151
|
Scholefield G, Errington J, Murray H. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J 2012; 31:1542-55. [PMID: 22286949 DOI: 10.1038/emboj.2012.6] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022] Open
Abstract
Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria.
Collapse
Affiliation(s)
- Graham Scholefield
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | | |
Collapse
|
152
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science 2012; 334:1675-80. [PMID: 22194570 DOI: 10.1126/science.1211884] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
153
|
Leonard AC, Grimwade JE. Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 2012; 65:19-35. [PMID: 21639790 DOI: 10.1146/annurev-micro-090110-102934] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein DnaA and its interactions with the unique replication origin oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replicative complexes. In oriC, closely spaced high- and low-affinity recognition sites direct DnaA-DnaA interactions and couple complex assembly to the availability of active DnaA-ATP. Additional recognition sites at loci distant from oriC modulate DnaA-ATP availability by repressing new synthesis, recharging inactive DnaA-ADP, or titrating DnaA. Relying on genomic DnaA binding sites, as well as protein regulators, to control DnaA function appears to provide the best combination of high precision and dynamic regulation necessary to couple DNA replication with cell growth over a range of nutritional conditions.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | | |
Collapse
|
154
|
Abstract
Minichromosome maintenance (MCM) complexes have been identified as the primary replicative helicases responsible for unwinding DNA for genome replication. The focus of this chapter is to discuss the current structural and functional understanding of MCMs and their role at origins of replication, which are based mostly on the studies of MCM proteins and MCM complexes from archaeal genomes.
Collapse
Affiliation(s)
- Ian M Slaymaker
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | | |
Collapse
|
155
|
Abstract
The initiation of DNA replication in most archaeal genomes is mediated by proteins related to eukaryotic Orc1 and Cdc6. Archaeal replication origins have been mapped and their interactions with Orc1/Cdc6 proteins have been characterized at the biochemical level. Structural and biophysical studies have revealed the basic rules of sequence recognition by archaeal initiators.
Collapse
|
156
|
Collier J. Regulation of chromosomal replication in Caulobacter crescentus. Plasmid 2011; 67:76-87. [PMID: 22227374 DOI: 10.1016/j.plasmid.2011.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/12/2023]
Abstract
The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle.
Collapse
Affiliation(s)
- Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland.
| |
Collapse
|
157
|
Schuck S, Stenlund A. Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol Cell 2011; 43:776-87. [PMID: 21884978 DOI: 10.1016/j.molcel.2011.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/22/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
Preparation of DNA templates for replication requires opening of the duplex to expose single-stranded (ss) DNA. The locally melted DNA is required for replicative DNA helicases to initiate unwinding. How local melting is generated in eukaryotic replicons is unknown, but initiator proteins from a handful of eukaryotic viruses can perform this function. Here we dissect the local melting process carried out by the papillomavirus E1 protein. We characterize the melting process kinetically and identify mutations in the E1 helicase and in the ori that arrest the local melting process. We show that a subset of these mutants have specific defects for melting of the center of the ori containing the binding sites for E1 and demonstrate that these mutants fail to untwist the ori DNA. This understanding of how E1 generates local melting suggests possible mechanisms for local melting in other replicons.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
158
|
Ozaki S, Katayama T. Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res 2011; 40:1648-65. [PMID: 22053082 PMCID: PMC3287180 DOI: 10.1093/nar/gkr832] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, the replication origin oriC consists of two functional regions: the duplex unwinding element (DUE) and its flanking DnaA-assembly region (DAR). ATP-DnaA molecules multimerize on DAR, unwinding DUE for DnaB helicase loading. However, DUE-unwinding mechanisms and functional structures in DnaA–oriC complexes supporting those remain unclear. Here, using various in vitro reconstituted systems, we identify functionally distinct DnaA sub-complexes formed on DAR and reveal novel mechanisms in DUE unwinding. The DUE-flanking left-half DAR carrying high-affinity DnaA box R1 and the ATP-DnaA-preferential DnaA box R5, τ1-2 and I1-2 sites formed a DnaA sub-complex competent in DUE unwinding and ssDUE binding, thereby supporting basal DnaB loading activity. This sub-complex is further subdivided into two; the DUE-distal DnaA sub-complex formed on the ATP–DnaA-preferential sites binds ssDUE. Notably, the DUE-flanking, DnaA box R1–DnaA sub-complex recruits DUE to the DUE-distal DnaA sub-complex in concert with a DNA-bending nucleoid protein IHF, thereby promoting DUE unwinding and binding of ssDUE. The right-half DAR–DnaA sub-complex stimulated DnaB loading, consistent with in vivo analyses. Similar features are seen in DUE unwinding of the hyperthermophile, Thermotoga maritima, indicating evolutional conservation of those mechanisms.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
159
|
Liu J, McConnell K, Dixon M, Calvi BR. Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Mol Biol Cell 2011; 23:200-12. [PMID: 22049023 PMCID: PMC3248898 DOI: 10.1091/mbc.e11-05-0409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A study of model DNA replication origins in Drosophila reveals a codependence between histone acetylation and pre-RC assembly and leads to a chromatin switch model for the coordination of origin and promoter activity during development. Epigenetic regulation exerts a major influence on origins of DNA replication during development. The mechanisms for this regulation, however, are poorly defined. We showed previously that acetylation of nucleosomes regulates the origins that mediate developmental gene amplification during Drosophila oogenesis. Here we show that developmental activation of these origins is associated with acetylation of multiple histone lysines. Although these modifications are not unique to origin loci, we find that the level of acetylation is higher at the active origins and quantitatively correlated with the number of times these origins initiate replication. All of these acetylation marks were developmentally dynamic, rapidly increasing with origin activation and rapidly declining when the origins shut off and neighboring promoters turn on. Fine-scale analysis of the origins revealed that both hyperacetylation of nucleosomes and binding of the origin recognition complex (ORC) occur in a broad domain and that acetylation is highest on nucleosomes adjacent to one side of the major site of replication initiation. It was surprising to find that acetylation of some lysines depends on binding of ORC to the origin, suggesting that multiple histone acetyltransferases may be recruited during origin licensing. Our results reveal new insights into the origin epigenetic landscape and lead us to propose a chromatin switch model to explain the coordination of origin and promoter activity during development.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
160
|
Duderstadt KE, Chuang K, Berger JM. DNA stretching by bacterial initiators promotes replication origin opening. Nature 2011; 478:209-13. [PMID: 21964332 PMCID: PMC3192921 DOI: 10.1038/nature10455] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/12/2011] [Indexed: 11/10/2022]
Abstract
Many replication initiators form higher-order oligomers that process host replication origins to promote replisome formation. In addition to dedicated duplex-DNA-binding domains, cellular initiators possess AAA+ (ATPases associated with various cellular activities) elements that drive functions ranging from protein assembly to origin recognition. In bacteria, the AAA+ domain of the initiator DnaA has been proposed to assist in single-stranded DNA formation during origin melting. Here we show crystallographically and in solution that the ATP-dependent assembly of Aquifex aeolicus DnaA into a spiral oligomer creates a continuous surface that allows successive AAA+ domains to bind and extend single-stranded DNA segments. The mechanism of binding is unexpectedly similar to that of RecA, a homologous recombination factor, but it differs in that DnaA promotes a nucleic acid conformation that prevents pairing of a complementary strand. These findings, combined with strand-displacement assays, indicate that DnaA opens replication origins by a direct ATP-dependent stretching mechanism. Comparative studies reveal notable commonalities between the approach used by DnaA to engage DNA substrates and other, nucleic-acid-dependent, AAA+ systems.
