamura Y, Hashimoto T, Ishii J, Kondo A. Dual-color reporter switching system to discern dimer formations of G-protein-coupled receptors using Cre/loxP
site-specific recombination in yeast. Biotechnol Bioeng 2016; 113:2178-90. [DOI: 10.1002/bit.25974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Yasuyuki Nakamura
- Department of Chemical Science and Engineering, Graduate School of Engineering; Kobe University; Kobe Japan
| | - Takamichi Hashimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering; Kobe University; Kobe Japan
| | - Jun Ishii
- Organization of Advanced Science and Technology; Kobe University, 1-1 Rokkodai, Nada; Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering; Kobe University; Kobe Japan
| |
Collapse
|
154
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
155
|
Xu Z, Brown WRA. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnol 2016; 16:13. [PMID: 26860416 PMCID: PMC4748531 DOI: 10.1186/s12896-016-0241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phage-encoded serine integrases, such as ϕC31 integrase, are widely used for genome engineering but have not been optimized for use in Saccharomyces cerevisiae although this organism is a widely used organism in biotechnology. RESULTS The activities of derivatives of fourteen serine integrases that either possess or lack a nuclear localization signal were compared using a standardized recombinase mediated cassette exchange reaction. The relative activities of these integrases in S. cerevisiae and in mammalian cells suggested that the major determinant of the activity of an integrase is the enzyme itself and not the cell in which it is working. We used an inducible promoter to show that six integrases were toxic as judged by their effects upon the proliferative ability of transformed yeast. We show that in general the active phage-encoded serine integrases were an order of magnitude more efficient in promoting genome integration reactions than a simple homologous recombination. CONCLUSIONS The results of our study allow us to identify the integrases of the phage ϕBT1, TP901 ~ nls, R4, Bxb1, MR11, A118, ϕK38, ϕC31 ~ nls, Wβ and SPBC ~ nls as active in S. cerevisiae and indicate that vertebrate cells are more restricted than yeast in terms of which integrases are active.
Collapse
Affiliation(s)
- Zhengyao Xu
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| | - William R A Brown
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| |
Collapse
|
156
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
157
|
Venturelli OS, Egbert RG, Arkin AP. Towards Engineering Biological Systems in a Broader Context. J Mol Biol 2016; 428:928-44. [DOI: 10.1016/j.jmb.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/24/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
|
158
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
159
|
Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species. Appl Environ Microbiol 2016; 82:1924-1932. [PMID: 26773080 DOI: 10.1128/aem.03890-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5' end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes.
Collapse
|
160
|
Merrick C, Wardrope C, Paget J, Colloms S, Rosser S. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA). Methods Enzymol 2016; 575:285-317. [DOI: 10.1016/bs.mie.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
161
|
Van Hove B, Love AM, Ajikumar PK, De Mey M. Programming Biology: Expanding the Toolset for the Engineering of Transcription. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
162
|
Fernandez-Rodriguez J, Yang L, Gorochowski TE, Gordon DB, Voigt CA. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth Biol 2015; 4:1361-72. [PMID: 26548807 DOI: 10.1021/acssynbio.5b00170] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic memory can be implemented using enzymes that catalyze DNA inversions, where each orientation corresponds to a "bit". Here, we use two DNA invertases (FimE and HbiF) that reorient DNA irreversibly between two states with opposite directionality. First, we construct memory that is set by FimE and reset by HbiF. Next, we build a NOT gate where the input promoter drives FimE and in the absence of signal the reverse state is maintained by the constitutive expression of HbiF. The gate requires ∼3 h to turn on and off. The evolutionary stabilities of these circuits are measured by passaging cells while cycling function. The memory switch is stable over 400 h (17 days, 14 state changes); however, the gate breaks after 54 h (>2 days) due to continuous invertase expression. Genome sequencing reveals that the circuit remains intact, but the host strain evolves to reduce invertase expression. This work highlights the need to evaluate the evolutionary robustness and failure modes of circuit designs, especially as more complex multigate circuits are implemented.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lei Yang
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas E. Gorochowski
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - D. Benjamin Gordon
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Christopher A. Voigt
- Synthetic
Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
163
|
Zhang C, Tsoi R, You L. Addressing biological uncertainties in engineering gene circuits. Integr Biol (Camb) 2015; 8:456-64. [PMID: 26674800 DOI: 10.1039/c5ib00275c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic biology has grown tremendously over the past fifteen years. It represents a new strategy to develop biological understanding and holds great promise for diverse practical applications. Engineering of a gene circuit typically involves computational design of the circuit, selection of circuit components, and test and optimization of circuit functions. A fundamental challenge in this process is the predictable control of circuit function due to multiple layers of biological uncertainties. These uncertainties can arise from different sources. We categorize these uncertainties into incomplete quantification of parts, interactions between heterologous components and the host, or stochastic dynamics of chemical reactions and outline potential design strategies to minimize or exploit them.
