151
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res 2020; 163:105276. [PMID: 33161137 DOI: 10.1016/j.phrs.2020.105276] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
The antibiotic resistance crisis is becoming incredibly thorny due to the indiscriminate employment of antibiotics in agriculture and aquaculture, such as growth promoters, and the emergence of bacteria that are capable of enduring antibiotic treatment in an endless stream. Hence, to reverse this situation, vigorous efforts should be made in the process of identifying other alternative strategies with a lower frequency of resistance. Antimicrobial peptides (AMPs), originated from host defense peptides, are generally produced by a variety of organisms as defensive weapons to protect the host from other pathogenic bacteria. The unique ability of AMPs to control bacterial infections, as well as low propensity to acquire resistance, provides the basis for it to become one of the promising antibacterial substances. Herein, we present new insights into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants. Besides, we separately discuss natural and synthetic AMPs, including their source, screening pathway and antibacterial activity. Lastly, challenges and perspectives to identify novel potent AMPs are highlighted, which will expand our understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMPs.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
152
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
153
|
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 2020; 41:94-120. [PMID: 33070659 DOI: 10.1080/07388551.2020.1828810] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rosa Chabok
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microsystems Technologies Laboratories, MIT, Cambridge, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, México
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - K Scott Phillips
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
154
|
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020; 11:582779. [PMID: 33178164 PMCID: PMC7596191 DOI: 10.3389/fmicb.2020.582779] [Citation(s) in RCA: 780] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
Collapse
Affiliation(s)
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
155
|
Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proc Natl Acad Sci U S A 2020; 117:26936-26945. [PMID: 33046640 DOI: 10.1073/pnas.2012379117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.
Collapse
|
156
|
Grafskaia E, Pavlova E, Babenko VV, Latsis I, Malakhova M, Lavrenova V, Bashkirov P, Belousov D, Klinov D, Lazarev V. The Hirudo Medicinalis Microbiome Is a Source of New Antimicrobial Peptides. Int J Mol Sci 2020; 21:E7141. [PMID: 32992666 PMCID: PMC7582656 DOI: 10.3390/ijms21197141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered a promising new class of anti-infectious agents. This study reports new antimicrobial peptides derived from the Hirudo medicinalis microbiome identified by a computational analysis method applied to the H. medicinalis metagenome. The identified AMPs possess a strong antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC range: 5.3 to 22.4 μM), including Staphylococcus haemolyticus, an opportunistic coagulase-negative pathogen. The secondary structure analysis of peptides via CD spectroscopy showed that all the AMPs except pept_352 have mostly disordered structures that do not change under different conditions. For peptide pept_352, the α-helical content increases in the membrane environment. The examination of the mechanism of action of peptides suggests that peptide pept_352 exhibits a direct membranolytic activity. Furthermore, the cytotoxicity assay demonstrated that the nontoxic peptide pept_1545 is a promising candidate for drug development. Overall, the analysis method implemented in the study may serve as an effective tool for the identification of new AMPs.
Collapse
Affiliation(s)
- Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Elizaveta Pavlova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| | - Vladislav V. Babenko
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Maja Malakhova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Victoria Lavrenova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Department of biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Pavel Bashkirov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Dmitrii Belousov
- Sechenov First Moscow State Medical University Sechenov University, Moscow 119991, Russia;
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
157
|
Wubulikasimu A, Huang Y, Wali A, Yili A, Rong M. A designed antifungal peptide with therapeutic potential for clinical drug-resistant Candida albicans. Biochem Biophys Res Commun 2020; 533:404-409. [PMID: 32972753 DOI: 10.1016/j.bbrc.2020.08.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
Due to the increasing drug-resistant of Candida albicans (C. albicans), there is an urgent need to develop a novel therapeutic agent for C. albicans induced inflammatory disease treatment. Antimicrobial peptides (AMPs) are regarded as one of the most promising antifungal drugs. However, most of the designed AMPs showed side-effects. In the present study, 10 novel peptides were designed based on the sequence of frog skin secretions peptide (Ranacyclin AJ). Among them, AKK8 (RWRFKWWKK) exhibited the strongest antifungal effect against both standard and clinically isolated drug-resistant C. albicans. AKK8 killed C. albicans (within 30 min), and the antifungal effect lasted for 24 h, showed an efficient and long lasted antifungal effect against C. albicans. Notably, AKK8 showed low toxicity to human red blood cells and high stability in human serum. Moreover, AKK8 administration showed therapeutic effects on systemic infections mice induced by the clinical drug-resistant C. albicans, in a dose-depended manner. These findings suggested that AKK8 may be a potential candidate for the anti-inflammation treatments for diseases caused by clinical drug-resistant C. albicans.
Collapse
Affiliation(s)
- Atikan Wubulikasimu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanting Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Ahmidin Wali
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Abulimiti Yili
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi, 830011, China; State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 830011, Urumqi, China.
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China.
| |
Collapse
|
158
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
159
|
Praveena V, Venkatalakshmi S, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M. Identification of a novel antibacterial protein from hemolymph of freshwater zooplankton Mesocyclops leuckarti. Saudi J Biol Sci 2020; 27:2390-2397. [PMID: 32884421 PMCID: PMC7451751 DOI: 10.1016/j.sjbs.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 05/03/2020] [Indexed: 10/25/2022] Open
Abstract
Bacterial infections are the most important problem of health care worldwide. The hemolymph antibacterial proteins of Mesocyclops leuckarti was isolated for the first time and its antibacterial efficacy was evaluated against four different human pathogenic microbes viz., Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia and Shigella flexneri. The antibacterial potential of the antimicrobial proteins of hemolymph samples from plankton cultured in water enriched with Cow Urine Distillate (CUD) was compared with normal ones. The results indicated that the hemolymph proteins were more potential against Gram negative bacteria than Gram positive bacteria. Klebsiella pneumonia was more susceptible to the hemolymph proteins exhibiting a zone of inhibition measuring 27 mm. The supplement of CUD to the culture media further enriched the antibacterial activity of the hemolymph proteins (29 mm). The SDS-PAGE analysis indicated two different types of clear bands representing proteins of 53 kDa and 19 kDa. Overall, this investigation signified that the microcrustaceans have a defence mechanism hemolymph of Mesocyclops leuckarti have a potential agent for novel antibiotics.