Collapse
Affiliation(s)
- Karl E. Duderstadt
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin Chuang
- Department of Molecular and Cell Biology, California Institute for Quantitative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James M. Berger
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, California Institute for Quantitative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
161
|
Charbon G, Løbner-Olesen A. A role for the weak DnaA binding sites in bacterial replication origins. Mol Microbiol 2011; 82:272-4. [PMID: 21958322 DOI: 10.1111/j.1365-2958.2011.07840.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an 'AT-rich' region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility that bacterial origins might be more alike than previously thought.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark
| | | |
Collapse
|
162
|
Rozgaja TA, Grimwade JE, Iqbal M, Czerwonka C, Vora M, Leonard AC. Two oppositely oriented arrays of low-affinity recognition sites in oriC guide progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol Microbiol 2011; 82:475-88. [PMID: 21895796 DOI: 10.1111/j.1365-2958.2011.07827.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The onset of chromosomal DNA replication requires highly precise and reproducible interactions between initiator proteins and replication origins to assemble a pre-replicative complex (pre-RC) that unwinds the DNA duplex. In bacteria, initiator protein DnaA, bound to specific high- and low-affinity recognition sites within the unique oriC locus, comprises the pre-RC, but how complex assembly is choreographed to ensure precise initiation timing during the cell cycle is not well understood. In this study, we present evidence that higher-order DnaA structures are formed at oriC when DnaA monomers are closely positioned on the same face of the DNA helix by interaction with two oppositely oriented essential arrays of closely spaced low-affinity DnaA binding sites. As DnaA levels increase, peripheral high-affinity anchor sites begin cooperative loading of the arrays, which is extended by sequential binding of additional DnaA monomers resulting in growth of the complexes towards the centre of oriC. We suggest that this polarized assembly of unique DnaA oligomers within oriC plays an important role in mediating pre-RC activity and may be a feature found in all bacterial replication origins.
Collapse
Affiliation(s)
- Tania A Rozgaja
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | | | | | | | | | | |
Collapse
|
163
|
Henderson JN, Kuriata AM, Fromme R, Salvucci ME, Wachter RM. Atomic resolution x-ray structure of the substrate recognition domain of higher plant ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase. J Biol Chem 2011; 286:35683-35688. [PMID: 21880724 PMCID: PMC3195603 DOI: 10.1074/jbc.c111.289595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rapid release of tight-binding inhibitors from dead-end ribulose-bisphosphate carboxylase/oxygenase (Rubisco) complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO2 fixation with the light reactions of photosynthesis. Here, we present a 1.9 Å crystal structure of the C-domain core of creosote activase. The fold consists of a canonical four-helix bundle, from which a paddle-like extension protrudes that entails a nine-turn helix lined by an irregularly structured peptide strand. The residues Lys-313 and Val-316 involved in the species-specific recognition of Rubisco are located near the tip of the paddle. An ionic bond between Lys-313 and Glu-309 appears to stabilize the glycine-rich end of the helix. Structural superpositions onto the distant homolog FtsH imply that the paddles extend away from the hexameric toroid in a fan-like fashion, such that the hydrophobic sides of each blade bearing Trp-302 are facing inward and the polar sides bearing Lys-313 and Val-316 are facing outward. Therefore, we speculate that upon binding, the activase paddles embrace the Rubisco cylinder by placing their hydrophobic patches near the partner protein. This model suggests that conformational adjustments at the remote end of the paddle may relate to selectivity in recognition, rather than specific ionic contacts involving Lys-313. Additionally, the superpositions predict that the catalytically critical Arg-293 does not interact with the bound nucleotide. Hypothetical ring-ring stacking and peptide threading models for Rubisco reactivation are briefly discussed.
Collapse
Affiliation(s)
- J Nathan Henderson
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Agnieszka M Kuriata
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Michael E Salvucci
- Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, Arizona 85139
| | - Rebekka M Wachter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287.
| |
Collapse
|
164
|
Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 2011; 15:606-13. [PMID: 21856207 DOI: 10.1016/j.cbpa.2011.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which involves the hydrolysis of ATP bound to DnaC. Recent evidence indicates that DnaC acts as a checkpoint in the transition from initiation to the elongation stage of DNA replication. Freed from DnaC, DnaB helicase unwinds the parental duplex DNA while interacting the cellular replicase, DNA polymerase III holoenzyme, and primase as it intermittently forms primers that are extended by the replicase in duplicating the chromosome.
