151
|
Keemink SW, Machens CK. Decoding and encoding (de)mixed population responses. Curr Opin Neurobiol 2019; 58:112-121. [PMID: 31563083 DOI: 10.1016/j.conb.2019.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 10/25/2022]
Abstract
A central tenet of neuroscience is that the brain works through large populations of interacting neurons. With recent advances in recording techniques, the inner working of these populations has come into full view. Analyzing the resulting large-scale data sets is challenging because of the often complex and 'mixed' dependency of neural activities on experimental parameters, such as stimuli, decisions, or motor responses. Here we review recent insights gained from analyzing these data with dimensionality reduction methods that 'demix' these dependencies. We demonstrate that the mappings from (carefully chosen) experimental parameters to population activities appear to be typical and stable across tasks, brain areas, and animals, and are often identifiable by linear methods. By considering when and why dimensionality reduction and demixing work well, we argue for a view of population coding in which populations represent (demixed) latent signals, corresponding to stimuli, decisions, motor responses, and so on. These latent signals are encoded into neural population activity via non-linear mappings and decoded via linear readouts. We explain how such a scheme can facilitate the propagation of information across cortical areas, and we review neural network architectures that can reproduce the encoding and decoding of latent signals in population activities. These architectures promise a link from the biophysics of single neurons to the activities of neural populations.
Collapse
|
152
|
McIntosh AR, Jirsa VK. The hidden repertoire of brain dynamics and dysfunction. Netw Neurosci 2019; 3:994-1008. [PMID: 31637335 PMCID: PMC6777946 DOI: 10.1162/netn_a_00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 11/04/2022] Open
Abstract
The purpose of this paper is to describe a framework for the understanding of rules that govern how neural system dynamics are coordinated to produce behavior. The framework, structured flows on manifolds (SFM), posits that neural processes are flows depicting system interactions that occur on relatively low-dimension manifolds, which constrain possible functional configurations. Although this is a general framework, we focus on the application to brain disorders. We first explain the Epileptor, a phenomenological computational model showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to refractory status epilepticus. We suggest that epilepsy represents an innate brain state whose potential may be realized only under certain circumstances. Conversely, deficits from damage or disease processes, such as stroke or dementia, may reflect both the disease process per se and the adaptation of the brain. SFM uniquely captures both scenarios. Finally, we link neuromodulation effects and switches in functional network configurations to fast and slow dynamics that coordinate the expression of SFM in the context of cognition. The tools to measure and model SFM already exist, giving researchers access to the dynamics of neural processes that support the concomitant dynamics of the cognitive and behavioral processes.
Collapse
Affiliation(s)
- Anthony R McIntosh
- Rotman Research Institute, Baycrest, University of Toronto, Toronto, Canada
| | - Viktor K Jirsa
- Institut de Neurosciences des Systemes, INSERM, Aix-Marseille Universite, Marseille, France
| |
Collapse
|
153
|
Whiteway MR, Butts DA. The quest for interpretable models of neural population activity. Curr Opin Neurobiol 2019; 58:86-93. [PMID: 31426024 DOI: 10.1016/j.conb.2019.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/14/2019] [Indexed: 11/24/2022]
Abstract
Many aspects of brain function arise from the coordinated activity of large populations of neurons. Recent developments in neural recording technologies are providing unprecedented access to the activity of such populations during increasingly complex experimental contexts; however, extracting scientific insights from such recordings requires the concurrent development of analytical tools that relate this population activity to system-level function. This is a primary motivation for latent variable models, which seek to provide a low-dimensional description of population activity that can be related to experimentally controlled variables, as well as uncontrolled variables such as internal states (e.g. attention and arousal) and elements of behavior. While deriving an understanding of function from traditional latent variable methods relies on low-dimensional visualizations, new approaches are targeting more interpretable descriptions of the components underlying system-level function.
Collapse
Affiliation(s)
- Matthew R Whiteway
- Zuckerman Mind Brain Behavior Institute, Jerome L Greene Science Center, Columbia University, 3227 Broadway, 5th Floor, Quad D, New York, NY 10027, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, 1210 Biology-Psychology Bldg. #144, College Park, MD 20742, USA.
| |
Collapse
|
154
|
Sohn H, Narain D, Meirhaeghe N, Jazayeri M. Bayesian Computation through Cortical Latent Dynamics. Neuron 2019; 103:934-947.e5. [PMID: 31320220 DOI: 10.1016/j.neuron.2019.06.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/15/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
Statistical regularities in the environment create prior beliefs that we rely on to optimize our behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can be leveraged and has had a major impact on models of perception, sensorimotor function, and cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian integration. By using a time-interval reproduction task in monkeys, we found that prior statistics warp neural representations in the frontal cortex, allowing the mapping of sensory inputs to motor outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent neural network models performing the task revealed that this warping was enabled by a low-dimensional curved manifold and allowed us to further probe the potential causal underpinnings of this computational strategy. These results uncover a simple and general principle whereby prior beliefs exert their influence on behavior by sculpting cortical latent dynamics.