Collapse
Affiliation(s)
- Varadhan Praveena
- Centre for Animal Studies, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Sournamanickam Venkatalakshmi
- Centre for Animal Studies, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.,Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
160
|
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, Pires CDJ, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights 2020; 14:1177932220952739. [PMID: 32952397 PMCID: PMC7476358 DOI: 10.1177/1177932220952739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Even before the perception or interaction with pathogens, plants rely on constitutively guardian molecules, often specific to tissue or stage, with further expression after contact with the pathogen. These guardians include small molecules as antimicrobial peptides (AMPs), generally cysteine-rich, functioning to prevent pathogen establishment. Some of these AMPs are shared among eukaryotes (eg, defensins and cyclotides), others are plant specific (eg, snakins), while some are specific to certain plant families (such as heveins). When compared with other organisms, plants tend to present a higher amount of AMP isoforms due to gene duplications or polyploidy, an occurrence possibly also associated with the sessile habit of plants, which prevents them from evading biotic and environmental stresses. Therefore, plants arise as a rich resource for new AMPs. As these molecules are difficult to retrieve from databases using simple sequence alignments, a description of their characteristics and in silico (bioinformatics) approaches used to retrieve them is provided, considering resources and databases available. The possibilities and applications based on tools versus database approaches are considerable and have been so far underestimated.
Collapse
Affiliation(s)
| | - Luisa Zupin
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Marx Oliveira-Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | - José Diogo Cavalcanti Ferreira
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.,Departamento de Genética, Instituto Federal de Pernambuco, Pesqueira, Brazil
| | | | | | | | | | - Ederson Akio Kido
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sergio Crovella
- Genetic Immunology laboratory, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
161
|
Torres MDT, Silva AF, Andrade GP, Pedron CN, Cerchiaro G, Ribeiro AO, Oliveira VX, de la Fuente‐Nunez C. The wasp venom antimicrobial peptide polybia-CP and its synthetic derivatives display antiplasmodial and anticancer properties. Bioeng Transl Med 2020; 5:e10167. [PMID: 33005737 PMCID: PMC7510464 DOI: 10.1002/btm2.10167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
The wasp venom-derived antimicrobial peptide polybia-CP has been previously shown to exhibit potent antimicrobial activity, but it is also highly toxic. Previously, using a physicochemical-guided peptide design strategy, we reversed its toxicity while preserving and even enhancing its antibacterial properties. Here, we report on several additional unanticipated biological properties of polybia-CP and derivatives, namely their ability to target Plasmodium sporozoites and cancer cells. We leverage a physicochemical-guided approach to identify features that operate as functional hotspots making these peptides viable antiplasmodial and anticancer agents. Helical content and net positive charge are identified as key structural and physicochemical determinants for antiplasmodial activity. In addition to helicity and net charge, hydrophobicity-related properties of polybia-CP and derivatives were found to be equally critical to target cancer cells. We demonstrate that by tuning these physicochemical parameters, it is possible to design synthetic peptides with enhanced submicromolar antiplasmodial potency and micromolar anticancer activity. This study reveals novel and previously undescribed functions for Polybia-CP and analogs. Additionally, we demonstrate that a physicochemical-guided rational design strategy can be used for identifying functional hotspots in peptide molecules and for tuning structure-function to generate novel and potent new-to-nature therapies.
Collapse
Affiliation(s)
- Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Adriana F. Silva
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
- Departamento de BioquímicaUniversidade Federal de São PauloSão PauloSPBrazil
| | - Gislaine P. Andrade
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
| | - Cibele N. Pedron
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
| | - Anderson O. Ribeiro
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
| | - Vani X. Oliveira
- Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréSPBrazil
- Departamento de BiofísicaUniversidade Federal de São PauloSão PauloSPBrazil
| | - Cesar de la Fuente‐Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
162
|
The Spectrum of Design Solutions for Improving the Activity-Selectivity Product of Peptide Antibiotics against Multidrug-Resistant Bacteria and Prostate Cancer PC-3 Cells. Molecules 2020; 25:molecules25153526. [PMID: 32752241 PMCID: PMC7436000 DOI: 10.3390/molecules25153526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
The link between the antimicrobial and anticancer activity of peptides has long been studied, and the number of peptides identified with both activities has recently increased considerably. In this work, we hypothesized that designed peptides with a wide spectrum of selective antimicrobial activity will also have anticancer activity, and tested this hypothesis with newly designed peptides. The spectrum of peptides, used as partial or full design templates, ranged from cell-penetrating peptides and putative bacteriocin to those from the simplest animals (placozoans) and the Chordata phylum (anurans). We applied custom computational tools to predict amino acid substitutions, conferring the increased product of bacteriostatic activity and selectivity. Experiments confirmed that better overall performance was achieved with respect to that of initial templates. Nine of our synthesized helical peptides had excellent bactericidal activity against both standard and multidrug-resistant bacteria. These peptides were then compared to a known anticancer peptide polybia-MP1, for their ability to kill prostate cancer cells and dermal primary fibroblasts. The therapeutic index was higher for seven of our peptides, and anticancer activity stronger for all of them. In conclusion, the peptides that we designed for selective antimicrobial activity also have promising potential for anticancer applications.
Collapse
|
163
|
Cai L, Cao M, Regenstein J. Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7453-7466. [PMID: 32559384 DOI: 10.1021/acs.jafc.0c00874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The resistance in microorganisms against many conventional antibiotics has become a serious global health problem. However, antibacterial drug delivery materials are still limited in toxicity, short efficacy and reducing inflammation. The novel and natural Pickering emulsions stabilized by antimicrobial peptide nanoparticles were tested as promising platforms to control bacterial resistance development. The parasin I interacted or conjugated with lecithin or chitosan and formed nanoparticles encapsulated by Pickering emulsion. The protonation and deprotonation of amino groups in chitosan and parasin I resulted in nanoparticles in different aggregate states and changed emulsion stability. Moreover, the Pickering emulsion could induce severe bacterial agglomeration on both Gram-positive and Gram-negative bacteria than parasin I through the membrane disintegration mechanism. Furthermore, the Pickering emulsion could alleviate the cytotoxicity of human liver cells and hemolytic activity in rat blood cells. In combination with the lack of acute cytotoxicity in Kunming mice and milder, more effective anti-inflammatory effect in peritonitis demonstrated for these Pickering emulsions, especially chitosan peptide-embedded nanoparticles Pickering emulsion, a potential role in combating multidrug resistant bacteria in biomedical applications.