Collapse
|
165
|
Saxena R, Rozgaja T, Grimwade J, Crooke E. Remodeling of nucleoprotein complexes is independent of the nucleotide state of a mutant AAA+ protein. J Biol Chem 2011; 286:33770-7. [PMID: 21832063 DOI: 10.1074/jbc.m111.223495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA protein, a member of the AAA+ (ATPase associated with various cellular activities) family, initiates DNA synthesis at the chromosomal origin of replication (oriC) and regulates the transcription of several genes, including its own. The assembly of DnaA complexes at chromosomal recognition sequences is affected by the tight binding of ATP or ADP by DnaA. DnaA with a point mutation in its membrane-binding amphipathic helix, DnaA(L366K), previously described for its ability to support growth in cells with altered phospholipid content, has biochemical characteristics similar to those of the wild-type protein. Yet DnaA(L366K) fails to initiate in vitro or in vivo replication from oriC. We found here, through in vitro dimethyl sulfate footprinting and gel mobility shift assays, that DnaA(L366K) in either nucleotide state was unable to assemble into productive prereplication complexes. In contrast, at the dnaA promoter, both the ATP and the ADP form of DnaA(L366K) generated active nucleoprotein complexes that efficiently repressed transcription in a manner similar to wild-type ATP-DnaA. Thus, it appears that unlike wild-type DnaA protein DnaA(L366K) can adopt architectures that are independent of its bound nucleotide, and instead the locus determines the functionality of the higher order DnaA(L366K)-DNA complexes.
Collapse
Affiliation(s)
- Rahul Saxena
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
166
|
Bates AD, Berger JM, Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res 2011; 39:6327-39. [PMID: 21525132 PMCID: PMC3159449 DOI: 10.1093/nar/gkr258] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to 'simplify' distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein-protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules.
Collapse
Affiliation(s)
- Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
167
|
Keyamura K, Katayama T. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA. J Biol Chem 2011; 286:29336-29346. [PMID: 21708944 DOI: 10.1074/jbc.m111.233403] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
168
|
Meinke G, Phelan P, Fradet-Turcotte A, Archambault J, Bullock PA. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:560-7. [PMID: 21636896 PMCID: PMC3107053 DOI: 10.1107/s0907444911014302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/16/2011] [Indexed: 12/13/2022]
Abstract
The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, Tufts School of Medicine and the Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
169
|
Tsodikov OV, Biswas T. Structural and thermodynamic signatures of DNA recognition by Mycobacterium tuberculosis DnaA. J Mol Biol 2011; 410:461-76. [PMID: 21620858 DOI: 10.1016/j.jmb.2011.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/27/2011] [Accepted: 05/05/2011] [Indexed: 10/24/2022]
Abstract
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 Å resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 Å). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.
Collapse
Affiliation(s)
- Oleg V Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
170
|
Page AN, George NP, Marceau AH, Cox MM, Keck JL. Structure and biochemical activities of Escherichia coli MgsA. J Biol Chem 2011; 286:12075-85. [PMID: 21297161 PMCID: PMC3069411 DOI: 10.1074/jbc.m110.210187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/14/2011] [Indexed: 11/06/2022] Open
Abstract
Bacterial "maintenance of genome stability protein A" (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA+ proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA+ proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA+ proteins) and a tetramerization domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA+ ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA+ proteins.
Collapse
Affiliation(s)
- Asher N. Page
- From the Department of Biochemistry, University of Wisconsin and
| | - Nicholas P. George
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Aimee H. Marceau
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Michael M. Cox
- From the Department of Biochemistry, University of Wisconsin and
| | - James L. Keck
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
171
|
Dueber EC, Costa A, Corn JE, Bell SD, Berger JM. Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 2011; 39:3621-31. [PMID: 21227921 PMCID: PMC3089459 DOI: 10.1093/nar/gkq1308] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA+) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA+ domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA+ domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites.
Collapse
Affiliation(s)
- Erin C Dueber
- Department of Molecular Biology, 374D Stanley Hall #3220, University of California at Berkeley, Berkeley, CA, 94707, USA
| | | | | | | | | |
Collapse
|
172
|
Boeneman K, Fossum S, Yang Y, Fingland N, Skarstad K, Crooke E. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments. Mol Microbiol 2010; 72:645-57. [PMID: 19400775 DOI: 10.1111/j.1365-2958.2009.06674.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.
Collapse
Affiliation(s)
- Kelly Boeneman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 200007, USA
| | | | | | | | | | | |
Collapse
|
173
|
Leonard AC, Grimwade JE. Regulating DnaA complex assembly: it is time to fill the gaps. Curr Opin Microbiol 2010; 13:766-72. [PMID: 21035377 DOI: 10.1016/j.mib.2010.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/27/2010] [Accepted: 10/02/2010] [Indexed: 11/25/2022]
Abstract
New rounds of bacterial chromosome replication are triggered during each cell division cycle by the initiator protein, DnaA. For precise timing, interactions of DnaA-ATP monomers with the replication origin, oriC, must be carefully regulated during formation of complexes that unwind origin DNA and load replicative helicase. Recent studies in Escherichia coli suggest that high and low affinity DnaA recognition sites are positioned within oriC to direct staged assembly of bacterial pre-replication complexes, with DnaA contacting low affinity sites as it oligomerizes to 'fill the gaps' between high affinity sites. The wide variability of oriC DnaA recognition site patterns seen in nature may reflect myriad gap-filling strategies needed to couple oriC function to the lifestyle of different bacterial types.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, 234 Olin Life Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA.