Collapse
Affiliation(s)
- Carolyn Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
164
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
165
|
Kushwaha M, Salis HM. A portable expression resource for engineering cross-species genetic circuits and pathways. Nat Commun 2015; 6:7832. [PMID: 26184393 PMCID: PMC4518296 DOI: 10.1038/ncomms8832] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022] Open
Abstract
Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. Organism-specific genetic parts are often used to express circuits and pathways, limiting their portability. Here the authors engineer a cross-species expression resource, without using host-specific parts, to control protein and pathway expression in non-model bacteria.
Collapse
Affiliation(s)
- Manish Kushwaha
- Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Howard M Salis
- 1] Department of Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
166
|
Mimee M, Tucker AC, Voigt CA, Lu TK. Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Syst 2015; 1:62-71. [PMID: 26918244 DOI: 10.1016/j.cels.2015.06.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Engineering commensal organisms for challenging applications, such as modulating the gut ecosystem, is hampered by the lack of genetic parts. Here, we describe promoters, ribosome-binding sites, and inducible systems for use in the commensal bacterium Bacteroides thetaiotaomicron, a prevalent and stable resident of the human gut. We achieve up to 10,000-fold range in constitutive gene expression and 100-fold regulation of gene expression with inducible promoters and use these parts to record DNA-encoded memory in the genome. We use CRISPR interference (CRISPRi) for regulated knockdown of recombinant and endogenous gene expression to alter the metabolic capacity of B. thetaiotaomicron and its resistance to antimicrobial peptides. Finally, we show that inducible CRISPRi and recombinase systems can function in B. thetaiotaomicron colonizing the mouse gut. These results provide a blueprint for engineering new chassis and a resource to engineer Bacteroides for surveillance of or therapeutic delivery to the gut microbiome.
Collapse
Affiliation(s)
- Mark Mimee
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex C Tucker
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
167
|
Caliando BJ, Voigt CA. Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun 2015; 6:6989. [PMID: 25988366 PMCID: PMC4479009 DOI: 10.1038/ncomms7989] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
Once an engineered organism completes its task, it is useful to degrade the associated DNA to reduce environmental release and protect intellectual property. Here we present a genetically encoded device (DNAi) that responds to a transcriptional input and degrades user-defined DNA. This enables engineered regions to be obscured when the cell enters a new environment. DNAi is based on type-IE CRISPR biochemistry and a synthetic CRISPR array defines the DNA target(s). When the input is on, plasmid DNA is degraded 10(8)-fold. When the genome is targeted, this causes cell death, reducing viable cells by a factor of 10(8). Further, the CRISPR nuclease can direct degradation to specific genomic regions (for example, engineered or inserted DNA), which could be used to complicate recovery and sequencing efforts. DNAi can be stably carried in an engineered organism, with no impact on cell growth, plasmid stability or DNAi inducibility even after passaging for >2 months.
Collapse
Affiliation(s)
- Brian J. Caliando
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
168
|
Prokup A, Deiters A. Engineering a Bacterial Tape Recorder. Chembiochem 2015; 16:1027-9. [DOI: 10.1002/cbic.201500061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 01/17/2023]
|
169
|
Ma L, Diao A. Design of enzyme-interfaced DNA logic operations (AND, OR and INHIBIT) with an assaying application for single-base mismatch. Chem Commun (Camb) 2015; 51:10233-5. [DOI: 10.1039/c5cc02835c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We devised AND, OR and INHIBIT logic gates.
Collapse
Affiliation(s)
- Long Ma
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- School of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300457
| | - Aipo Diao
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- School of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300457
| |
Collapse
|