Collapse
Affiliation(s)
- Luyun Cai
- College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315400, China
| | - Minjie Cao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Joe Regenstein
- Department of Food Science, Cornell University, Ithaca, New York 14853-7201, United States
| |
Collapse
|
164
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
165
|
Qutb AM, Wei F, Dong W. Prediction and Characterization of Cationic Arginine-Rich Plant Antimicrobial Peptide SM-985 From Teosinte ( Zea mays ssp. mexicana). Front Microbiol 2020; 11:1353. [PMID: 32636825 PMCID: PMC7318549 DOI: 10.3389/fmicb.2020.01353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are effective against different plant pathogens and newly considered as part of plant defense systems. From prokaryotes to eukaryotes, AMPs can exist in all forms of life. SM-985 is a cationic AMP (CAMP) isolated from the cDNA library of Mexican teosinte (Zea mays ssp. mexicana). A computational prediction server running with different algorithms was used to screen the teosinte cDNA library for AMPs, and the SM-985 peptide was predicted as an AMP with high probability prediction values. SM-985 is an arginine-rich peptide and composed of 21 amino acids (MW: 2671.06 Da). The physicochemical properties of SM-985 are very promising as an AMP, including the net charge (+8), hydrophobicity ratio of 23%, Boman index of 5.19 kcal/mol, and isoelectric point of 12.95. The SM-985 peptide has amphipathic α-helix conformations. The antimicrobial activity of SM-985 was confirmed against six bacterial plant pathogens, and the MIC of SM-985 against Gram-positive indicators was 8 μM, while the MIC of SM-985 against Gram-negative indicators was 4 μM. The SM-985 interacting with the bacterial membrane and this interaction were examined by treatment of the bacterial indicators with FITC-SM-985 peptide, which showed a high binding affinity of SM-985 to the bacterial membrane (whether Gram-positive or Gram-negative). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the treated bacteria with SM-985 demonstrated cell membrane damage and cell lysis. In vivo antimicrobial activity was examined, and SM-985 prevented leaf spot disease infection caused by Pst DC3000 on Solanum lycopersicum. Moreover, SM-985 showed sensitivity to calcium chloride salt, which is a common feature of CAMPs.
Collapse
Affiliation(s)
- Abdelrahman M. Qutb
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Feng Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
166
|
Li J, Fernández-Millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr Top Med Chem 2020; 20:1238-1263. [DOI: 10.2174/1568026620666200303122626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Background:Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.Methods:In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.Results and Conclusion:We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
167
|
Porto WF, Irazazabal LN, Humblot V, Haney EF, Ribeiro SM, Hancock REW, Ladram A, Franco OL. EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochim Biophys Acta Gen Subj 2020; 1864:129633. [PMID: 32416198 DOI: 10.1016/j.bbagen.2020.129633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm. METHODS Antimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure. RESULTS Signal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide. CONCLUSION The strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents. GENERAL SIGNIFICANCE The process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.
Collapse
Affiliation(s)
- William F Porto
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Luz N Irazazabal
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Vincent Humblot
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75252 Paris, France
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suzana M Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Octavio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Molecular Pathology Post-graduate Program, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
168
|
Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation. Appl Environ Microbiol 2020; 86:AEM.00367-20. [PMID: 32169940 DOI: 10.1128/aem.00367-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 11/20/2022] Open
Abstract
A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.
Collapse
|
169
|
Mayandi V, Wen Choong AC, Dhand C, Lim FP, Aung TT, Sriram H, Dwivedi N, Periayah MH, Sridhar S, Fazil MHUT, Goh ETL, Orive G, W Beuerman R, Barkham TMS, Loh XJ, Liang ZX, Barathi VA, Ramakrishna S, Chong SJ, Verma NK, Lakshminarayanan R. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15989-16005. [PMID: 32172559 DOI: 10.1021/acsami.9b21683] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial colonization of acute and chronic wounds is often associated with delayed wound healing and prolonged hospitalization. The rise of multi-drug resistant bacteria and the poor biocompatibility of topical antimicrobials warrant safe and effective antimicrobials. Antimicrobial agents that target microbial membranes without interfering with the mammalian cell proliferation and migration hold great promise in the treatment of traumatic wounds. This article reports the utility of superhydrophilic electrospun gelatin nanofiber dressings (NFDs) containing a broad-spectrum antimicrobial polymer, ε-polylysine (εPL), crosslinked by polydopamine (pDA) for treating second-degree burns. In a porcine model of partial thickness burns, NFDs promoted wound closure and reduced hypertrophic scarring compared to untreated burns. Analysis of NFDs in contact with the burns indicated that the dressings trap early colonizers and elicit bactericidal activity, thus creating a sterile wound bed for fibroblasts migration and re-epithelialization. In support of these observations, in porcine models of Pseudomonas aeruginosa and Staphylococcus aureus colonized partial thickness burns, NFDs decreased bacterial bioburden and promoted wound closure and re-epithelialization. NFDs displayed superior clinical outcome than standard-of-care silver dressings. The excellent biocompatibility and antimicrobial efficacy of the newly developed dressings in pre-clinical models demonstrate its potential for clinical use to manage infected wounds without compromising tissue regeneration.