| | | |
Collapse
|
174
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
175
|
Álamo MMD, Sánchez-Gorostiaga A, Serrano AM, Prieto A, Cuéllar J, Martín-Benito J, Valpuesta JM, Giraldo R. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p. J Mol Biol 2010; 403:24-39. [PMID: 20732327 DOI: 10.1016/j.jmb.2010.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 12/11/2022]
Abstract
Hsp70 chaperones, besides their role in assisting protein folding, are key modulators of protein disaggregation, being consistently found as components of most macromolecular assemblies isolated in proteome-wide affinity purifications. A wealth of structural information has been recently acquired on Hsp70s complexed with Hsp40 and NEF co-factors and with small hydrophobic target peptides. However, knowledge of how Hsp70s recognize large protein substrates is still limited. Earlier, we reported that homologue Hsp70 chaperones (DnaK in Escherichia coli and Ssa1-4p/Ssb1-2p in Saccharomyces cerevisiae) bind strongly, both in vitro and in vivo, to the AAA+ domain in the Orc4p subunit of yeast origin recognition complex (ORC). ScORC is the paradigm for eukaryotic DNA replication initiators and consists of six distinct protein subunits (ScOrc1p-ScOrc 6p). Here, we report that a hydrophobic sequence (IL(4)) in the initiator specific motif (ISM) in Orc4p is the main target for DnaK/Hsp70. The three-dimensional electron microscopy reconstruction of a stable Orc4p(2)-DnaK complex suggests that the C-terminal substrate-binding domain in the chaperone clamps the AAA+ IL(4) motif in one Orc4p molecule, with the substrate-binding domain lid subdomain wedging apart the other Orc4p subunit. Pairwise co-expression in E. coli shows that Orc4p interacts with Orc1/2/5p. Mutation of IL(4) selectively disrupts Orc4p interaction with Orc2p. Allelic substitution of ORC4 by mutants in each residue of IL(4) results in lethal (I184A) or thermosensitive (L185A and L186A) initiation-defective phenotypes in vivo. The interplay between Hsp70 chaperones and the Orc4p-IL(4) motif might have an adaptor role in the sequential, stoichiometric assembly of ScORC subunits.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Ana M Serrano
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Prieto
- Department of Environmental Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Jorge Cuéllar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - José M Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Rafael Giraldo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
176
|
Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli. J Bacteriol 2010; 192:5181-91. [PMID: 20693326 DOI: 10.1128/jb.00522-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal transduction ATPases with numerous domains (STAND) are sophisticated signaling proteins that are related to AAA+ proteins and control various biological processes, including apoptosis, gene expression, and innate immunity. They function as tightly regulated switches, with the off and on positions corresponding to an ADP-bound, monomeric form and an ATP-bound, multimeric form, respectively. Protein activation is triggered by inducer binding to the sensor domain. ATP hydrolysis by the nucleotide-binding oligomerization domain (NOD) ensures the generation of the ADP-bound form. Here, we use MalT, an Escherichia coli transcription activator, as a model system to identify STAND conserved motifs involved in ATP hydrolysis besides the catalytic acidic residue. Alanine substitution of the conserved polar residue (H131) that is located two residues downstream from the catalytic residue (D129) blocks ATP hydrolysis and traps MalT in an active, ATP-bound, multimeric form. This polar residue is also conserved in AAA+. Based on AAA+ X-ray structures, we proposed that it is responsible for the proper positioning of the catalytic and the sensor I residues for the hydrolytic attack. Alanine substitution of the putative STAND sensor I (R160) abolished MalT activity. Substitutions of R171 impaired both ATP hydrolysis and multimerization, which is consistent with an arginine finger function and provides further evidence that ATP hydrolysis is primarily catalyzed by MalT multimers.
Collapse
|
177
|
Rampakakis E, Gkogkas C, Di Paola D, Zannis-Hadjopoulos M. Replication initiation and DNA topology: The twisted life of the origin. J Cell Biochem 2010; 110:35-43. [PMID: 20213762 DOI: 10.1002/jcb.22557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic propagation in both prokaryotes and eukaryotes is tightly regulated at the level of initiation, ensuring that the genome is accurately replicated and equally segregated to the daughter cells. Even though replication origins and the proteins that bind onto them (initiator proteins) have diverged throughout the course of evolution, the mechanism of initiation has been conserved, consisting of origin recognition, multi-protein complex assembly, helicase activation and loading of the replicative machinery. Recruitment of the multiprotein initiation complexes onto the replication origins is constrained by the dense packing of the DNA within the nucleus and unusual structures such as knots and supercoils. In this review, we focus on the DNA topological barriers that the multi-protein complexes have to overcome in order to access the replication origins and how the topological state of the origins changes during origin firing. Recent advances in the available methodologies to study DNA topology and their clinical significance are also discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Goodman Cancer Centre, Department of Biochemistry, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
178
|
Duderstadt KE, Mott ML, Crisona NJ, Chuang K, Yang H, Berger JM. Origin remodeling and opening in bacteria rely on distinct assembly states of the DnaA initiator. J Biol Chem 2010; 285:28229-39. [PMID: 20595381 DOI: 10.1074/jbc.m110.147975] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-assemble and engage single-stranded DNA in an ATP-dependent manner. Intersubunit cross-talk between this domain and the DnaA ATPase region regulates this link and is required for both origin unwinding in vitro and initiator function in vivo. These findings indicate that DnaA utilizes at least two different oligomeric conformations for engaging single- and double-stranded DNA, and that these states play distinct roles in controlling the progression of initiation.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
179
|
Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation. J Bacteriol 2010; 192:3903-14. [PMID: 20511501 DOI: 10.1128/jb.00311-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCI(Vc)). Replication from oriCI(Vc) initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCI(Vc) were similar. Since Hda is involved in the conversion of DnaA(ATP) (DnaA bound to ATP) to DnaA(ADP) (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCI(Vc) allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCI(Vc). We show that when E. coli's origin of replication is substituted by oriCI(Vc), dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCI(Vc) in E. coli. In this model, methylation at oriCI(Vc) would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.