Collapse
Affiliation(s)
- Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore
| | - Alvin Chua Wen Choong
- Department of Plastic Reconstructive & Aesthetic Surgery, Singapore General Hospital, 20 College Road, 169856 Singapore
- Skin Bank Unit, Singapore General Hospital, 169608 Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Fui Ping Lim
- Alice Lee Centre for Nursing Studies, National University of Singapore, 117597 Singapore
| | - Thet Tun Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 119077 Singapore
| | - Harini Sriram
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore
| | - Mercy Halleluyah Periayah
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Sreepathy Sridhar
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Mobashar Hussain Urf Turabe Fazil
- Lee Kong Chian School of Medicine, Clinical Sciences Building, Nanyang Technological University Singapore, 11 Mandalay Road, 308232 Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01006, Spain
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore
| | - Veluchamy Amutha Barathi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, 119077 Singapore
| | - Si Jack Chong
- Department of Plastic Reconstructive & Aesthetic Surgery, Singapore General Hospital, 20 College Road, 169856 Singapore
- Skin Bank Unit, Singapore General Hospital, 169608 Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Lee Kong Chian School of Medicine, Clinical Sciences Building, Nanyang Technological University Singapore, 11 Mandalay Road, 308232 Singapore
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232 Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
- Department of Pharmacy, National University of Singapore, 18 Science Drive, 117543 Singapore
| |
Collapse
|
170
|
Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proc Natl Acad Sci U S A 2020; 117:8437-8448. [PMID: 32241895 DOI: 10.1073/pnas.1918427117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drug-resistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of gram-positive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.
Collapse
|
171
|
The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020; 10:biom10040512. [PMID: 32230960 PMCID: PMC7226163 DOI: 10.3390/biom10040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.
Collapse
|
172
|
Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Int J Mol Sci 2020; 21:ijms21030986. [PMID: 32024233 PMCID: PMC7038045 DOI: 10.3390/ijms21030986] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Because of the rapid development of multidrug resistance, conventional antibiotics cannot kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs) can provide a possible solution to the antibiotic-resistance crisis. However, the identification of AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use amino acid compositions (AACs) and physicochemical properties with different sequence lengths against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria, and mammals. According to the one-rule attribute evaluation, the selected features were used to construct the predictive models based on the random forest algorithm. Compared to the accuracies of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92% in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure, normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to their sequence lengths. As a result, the proposed method is a practical means to complement the existing tools in the characterization and identification of AMPs in different organisms.
Collapse
|
173
|
Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front Microbiol 2020; 10:3097. [PMID: 32038544 PMCID: PMC6987251 DOI: 10.3389/fmicb.2019.03097] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the de novo design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Raquel Q Orozco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
174
|
|
175
|
Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel) 2020; 9:antibiotics9010024. [PMID: 31941022 PMCID: PMC7168295 DOI: 10.3390/antibiotics9010024] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
More than 3000 antimicrobial peptides (AMPs) have been discovered, seven of which have been approved by the U.S. Food and Drug Administration (FDA). Now commercialized, these seven peptides have mostly been utilized for topical medications, though some have been injected into the body to treat severe bacterial infections. To understand the translational potential for AMPs, we analyzed FDA-approved drugs in the FDA drug database. We examined their physicochemical properties, secondary structures, and mechanisms of action, and compared them with the peptides in the AMP database. All FDA-approved AMPs were discovered in Gram-positive soil bacteria, and 98% of known AMPs also come from natural sources (skin secretions of frogs and toxins from different species). However, AMPs can have undesirable properties as drugs, including instability and toxicity. Thus, the design and construction of effective AMPs require an understanding of the mechanisms of known peptides and their effects on the human body. This review provides an overview to guide the development of AMPs that can potentially be used as antimicrobial drugs.
Collapse
Affiliation(s)
- Charles H. Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| |
Collapse
|
176
|
Capecchi A, Zhang A, Reymond JL. Populating Chemical Space with Peptides Using a Genetic Algorithm. J Chem Inf Model 2020; 60:121-132. [PMID: 31868369 DOI: 10.1021/acs.jcim.9b01014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In drug discovery, one uses chemical space as a concept to organize molecules according to their structures and properties. One often would like to generate new possible molecules at a specific location in the chemical space marked by a molecule of interest. Herein, we report the peptide design genetic algorithm (PDGA, code available at https://github.com/reymond-group/PeptideDesignGA ), a computational tool capable of producing peptide sequences of various topologies (linear, cyclic/polycyclic, or dendritic) in proximity of any molecule of interest in a chemical space defined by macromolecule extended atom-pair fingerprint (MXFP), an atom-pair fingerprint describing molecular shape and pharmacophores. We show that the PDGA generates high-similarity analogues of bioactive peptides with diverse peptide chain topologies and of nonpeptide target molecules. We illustrate the chemical space accessible by the PDGA with an interactive 3D map of the MXFP property space available at http://faerun.gdb.tools/ . The PDGA should be generally useful to generate peptides at any location in the chemical space.
Collapse
Affiliation(s)
- Alice Capecchi
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| | - Alain Zhang
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland
| |
Collapse
|
177
|
Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, Liu L, Wang L, Mao C, Wang Y. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics 2020; 10:109-122. [PMID: 31903109 PMCID: PMC6929614 DOI: 10.7150/thno.38388] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Localized delivery of antimicrobial agents such as antimicrobial peptides (AMPs) by a biomaterial should be on-demand. Namely, AMPs should be latent and biocompatible in the absence of bacterial infection, but released in an amount enough to kill bacteria immediately in response to bacterial infection. Methods: To achieve the unmet goal of such on-demand delivery, here we turned a titanium implant with titania nanotubes (Ti-NTs) into a Pandora's box. The box was loaded with AMPs (HHC36 peptides, with a sequence of KRWWKWWRR) inside the nanotubes and "closed" (surface-modified) with a pH-responsive molecular gate, poly(methacrylic acid) (PMAA), which swelled under normal physiological conditions (pH 7.4) but collapsed under bacterial infection (pH ≤ 6.0). Thus, the PMAA-gated Ti-NTs behaved just like a Pandora's box. The box retarded the burst release of AMPs under physiological conditions because the gate swelled to block the nanotubes opening. However, it was opened to release AMPs to kill bacteria immediately when bacterial infection occurred to lowering the pH (and thus made the gate collapse). Results: We demonstrated such smart excellent bactericidal activity against a panel of four clinically important bacteria, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus. In addition, this box was biocompatible and could promote the osteogenic differentiation of human mesenchymal stem cells. Both in vitro and in vivo studies confirmed the smart "on-demand" bactericidal activity of the Pandora's box. The molecularly gated Pandora's box design represents a new strategy in smart drug delivery.
Collapse
Affiliation(s)
- Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xuetao Shi
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Huichang Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Liu
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Lin Wang
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| |
Collapse
|
178
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
179
|
Vicente FM, González-Garcia M, Diaz Pico E, Moreno-Castillo E, Garay HE, Rosi PE, Jimenez AM, Campos-Delgado JA, Rivera DG, Chinea G, Pietro RCL, Stenger S, Spellerberg B, Kubiczek D, Bodenberger N, Dietz S, Rosenau F, Paixão MW, Ständker L, Otero-González AJ. Design of a Helical-Stabilized, Cyclic, and Nontoxic Analogue of the Peptide Cm-p5 with Improved Antifungal Activity. ACS OMEGA 2019; 4:19081-19095. [PMID: 31763531 PMCID: PMC6868880 DOI: 10.1021/acsomega.9b02201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/04/2019] [Indexed: 05/15/2023]
Abstract
Following the information obtained by a rational design study, a cyclic and helical-stabilized analogue of the peptide Cm-p5 was synthetized. The cyclic monomer showed an increased activity in vitro against Candida albicans and Candida parapsilosis, compared to Cm-p5. Initially, 14 mutants of Cm-p5 were synthesized following a rational design to improve the antifungal activity and pharmacological properties. Antimicrobial testing showed that the activity was lost in each of these 14 analogues, suggesting, as a main conclusion, that a Glu-His salt bridge could stabilize Cm-p5 helical conformation during the interaction with the plasma membrane. A derivative, obtained by substitution of Glu and His for Cys, was synthesized and oxidized with the generation of a cyclic monomer with improved antifungal activity. In addition, two dimers were generated during the oxidation procedure, a parallel and antiparallel one. The dimers showed a helical secondary structure in water, whereas the cyclic monomer only showed this conformation in SDS. Molecular dynamic simulations confirmed the helical stabilizations for all of them, therefore indicating the possible essential role of the Glu-His salt bridge. In addition, the antiparallel dimer showed a moderate activity against Pseudomonas aeruginosa and a significant activity against Listeria monocytogenes. Neither the cyclic monomer nor the dimers were toxic against macrophages or THP-1 human cells. Due to its increased capacity for fungal control compared to fluconazole, its low cytotoxicity, together with a stabilized α-helix and disulfide bridges, that may advance its metabolic stability, and in vivo activity, the new cyclic Cm-p5 monomer represents a potential systemic antifungal therapeutic candidate.
Collapse
Affiliation(s)
- Fidel
E. Morales Vicente
- General
Chemistry Department, Faculty of Chemistry and Center for Natural Products Research,
Faculty of Chemistry, University of Havana, Zapata y G, 10400 La Habana, Cuba
- Synthetic
Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 La Habana, Cuba
- Center
of Excellence for Research in Sustainable Chemistry (CERSusChem),
Department of Chemistry, Federal University
of São Carlos-UFSCar, São Paulo 13565-905, Brazil
| | - Melaine González-Garcia
- Center
for Protein Studies, Faculty of Biology, University of Havana, 25 and I, 10400 La Habana, Cuba
| | - Erbio Diaz Pico
- Synthetic
Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 La Habana, Cuba
| | - Elena Moreno-Castillo
- General
Chemistry Department, Faculty of Chemistry and Center for Natural Products Research,
Faculty of Chemistry, University of Havana, Zapata y G, 10400 La Habana, Cuba
| | - Hilda E. Garay
- Synthetic
Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 La Habana, Cuba
| | - Pablo E. Rosi
- Department
of Inorganic Chemistry, Analytical and Physical Chemistry, Facultad
de Ciencias Exactas y Naturales, Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Asiel Mena Jimenez
- General
Chemistry Department, Faculty of Chemistry and Center for Natural Products Research,
Faculty of Chemistry, University of Havana, Zapata y G, 10400 La Habana, Cuba
| | - Jose A. Campos-Delgado
- Center
of Excellence for Research in Sustainable Chemistry (CERSusChem),
Department of Chemistry, Federal University
of São Carlos-UFSCar, São Paulo 13565-905, Brazil
| | - Daniel G. Rivera
- General
Chemistry Department, Faculty of Chemistry and Center for Natural Products Research,
Faculty of Chemistry, University of Havana, Zapata y G, 10400 La Habana, Cuba
| | - Glay Chinea
- Synthetic
Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 La Habana, Cuba
| | - Rosemeire C. L.
R. Pietro
- Laboratory
of Pharmaceutical Biotechnology, Department of Drugs and Medicines,
School of Pharmaceutical Sciences, UNESP, Araraquara 14800-900, Brazil
| | - Steffen Stenger
- Institute
of Medical Microbiology and Hygiene, University
Clinic of Ulm, Robert Koch Str. 8, Ulm D-89081, Germany
| | - Barbara Spellerberg
- Institute
of Medical Microbiology and Hygiene, University
Clinic of Ulm, Robert Koch Str. 8, Ulm D-89081, Germany
| | - Dennis Kubiczek
- Institute
of Pharmaceutical Biotechnology, Ulm University, James-Frank-Ring N27, 89081 Ulm, Germany
| | - Nicholas Bodenberger
- Institute
of Pharmaceutical Biotechnology, Ulm University, James-Frank-Ring N27, 89081 Ulm, Germany
| | - Steffen Dietz
- Institute
of Pharmaceutical Biotechnology, Ulm University, James-Frank-Ring N27, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute
of Pharmaceutical Biotechnology, Ulm University, James-Frank-Ring N27, 89081 Ulm, Germany
| | - Márcio Weber Paixão
- Center
of Excellence for Research in Sustainable Chemistry (CERSusChem),
Department of Chemistry, Federal University
of São Carlos-UFSCar, São Paulo 13565-905, Brazil
- E-mail: (W.P.)
| | - Ludger Ständker
- Core
Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP),
University Ulm, Faculty of Medicine, Ulm
University, 89081 Ulm, Germany
- E-mail: (L.S.)
| | - Anselmo J. Otero-González
- Center
for Protein Studies, Faculty of Biology, University of Havana, 25 and I, 10400 La Habana, Cuba
- E-mail: (A.J.O.-G.)