Collapse
|
180
|
Olliver A, Saggioro C, Herrick J, Sclavi B. DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol Microbiol 2010; 76:1555-71. [PMID: 20487274 DOI: 10.1111/j.1365-2958.2010.07185.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) is the bottleneck enzyme in the synthesis of dNTPs required for DNA replication. In order to avoid the mutagenic effects of imbalances in dNTPs the amount and activity of RNR enzyme in the cell is tightly regulated. RNR expression from the nrdAB operon is thus coupled to coincide with the initiation of DNA replication. However, the mechanism for the co-ordination of gene transcription and DNA replication remains to be elucidated. The timing and synchrony of DNA replication initiation in Escherichia coli is controlled in part by the binding of the DnaA protein to the origin of replication. DnaA is also a transcription factor of the nrdAB operon and could thus be the link between these two processes. Here we show that RNA polymerase can form a stable transcription initiation complex at the nrdAB promoter by direct interaction with the far upstream sites required for the timing of expression as a function of DNA replication. In addition, we show that the binding of DnaA on the promoter can either activate or repress transcription as a function of its concentration and its nucleotide-bound state. However, transcription regulation by DnaA does not significantly affect the timing of expression of RNR from the nrdAB operon.
Collapse
Affiliation(s)
- Anne Olliver
- LBPA, UMR 8113 du CNRS, ENS Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | |
Collapse
|
181
|
Kawakami H, Katayama T. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 2010; 88:49-62. [PMID: 20130679 DOI: 10.1139/o09-154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To initiate chromosomal DNA replication, specific proteins bind to the replication origin region and form multimeric and dynamic complexes. Bacterial DnaA, the eukaryotic origin recognition complex (ORC), and Cdc6 proteins, most of which include an AAA+(-like) motif, play crucial roles in replication initiation. The importance of ATP binding and hydrolysis in these proteins has recently become recognized. ATP binding of Escherichia coli DnaA is required for the formation of the activated form of a DnaA multimer on the replication origin. The ATP-DnaA multimer can unwind duplex DNA in an origin-dependent manner, which is supported by various specific functions of several AAA+ motifs. DnaA-ATP hydrolysis is stimulated after initiation, repressing extra initiations, and sustaining once-per-cell cycle replication. ATP binding of ORC and Cdc6 in Saccharomyces cerevisiae is required for heteromultimeric complex formation and specific DNA binding. ATP hydrolysis of these proteins is important for the efficient loading of the minichromosome maintenance protein complex, a component of the putative replicative helicase. In this review, we discuss the roles of DnaA, ORC, and Cdc6 in replication initiation and its regulation. We also summarize the functional features of the AAA+ domains of these proteins, and the functional divergence of ORC in chromosomal dynamics.
Collapse
Affiliation(s)
- Hironori Kawakami
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
182
|
Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163-70. [PMID: 20157337 DOI: 10.1038/nrmicro2314] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
183
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
184
|
Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, Hwang E, Ryu KS, Cheong HK, Cheong C, Ko JS, Enomoto T, Karplus PA, Güntert P, Tada S, Jeon YH, Cho Y. Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci 2010; 18:2252-64. [PMID: 19722278 DOI: 10.1002/pro.236] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In eukaryotic replication licensing, Cdt1 plays a key role by recruiting the MCM2-7 complex onto the origin of chromosome. The C-terminal domain of mouse Cdt1 (mCdt1C), the most conserved region in Cdt1, is essential for licensing and directly interacts with the MCM2-7 complex. We have determined the structures of mCdt1CS (mCdt1C_small; residues 452 to 557) and mCdt1CL (mCdt1C_large; residues 420 to 557) using X-ray crystallography and solution NMR spectroscopy, respectively. While the N-terminal 31 residues of mCdt1CL form a flexible loop with a short helix near the middle, the rest of mCdt1C folds into a winged helix structure. Together with the middle domain of mouse Cdt1 (mCdt1M, residues 172-368), this study reveals that Cdt1 is formed with a tandem repeat of the winged helix domain. The winged helix fold is also conserved in other licensing factors including archaeal ORC and Cdc6, which supports an idea that these replication initiators may have evolved from a common ancestor. Based on the structure of mCdt1C, in conjunction with the biochemical analysis, we propose a binding site for the MCM complex within the mCdt1C.
Collapse
Affiliation(s)
- Bulat I Khayrutdinov
- The Magnetic Resonance Team, Korea Basic Science Institute, 804-1 Yangchung-Ri, Ochang, Chungbuk 363-883, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Nakamura K, Katayama T. Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs. Mol Microbiol 2010; 76:302-17. [PMID: 20132442 DOI: 10.1111/j.1365-2958.2010.07074.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli ATP-DnaA initiates chromosomal replication. For preventing extra-initiations, a complex of ADP-Hda and the DNA-loaded replicase clamp promotes DnaA-ATP hydrolysis, yielding inactive ADP-DnaA. However, the Hda-DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg-153) and DnaA sensor II Arg-334 within each AAA(+) domain are crucial for the DnaA-ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP-Hda with DnaA requires the Hda residues Ser-152, Phe-118 and Asn-122 as well as Hda Arg-153 and DnaA Arg-334. Structural analyses suggest intermolecular interactions between Hda Ser-152 and DnaA Arg-334 and between Hda Phe-118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn-122 and Arg-153. These interactions likely sustain a specific association of ADP-Hda and DnaA, promoting DnaA-ATP hydrolysis. Consistently, ATP-DnaA and ADP-DnaA interact with the ADP-Hda-DNA-clamp complex with similar affinities. Hda Phe-118 and Asn-122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA(+) proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda-DnaA as well as a potentially fundamental mechanism in AAA(+) protein interactions.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
186
|
Terradot L, Zawilak-Pawlik A. Structural insight into Helicobacter pylori DNA replication initiation. Gut Microbes 2010; 1:330-334. [PMID: 21327042 PMCID: PMC3023618 DOI: 10.4161/gmic.1.5.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 02/03/2023] Open
Abstract
While increasing knowledge is accumulating about the molecular mechanisms allowing the human pathogen Helicobacter pylori to survive and to subvert host defenses, much less is known about fundamental aspects of its biology, including DNA replication. We have studied the initiation step of chromosome replication of H. pylori and particularly the interaction between the initiator protein DnaA and its recently identified regulator HobA. This work has recently culminated in the determination of the crystal structure of the domains I and II of DnaA (DnaA(I-II)) in complex with HobA. By combining the structure with a variety of biochemical experiments we show that a tetramer of HobA can accommodate up to four DnaA molecules organized in a particular conformation within the complex. Mutations of the HobA interface that impaired the binding with DnaA were designed and proved to be lethal once introduced into H. pylori. These features suggest that HobA provides a molecular scaffold onto which regular oligomers of DnaA can assemble. The HobA-promoted oligomerization of DnaA could have a determinant role in the formation of the open complex. We propose a speculative model of HobA-dependent DnaA oligomerization leading to DNA unwinding. More generally, the parallel we draw with Escherichia coli DnaA and DiaA (HobA-like E. coli protein) will direct new studies that will contribute to the understanding of bacterial DNA replication.