| |
Collapse
|
180
|
Dias LP, Souza PFN, Oliveira JTA, Vasconcelos IM, Araújo NMS, Tilburg MFV, Guedes MIF, Carneiro RF, Lopes JLS, Sousa DOB. RcAlb-PepII, a synthetic small peptide bioinspired in the 2S albumin from the seed cake of Ricinus communis, is a potent antimicrobial agent against Klebsiella pneumoniae and Candida parapsilosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183092. [PMID: 31678367 DOI: 10.1016/j.bbamem.2019.183092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides (AMPs) are important constituents of the innate immunity system of all living organisms. They participate in the first line of defense against invading pathogens such as viruses, bacteria, and fungi. In view of the increasing difficulties to treat infectious diseases due to the emergence of antibiotic-resistant bacterial strains, AMPs have great potential to control infectious diseases in humans and animals. In this study, two small peptides, RcAlb-PepI and RcAlb-PepII, were designed based on the primary structure of Rc-2S-Alb, a 2S albumin from the seed cake of Ricinus communis, and their antimicrobial activity assessed. RcAlb-PepII strongly inhibited the growth of Klebsiella pneumoniae and Candida parapsilosis, and induced morphological alterations in their cell surface. C. parapsilosis exposed to RcAlb-PepII presented higher cell membrane permeabilization and elevated content of reactive oxygen species. RcAlb-PepII also degraded and reduced the biofilm formation in C. parapsilosis and in K. pneumonia cells. Experimentally, RcAlb-PepII was not hemolytic and had low toxicity to mammalian cells. These are advantageous characteristics, which suggest that RcAlb-PepII is safe and apparently effective for its intended use and has great potential for the future development of an antimicrobial agent with the ability to kill or inhibit K. pneumoniae and C. parapsilosis cells.
Collapse
Affiliation(s)
- Lucas P Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil
| | - Nadine M S Araújo
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil
| | - Mauricio F V Tilburg
- Department of Biotechnology, State University of Ceara (UECE), Fortaleza, Brazil
| | - Maria I F Guedes
- Department of Biotechnology, State University of Ceara (UECE), Fortaleza, Brazil
| | - Rômulo F Carneiro
- Department of Fisheries Engineering, Federal University of Ceara (UFC), Fortaleza, Brazil
| | - José L S Lopes
- Department of Applied Physics, University of Sao Paulo (IF-USP), Sao Paulo, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Fortaleza, Brazil
| |
Collapse
|
181
|
Shruti SR, Rajasekaran R. Identification of therapeutic peptide scaffold from tritrpticin family for urinary tract infections using in silico techniques. J Biomol Struct Dyn 2019; 38:4407-4417. [DOI: 10.1080/07391102.2019.1680437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- S. R. Shruti
- Department of Biotechnology, School of Biosciences and Technology, VIT (Deemed to Be University), Vellore, India
| | - R. Rajasekaran
- Department of Biotechnology, School of Biosciences and Technology, VIT (Deemed to Be University), Vellore, India
| |
Collapse
|
182
|
Agbale CM, Sarfo JK, Galyuon IK, Juliano SA, Silva GGO, Buccini DF, Cardoso MH, Torres MDT, Angeles-Boza AM, de la Fuente-Nunez C, Franco OL. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019; 58:3802-3812. [PMID: 31448597 DOI: 10.1021/acs.biochem.9b00440] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed. Here, we engineered amino-terminal Cu(II) and Ni(II) (ATCUN) binding motifs, which can enhance biological function, into the native sequence of two AMPs, CM15 and citropin1.1. The incorporation of metal-binding motifs modulated the antimicrobial activity of synthetic peptides against a panel of carbapenem-resistant enterococci (CRE) bacteria, including carbapenem-resistant Klebsiella pneumoniae (KpC+) and Escherichia coli (KpC+). Activity modulation depended on the type of ATCUN variant utilized. Membrane permeability assays revealed that the in silico selected lead template, CM15, and its ATCUN analogs increased bacterial cell death. Mass spectrometry, circular dichroism, and molecular dynamics simulations indicated that coordinating ATCUN derivatives with Cu(II) ions did not increase the helical tendencies of the AMPs. CM15 ATCUN variants, when combined with Meropenem, streptomycin, or chloramphenicol, showed synergistic effects against E. coli (KpC+ 1812446) biofilms. Motif addition also reduced the hemolytic activity of the wild-type AMP and improved the survival rate of mice in a systemic infection model. The dependence of these bioactivities on the particular amino acids of the ATCUN motif highlights the possible use of size, charge, and hydrophobicity to fine-tune AMP biological function. Our data indicate that incorporating metal-binding motifs into peptide sequences leads to synthetic variants with modified biological properties. These principles may be applied to augment the activities of other peptide sequences.
Collapse
Affiliation(s)
- Caleb M Agbale
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Justice K Sarfo
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Isaac K Galyuon
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Samuel A Juliano
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Gislaine G O Silva
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Danieli F Buccini
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Marlon H Cardoso
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Octavio L Franco
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| |
Collapse
|
183
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
184
|
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019; 431:3547-3567. [DOI: 10.1016/j.jmb.2018.12.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
|
185
|
Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1375-1387. [DOI: 10.1016/j.bbamem.2019.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023]
|
186
|
Nagarajan D, Roy N, Kulkarni O, Nanajkar N, Datey A, Ravichandran S, Thakur C, T. S, Aprameya IV, Sarma SP, Chakravortty D, Chandra N. Ω76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. SCIENCE ADVANCES 2019; 5:eaax1946. [PMID: 31355341 PMCID: PMC6656545 DOI: 10.1126/sciadv.aax1946] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/17/2019] [Indexed: 05/12/2023]
Abstract
Drug resistance is a public health concern that threatens to undermine decades of medical progress. ESKAPE pathogens cause most nosocomial infections, and are frequently resistant to carbapenem antibiotics, usually leaving tigecycline and colistin as the last treatment options. However, increasing tigecycline resistance and colistin's nephrotoxicity severely restrict use of these antibiotics. We have designed antimicrobial peptides using a maximum common subgraph approach. Our best peptide (Ω76) displayed high efficacy against carbapenem and tigecycline-resistant Acinetobacter baumannii in mice. Mice treated with repeated sublethal doses of Ω76 displayed no signs of chronic toxicity. Sublethal Ω76 doses co-administered alongside sublethal colistin doses displayed no additive toxicity. These results indicate that Ω76 can potentially supplement or replace colistin, especially where nephrotoxicity is a concern. To our knowledge, no other existing antibiotics occupy this clinical niche. Mechanistically, Ω76 adopts an α-helical structure in membranes, causing rapid membrane disruption, leakage, and bacterial death.
Collapse
Affiliation(s)
- Deepesh Nagarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Natasha Roy
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore 560012, India
| | - Omkar Kulkarni
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neha Nanajkar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sandeep T.
- Department of Microbiology, M.S. Ramaiah Medical College, Bangalore 560054, India
| | | | - Siddhartha P. Sarma
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore 560012, India
- NMR Research Center, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
187
|
Madanchi H, Khalaj V, Jang S, Shabani AA, Ebrahimi Kiasari R, Seyed Mousavi SJ, Kazemi Sealani S, Sardari S. AurH1: a new heptapeptide derived from Aurein1.2 antimicrobial peptide with specific and exclusive fungicidal activity. J Pept Sci 2019; 25:e3175. [DOI: 10.1002/psc.3175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Hamid Madanchi
- Department and Center for Biotechnology ResearchSemnan University of Medical Sciences Semnan Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research CenterPasteur Institute of Iran Tehran Iran
| | - Vahid Khalaj
- Department of Medical Biotechnology, Biotechnology Research CenterPasteur Institute of Iran Tehran Iran
| | - Soojin Jang
- Antibacterial Resistance Laboratory, Department of Discovery BiologyInstitut Pasteur Korea Gyeonggi‐do Republic of Korea
| | - Ali Akbar Shabani
- Department and Center for Biotechnology ResearchSemnan University of Medical Sciences Semnan Iran
| | | | | | | | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research CenterPasteur Institute of Iran Tehran Iran
| |
Collapse
|
188
|
Abstract
Machines hold the potential to replace humans in many societal endeavors, and drug discovery is no exception. Antibiotic innovation has been stalled for decades, which has coincided with an alarming increase in multidrug-resistant bacteria. Machines hold the potential to replace humans in many societal endeavors, and drug discovery is no exception. Antibiotic innovation has been stalled for decades, which has coincided with an alarming increase in multidrug-resistant bacteria. Since the beginning of the antibiotic era, the natural world has been our greatest innovator, giving rise to nearly all antibiotics available today. As mere observers of the vast molecular diversity produced by Earth’s organisms, we have perfected the art of isolating novel chemistries with life-saving antimicrobial properties. However, today we are at a crossroads, as no new molecular scaffolds have been discovered for decades. We may need to look beyond the natural world into the virtual dimension for solutions and harness present-day computational power to help solve the grand global health challenge of antibiotic resistance. Computer-made drugs may enable the discovery of unprecedented functions in biological systems and help replenish our arsenal of effective antibiotics.
Collapse
|
189
|
Torres MDT, de la Fuente-Nunez C. Toward computer-made artificial antibiotics. Curr Opin Microbiol 2019; 51:30-38. [PMID: 31082661 DOI: 10.1016/j.mib.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Merging concepts from synthetic biology and computational biology may yield antibiotics that are less likely to elicit resistance than existing drugs and that yet can fight drug-resistant infections. Indeed, computer-guided strategies coupled with massively parallel high-throughput experimental methods represent a new paradigm for antibiotic discovery. Infections caused by multidrug-resistant microorganisms are increasingly deadly. In the current post-antibiotic era, many of these infections cannot be treated with our existing antimicrobial arsenal. Furthermore, we may have already exhausted the category of large molecules produced in nature having antimicrobial activity: the antibiotic scaffolds we have discovered so far may represent the majority of those that exist. The rise in drug-resistant bacteria and lack of new antibiotic classes clearly call for out-of-the-box strategies. Recent advances in computational synthetic biology have enabled the development of antimicrobials. New molecular descriptors and genetic and pattern recognition algorithms are powerful tools that bring us a step closer to developing efficient antibiotics. We review several computational tools for drug design and a number of recently generated antibiotic candidates, with an emphasis on peptide-based molecules. Design strategies can generate a diversity of synthetic antimicrobial peptides, which may help to mitigate the spread of resistance and combat multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|
190
|
Yang YL, Sheng YJ, Tsao HK. Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers. J Colloid Interface Sci 2019; 544:53-60. [DOI: 10.1016/j.jcis.2019.02.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023]
|
191
|
Algorithm-supported, mass and sequence diversity-oriented random peptide library design. J Cheminform 2019; 11:25. [PMID: 30923940 PMCID: PMC6437963 DOI: 10.1186/s13321-019-0347-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/20/2019] [Indexed: 02/08/2023] Open
Abstract
Random peptide libraries that cover large search spaces are often used for the discovery of new binders, even when the target is unknown. To ensure an accurate population representation, there is a tendency to use large libraries. However, parameters such as the synthesis scale, the number of library members, the sequence deconvolution and peptide structure elucidation, are challenging when increasing the library size. To tackle these challenges, we propose an algorithm-supported approach to peptide library design based on molecular mass and amino acid diversity. The aim is to simplify the tedious permutation identification in complex mixtures, when mass spectrometry is used, by avoiding mass redundancy. For this purpose, we applied multi (two- and three-)-objective genetic algorithms to discriminate between library members based on defined parameters. The optimizations led to diverse random libraries by maximizing the number of amino acid permutations and minimizing the mass and/or sequence overlapping. The algorithm-suggested designs offer to the user a choice of appropriate compromise solutions depending on the experimental needs. This implies that diversity rather than library size is the key element when designing peptide libraries for the discovery of potential novel biologically active peptides.