Collapse
Affiliation(s)
- Laurent Terradot
- Macromolecular Crystallography Group ESRF; Grenoble Cedex, France,Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS Université de Lyon; IFR128; Biologie Structurale des Complexes Macromoléculaires Bactériens; Lyon, France
| | - Anna Zawilak-Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Microbiology Department; Wroclaw, Poland
| |
Collapse
|
187
|
The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria. Proc Natl Acad Sci U S A 2009; 106:21115-20. [PMID: 19940251 DOI: 10.1073/pnas.0908966106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA replication requires DnaA, an AAA+ ATPase that initiates replication at a specific chromosome region, oriC, and is regulated by species-specific regulators that directly bind DnaA. HobA is a DnaA binding protein, recently identified as an essential regulator of DNA replication in Helicobacter pylori. We report the crystal structure of HobA in complex with domains I and II of DnaA (DnaA(I-II)) from H. pylori, the first structure of DnaA bound to one of its regulators. Biochemical characterization of the complex formed shows that a tetramer of HobA binds four DnaA(I-II) molecules, and that DnaA(I-II) is unable to oligomerize by itself. Mutagenesis and protein-protein interaction studies demonstrate that some of the residues located at the HobA-DnaA(I-II) interface in the structure are necessary for complex formation. Introduction of selected mutations into H. pylori shows that the disruption of the interaction between HobA and DnaA is lethal for the bacteria. Remarkably, the DnaA binding site of HobA is conserved in DiaA from Escherichia coli, suggesting that the structure of the HobA/DnaA complex represents a model for DnaA regulation in other Gram-negative bacteria. Our data, together with those from other studies, indicate that HobA could play a crucial scaffolding role during the initiation of replication in H. pylori by organizing the first step of DnaA oligomerization and attachment to oriC.
Collapse
|
188
|
Kurokawa K, Mizumura H, Takaki T, Ishii Y, Ichihashi N, Lee BL, Sekimizu K. Rapid exchange of bound ADP on the Staphylococcus aureus replication initiation protein DnaA. J Biol Chem 2009; 284:34201-10. [PMID: 19841480 DOI: 10.1074/jbc.m109.060681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but not ADP by a mechanism independent of ATP hydrolysis. Unlike E. coli DnaA, binding of ADP to S. aureus DnaA was unstable. As a result, at physiological concentrations of ATP, ADP bound to S. aureus DnaA was rapidly exchanged for ATP, thereby regenerating the ability of DnaA to form the open complex in vitro. Therefore, we examined whether formation of ADP-DnaA participates in suppression of replication initiation in vivo. Induction of the R318H mutant of the AAA+ sensor 2 protein, which has decreased intrinsic ATPase activity, caused over-initiation of chromosome replication in S. aureus, suggesting that formation of ADP-DnaA suppresses the initiation step in S. aureus. Together with the biochemical features of S. aureus DnaA, the weak ability to convert ATP-DnaA into ADP-DnaA and the instability of ADP-DnaA, these results suggest that there may be unidentified system(s) for reducing the cellular ratio of ATP-DnaA to ADP-DnaA in S. aureus and thereby delaying the re-initiation of DNA replication.
Collapse
Affiliation(s)
- Kenji Kurokawa
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
189
|
Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures. Proc Natl Acad Sci U S A 2009; 106:18479-84. [PMID: 19833870 DOI: 10.1073/pnas.0909472106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eukaryotic initiator proteins form origin recognition complexes (ORCs) that bind to replication origins during most of the cell cycle and direct assembly of prereplication complexes (pre-RCs) before the onset of S phase. In the eubacterium Escherichia coli, there is a temporally similar nucleoprotein complex comprising the initiator protein DnaA bound to three high-affinity recognition sites in the unique origin of replication, oriC. At the time of initiation, this high-affinity DnaA-oriC complex (the bacterial ORC) accumulates additional DnaA that interacts with lower-affinity sites in oriC, forming a pre-RC. In this paper, we investigate the functional role of the bacterial ORC and examine whether it mediates low-affinity DnaA-oriC interactions during pre-RC assembly. We report that E. coli ORC is essential for DnaA occupation of low-affinity sites. The assistance given by ORC is directed primarily to proximal weak sites and requires oligomerization-proficient DnaA. We propose that in bacteria, DnaA oligomers of limited length and stability emerge from single high-affinity sites and extend toward weak sites to facilitate their loading as a key stage of prokaryotic pre-RC assembly.