Collapse
|
192
|
Pires ÁS, Rigueiras PO, Dohms SM, Porto WF, Franco OL. Structure-guided identification of antimicrobial peptides in the spathe transcriptome of the non-model plant, arum lily (Zantedeschia aethiopica
). Chem Biol Drug Des 2019; 93:1265-1275. [DOI: 10.1111/cbdd.13498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/29/2018] [Accepted: 01/31/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Állan S. Pires
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - Pietra O. Rigueiras
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - Stephan M. Dohms
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
| | - William F. Porto
- Porto Reports; Brasília Brazil
- S-Inova Biotech; Programa de Pós-Graduação em Biotecnologia; Universidade Católica Dom Bosco; Campo Grande Brazil
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas; Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Brazil
- S-Inova Biotech; Programa de Pós-Graduação em Biotecnologia; Universidade Católica Dom Bosco; Campo Grande Brazil
| |
Collapse
|
193
|
Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc 2019; 141:4839-4848. [PMID: 30839209 DOI: 10.1021/jacs.8b11939] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the age of failing small-molecule antibiotics, tapping the near-infinite structural and chemical repertoire of antimicrobial peptides (AMPs) offers one of the most promising routes toward developing next-generation antibacterial compounds. One of the key impediments en route is the lack of methodologies for systematic rational design and optimization of new AMPs. Here we present a new simulation-guided rational design approach and apply it to develop a potent new AMP. We show that unbiased atomic detail molecular dynamics (MD) simulations are able to predict structures formed by evolving peptide designs enabling structure-based rational fine-tuning of functional properties. Starting from a 14-residue poly leucine template we demonstrate the design of a minimalistic potent new AMP. Consisting of only four types of amino acids (LDKA), this peptide forms large pores in microbial membranes at very low peptide-to-lipid ratios (1:1000) and exhibits low micromolar activity against common Gram-positive and Gram-negative pathogenic bacteria. Remarkably, the four amino acids were sufficient to encode preferential poration of bacterial membranes with negligible damage to red blood cells at bactericidal concentrations. As the sequence is too short to span cellular membranes, pores are formed by stacking of channels in each bilayer leaflet.
Collapse
|
194
|
Paquet-Côté PA, Fillion M, Provencher MÈ, Otis F, Dionne J, Cardinal S, Collignon B, Bürck J, Lagüe P, Ulrich AS, Auger M, Voyer N. Crown ether modified peptide interactions with model membranes‡. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1574349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Matthieu Fillion
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | | | - François Otis
- Département de chimie and PROTEO, Université Laval, Québec, Canada
| | - Justine Dionne
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | | | - Barbara Collignon
- Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Université Laval, Québec, Canada
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patrick Lagüe
- Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Université Laval, Québec, Canada
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Michèle Auger
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | - Normand Voyer
- Département de chimie and PROTEO, Université Laval, Québec, Canada
| |
Collapse
|
195
|
Ho PL, Ong HK, Teo J, Ow DSW, Chao SH. HEXIM1 Peptide Exhibits Antimicrobial Activity Against Antibiotic Resistant Bacteria Through Guidance of Cell Penetrating Peptide. Front Microbiol 2019; 10:203. [PMID: 30800117 PMCID: PMC6376162 DOI: 10.3389/fmicb.2019.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of antibiotic resistant bacteria is one of the biggest threats to human health worldwide. In 2017, World Health Organization listed the world’s most dangerous antibiotic-resistant bacteria or “superbugs,” such as carbapenem-resistant Pseudomonas aeruginosa and Escherichia coli, indicating the highest priority needs for new antibiotics. The possibility that such infectious diseases may soon be untreatable, due to decreased antibiotic efficacy, creates an urgent need for novel and alternative antimicrobials. Antimicrobial peptides are naturally occurring small molecules found in the innate immunity of mammals, plants and bacteria, and are potentially therapeutic candidates against drug-resistant bacteria. In this study, we examine the antimicrobial activities of the cytotoxic peptides derived from the basic region (BR) of the human hexamethylene bisacetamide-inducible protein 1 (HEXIM1). We found that, when fused with a cell penetrating peptide, the HEXIM1 BR peptide and its derivative, BR-RRR12, exhibited inhibitory activities against selected “superbugs.” Negligible effects on the viability of human keratinocyte cell line were observed when the bactericidal dosages of HEXIM1 BR peptides were used. Different killing kinetics were observed between the membrane permeabilizing antimicrobial peptides and HEXIM1 BR peptides, suggesting that a different antimicrobial mechanism might be utilized by the HEXIM1 BR peptides. Using an in vitro translation system based on E. coli lysates, we found that HEXIM1 BR peptides blocked bacterial translation. Taken together, we identify the HEXIM1 BR peptide as a novel antimicrobial peptide with potent inhibitory activity against antibiotic-resistant “superbugs.”
Collapse
Affiliation(s)
- Pooi Leng Ho
- Microbial Cells, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Han Kee Ong
- Expression Engineering Groups, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeanette Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cells, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Groups, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
196
|
Irazazabal LN, Porto WF, Fensterseifer IC, Alves ES, Matos CO, Menezes AC, Felício MR, Gonçalves S, Santos NC, Ribeiro SM, Humblot V, Lião LM, Ladram A, Franco OL. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:178-190. [DOI: 10.1016/j.bbamem.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|
197
|
Madanchi H, Akbari S, Shabani AA, Sardari S, Farmahini Farahani Y, Ghavami G, Ebrahimi Kiasari R. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev Res 2018; 80:162-170. [DOI: 10.1002/ddr.21503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Hamid Madanchi
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Shabnam Akbari
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
| | - Ali Akbar Shabani
- Department and Center for Biotechnology Research; Semnan University of Medical Sciences; Semnan Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Yekta Farmahini Farahani
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | | |
Collapse
|
198
|
Torres MDT, Pedron CN, Higashikuni Y, Kramer RM, Cardoso MH, Oshiro KGN, Franco OL, Silva Junior PI, Silva FD, Oliveira Junior VX, Lu TK, de la Fuente-Nunez C. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun Biol 2018; 1:221. [PMID: 30534613 PMCID: PMC6286318 DOI: 10.1038/s42003-018-0224-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.
Collapse
Affiliation(s)
- Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Cibele N. Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Yasutomi Higashikuni
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Robin M. Kramer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Marlon H. Cardoso
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Karen G. N. Oshiro
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Octávio L. Franco
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Pedro I. Silva Junior
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP 05503900 Brazil
| | - Fernanda D. Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Vani X. Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
199
|
A structural perspective of plant antimicrobial peptides. Biochem J 2018; 475:3359-3375. [PMID: 30413680 DOI: 10.1042/bcj20180213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
Abstract
Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.
Collapse
|
200
|
Campos ML, de Souza CM, de Oliveira KBS, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4997-5011. [PMID: 30099553 DOI: 10.1093/jxb/ery294] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá/MT, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Universidade de Brasilia, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasilia/DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande/MS, Brazil
| |
Collapse
|