Collapse
|
190
|
Abstract
The eukaryotic MCM2-7 complex is recruited onto origins of replication during the G1 phase of the cell cycle and acts as the main helicase at the replication fork during the S phase. Over the last few years a number of structural reports on MCM proteins using both electron microscopy and protein crystallography have been published. The crystal structures of two (almost) full-length archaeal homologs provide the first atomic pictures of a MCM helicase. However one of the structures is at low resolution and the other is of an inactive MCM. Moreover, both proteins are monomeric in the crystal, whereas the activity of the complex is critically dependent on oligomerization. Lower resolution structures derived from electron microscopy studies are therefore crucial to complement the crystallographic analysis and to assemble the multimeric complex that is active in the cell. A critical analysis of all the structural results elucidates the potential conformational changes and dynamic behavior of MCM helicase to provide a first insight into the gamut of molecular configurations adopted during the processes of DNA melting and unwinding.
Collapse
|
191
|
Matsunaga F, Takemura K, Akita M, Adachi A, Yamagami T, Ishino Y. Localized melting of duplex DNA by Cdc6/Orc1 at the DNA replication origin in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2009; 14:21-31. [PMID: 19787415 DOI: 10.1007/s00792-009-0284-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The initiation step is a key process to regulate the frequency of DNA replication. Although recent studies in Archaea defined the origin of DNA replication (oriC) and the Cdc6/Orc1 homolog as an origin recognition protein, the location and mechanism of duplex opening have remained unclear. We have found that Cdc6/Orc1 binds to oriC and unwinds duplex DNA in the hyperthermophilic archaeon Pyrococcus furiosus, by means of a P1 endonuclease assay. A primer extension analysis further revealed that this localized unwinding occurs in the oriC region at a specific site, which is 12-bp long and rich in adenine and thymine. This site is different from the predicted duplex unwinding element (DUE) that we reported previously. We also discovered that Cdc6/Orc1 induces topological changes in supercoiled oriC DNA, and that this process is dependent on the AAA+ domain. These results indicate that topological alterations of oriC DNA by Cdc6/Orc1 introduce a single-stranded region at the 12-mer site, that could possibly serve as an entry point for Mcm helicase.
Collapse
Affiliation(s)
- Fujihiko Matsunaga
- Department of Genetic Resources Technology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
192
|
Remus D, Diffley JFX. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 2009; 21:771-7. [PMID: 19767190 DOI: 10.1016/j.ceb.2009.08.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
The initiation of chromosomal DNA replication involves initiator proteins that recruit and load hexameric DNA helicases at replication origins. This helicase loading step is tightly regulated in bacteria and eukaryotes. In contrast to the situation in bacteria, the eukaryotic helicase is loaded in an inactive form. This extra 'lock and load' mechanism in eukaryotes allows regulation of a second step, helicase activation. The temporal separation of helicase loading and activation is crucial for the coordination of DNA replication with cell growth and extracellular signals, the prevention of re-replication and the control of origin activity in response to replication stress. Initiator proteins in bacteria and eukaryotes are structurally homologous; yet the replicative helicases they load are unrelated. Understanding how these helicases are loaded and how they act during unwinding may have important implications for understanding how DNA replication is regulated in different domains of life.
Collapse
Affiliation(s)
- Dirk Remus
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
193
|
Sanchez M, Drechsler M, Stark H, Lipps G. DNA translocation activity of the multifunctional replication protein ORF904 from the archaeal plasmid pRN1. Nucleic Acids Res 2009; 37:6831-48. [PMID: 19762479 PMCID: PMC2777425 DOI: 10.1093/nar/gkp742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.
Collapse
Affiliation(s)
- Martin Sanchez
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Switzerland
| | | | | | | |
Collapse
|
194
|
Tsai KL, Lo YH, Sun YJ, Hsiao CD. Molecular interplay between the replicative helicase DnaC and its loader protein DnaI from Geobacillus kaustophilus. J Mol Biol 2009; 393:1056-69. [PMID: 19744498 DOI: 10.1016/j.jmb.2009.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Helicase loading factors are thought to transfer the hexameric ring-shaped helicases onto the replication fork during DNA replication. However, the mechanism of helicase transfer onto DNA remains unclear. In Bacillus subtilis, the protein DnaI, which belongs to the AAA+ family of ATPases, is responsible for delivering the hexameric helicase DnaC onto DNA. Here we investigated the interaction between DnaC and DnaI from Geobacillus kaustophilus HTA426 (GkDnaC and GkDnaI, respectively) and determined that GkDnaI forms a stable complex with GkDnaC with an apparent stoichiometry of GkDnaC(6)-GkDnaI(6) in the absence of ATP. Surface plasmon resonance analysis indicated that GkDnaI facilitates loading of GkDnaC onto single-stranded DNA (ssDNA) and supports complex formation with ssDNA in the presence of ATP. Additionally, the GkDnaI C-terminal AAA+ domain alone could bind ssDNA, and binding was modulated by nucleotides. We also determined the crystal structure of the C-terminal AAA+ domain of GkDnaI in complex with ADP at 2.5 A resolution. The structure not only delineates the binding of ADP in the expected Walker A and B motifs but also reveals a positively charged region that may be involved in ssDNA binding. These findings provide insight into the mechanism of replicative helicase loading onto ssDNA.
Collapse
Affiliation(s)
- Kuang-Lei Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, ROC
| | | | | | | |
Collapse
|
195
|
Keyamura K, Abe Y, Higashi M, Ueda T, Katayama T. DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading. J Biol Chem 2009; 284:25038-50. [PMID: 19632993 DOI: 10.1074/jbc.m109.002717] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal replication initiation requires the regulated formation of dynamic higher order complexes. Escherichia coli ATP-DnaA forms a specific multimer on oriC, resulting in DNA unwinding and DnaB helicase loading. DiaA, a DnaA-binding protein, directly stimulates the formation of ATP-DnaA multimers on oriC and ensures timely replication initiation. In this study, DnaA Phe-46 was identified as the crucial DiaA-binding site required for DiaA-stimulated ATP-DnaA assembly on oriC. Moreover, we show that DiaA stimulation requires only a subgroup of DnaA molecules binding to oriC, that DnaA Phe-46 is also important in the loading of DnaB helicase onto the oriC-DnaA complexes, and that this process also requires only a subgroup of DnaA molecules. Despite the use of only a DnaA subgroup, DiaA inhibited DnaB loading on oriC-DnaA complexes, suggesting that DiaA and DnaB bind to a common DnaA subgroup. A cellular factor can relieve the DiaA inhibition, allowing DnaB loading. Consistently, DnaA F46A caused retarded initiations in vivo in a DiaA-independent manner. It is therefore likely that DiaA dynamics are crucial in the regulated sequential progress of DnaA assembly and DnaB loading. We accordingly propose a model for dynamic structural changes of initial oriC complexes loading DiaA or DnaB helicase.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
196
|
Evidence that the AAA+ proteins TIP48 and TIP49 bridge interactions between 15.5K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol Cell Biol 2009; 29:4971-81. [PMID: 19620283 DOI: 10.1128/mcb.00752-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The box C/D small nucleolar RNPs (snoRNPs) are essential for the processing and modification of rRNA. TIP48 and TIP49 are two related AAA(+) proteins that are essential for the formation of box C/D snoRNPs. These proteins are key components of the pre-snoRNP complexes, but their exact role in box C/D snoRNP biogenesis is largely uncharacterized. Here we report that TIP48 and TIP49 interact with one another in vitro, and only the TIP48/TIP49 complex, but not the individual proteins, possesses significant ATPase activity. Loss of TIP48 and TIP49 results in a change in pre-snoRNA levels and a loss of U3 snoRNA signal in the Cajal body. We show that TIP48 and TIP49 make multiple interactions with core snoRNP proteins and biogenesis factors and that these interactions are often regulated by the presence of ATP. Furthermore, we demonstrate that TIP48 and TIP49 efficiently bridge interactions between the core box C/D proteins NOP56 or NOP58 and 15.5K. Our data imply that the snoRNP assembly factor NUFIP can regulate the interactions between TIP48 and TIP49 and the core box C/D proteins. We suggest that snoRNP assembly involves an intricate series of interactions that are mediated/regulated by bridging factors and chaperones.
Collapse
|
197
|
Abstract
The initiation of replication in bacteria is regulated via the initiator protein DnaA. ATP-bound DnaA binds to multiple sequences at the origin of replication, oriC, unwinding the DNA and promoting the binding of DnaB helicase. From an Escherichia coli mutant highly perturbed for replication control, obgE::Tn5-EZ seqADelta, we isolated multiple spontaneous suppressor mutants with enhanced growth and viability. These suppressors suppressed the replication control defects of mutants in seqA alone and genetically mapped to the essential dnaA replication initiator gene. DNA sequence analysis of four independent isolates revealed an identical deletion of the DnaA-coding region at a repeated hexanucleotide sequence, causing a loss of 25 amino acids in domain II of the DnaA protein. Previous work has established no function for this region of protein, and deletions in the region, unlike other domains of the DnaA protein, do not produce lethality. Flow cytometric analysis established that this allele, dnaADelta(96-120), ameliorated the over-replication phenotype of seqA mutants and reduced the DNA content of wild-type strains; virtually identical effects were produced by loss of the DnaA-positive regulatory protein DiaA. DiaA binds to multiple DnaA subunits and is thought to promote cooperative DnaA binding to weak affinity DNA sites through interactions with DnaA in domains I and/or II. The dnaADelta(96-120) mutation did not affect DiaA binding in pull-down assays, and we propose that domain II, like DiaA, is required to promote optimal DnaB recruitment to oriC.
Collapse
|
198
|
Ozaki S, Katayama T. DnaA structure, function, and dynamics in the initiation at the chromosomal origin. Plasmid 2009; 62:71-82. [PMID: 19527752 DOI: 10.1016/j.plasmid.2009.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 01/13/2023]
Abstract
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
199
|
Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J Bacteriol 2009; 191:4807-14. [PMID: 19502409 DOI: 10.1128/jb.00435-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DnaA is a replication initiator protein that is conserved among bacteria. It plays a central role in the initiation of DNA replication. In order to monitor its behavior in living Escherichia coli cells, a nonessential portion of the protein was replaced by a fluorescent protein. Such a strain grew normally, and flow cytometry data suggested that the chimeric protein has no substantial loss of the initiator activity. The initiator was distributed all over the nucleoid. Furthermore, a majority of the cells exhibited certain distinct foci that emitted bright fluorescence. These foci colocalized with the replication origin (oriC) region and were brightest during the period spanning the initiation event. In cells that had undergone the initiation, the foci were enriched in less intense ones. In addition, a significant portion of the oriC regions at this cell cycle stage had no colocalized DnaA-enhanced yellow fluorescent protein (EYFP) focus point. It was difficult to distinguish the initiator titration locus (datA) from the oriC region. However, involvement of datA in the initiation control was suggested from the observation that, in DeltadatA cells, DnaA-EYFP maximally colocalized with the oriC region earlier in the cell cycle than it did in wild-type cells and oriC concentration was increased.
Collapse
|
200
|
Leonard AC, Grimwade JE. Initiating chromosome replication in E. coli: it makes sense to recycle. Genes Dev 2009; 23:1145-50. [PMID: 19451214 DOI: 10.1101/gad.1809909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Initiating new rounds of Escherichia coli chromosome replication requires DnaA-ATP to unwind the replication origin, oriC, and load DNA helicase. In this issue of Genes & Development, Fujimitsu and colleagues (pp. 1221-1233) demonstrate that two chromosomal sites, termed DARS (DnaA-reactivating sequences), recycle inactive DnaA-ADP into DnaA-ATP. Fujimitsu and colleagues propose these sites are necessary to attain the DnaA-ATP threshold during normal growth and are important regulators of initiation timing in bacteria.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | | |
Collapse
|