Collapse
Affiliation(s)
- Hansem Sohn
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devika Narain
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Erasmus Medical Center, Rotterdam 3015CN, the Netherlands
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
155
|
Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. High-dimensional geometry of population responses in visual cortex. Nature 2019; 571:361-365. [PMID: 31243367 PMCID: PMC6642054 DOI: 10.1038/s41586-019-1346-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
Abstract
A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the population code could not be smooth, allowing small changes in input to dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in neural population codes.
Collapse
Affiliation(s)
- Carsen Stringer
- HHMI Janelia Research Campus, Ashburn, VA, USA.
- UCL Gatsby Computational Neuroscience Unit, University College London, London, UK.
| | - Marius Pachitariu
- HHMI Janelia Research Campus, Ashburn, VA, USA.
- UCL Institute of Neurology, University College London, London, UK.
| | - Nicholas Steinmetz
- UCL Institute of Neurology, University College London, London, UK
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
156
|
Beyeler M, Rounds EL, Carlson KD, Dutt N, Krichmar JL. Neural correlates of sparse coding and dimensionality reduction. PLoS Comput Biol 2019; 15:e1006908. [PMID: 31246948 PMCID: PMC6597036 DOI: 10.1371/journal.pcbi.1006908] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Supported by recent computational studies, there is increasing evidence that a wide range of neuronal responses can be understood as an emergent property of nonnegative sparse coding (NSC), an efficient population coding scheme based on dimensionality reduction and sparsity constraints. We review evidence that NSC might be employed by sensory areas to efficiently encode external stimulus spaces, by some associative areas to conjunctively represent multiple behaviorally relevant variables, and possibly by the basal ganglia to coordinate movement. In addition, NSC might provide a useful theoretical framework under which to understand the often complex and nonintuitive response properties of neurons in other brain areas. Although NSC might not apply to all brain areas (for example, motor or executive function areas) the success of NSC-based models, especially in sensory areas, warrants further investigation for neural correlates in other regions.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
- Institute for Neuroengineering, University of Washington, Seattle, Washington, United States of America
- eScience Institute, University of Washington, Seattle, Washington, United States of America
- Department of Computer Science, University of California, Irvine, California, United States of America
| | - Emily L. Rounds
- Department of Cognitive Sciences, University of California, Irvine, California, United States of America
| | - Kristofor D. Carlson
- Department of Cognitive Sciences, University of California, Irvine, California, United States of America
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Nikil Dutt
- Department of Computer Science, University of California, Irvine, California, United States of America
- Department of Cognitive Sciences, University of California, Irvine, California, United States of America
| | - Jeffrey L. Krichmar
- Department of Computer Science, University of California, Irvine, California, United States of America
- Department of Cognitive Sciences, University of California, Irvine, California, United States of America
| |
Collapse
|
157
|
Liu S, Iriate-Diaz J, Hatsopoulos NG, Ross CF, Takahashi K, Chen Z. Dynamics of motor cortical activity during naturalistic feeding behavior. J Neural Eng 2019; 16:026038. [PMID: 30721881 DOI: 10.1088/1741-2552/ab0474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The orofacial primary motor cortex (MIo) plays a critical role in controlling tongue and jaw movements during oral motor functions, such as chewing, swallowing and speech. However, the neural mechanisms of MIo during naturalistic feeding are still poorly understood. There is a strong need for a systematic study of motor cortical dynamics during feeding behavior. APPROACH To investigate the neural dynamics and variability of MIo neuronal activity during naturalistic feeding, we used chronically implanted micro-electrode arrays to simultaneously recorded ensembles of neuronal activity in the MIo of two monkeys (Macaca mulatta) while eating various types of food. We developed a Bayesian nonparametric latent variable model to reveal latent structures of neuronal population activity of the MIo and identify the complex mapping between MIo ensemble spike activity and high-dimensional kinematics. MAIN RESULTS Rhythmic neuronal firing patterns and oscillatory dynamics are evident in single-unit activity. At the population level, we uncovered the neural dynamics of rhythmic chewing, and quantified the neural variability at multiple timescales (complete feeding sequences, chewing sequence stages, chewing gape cycle phases) across food types. Our approach accommodates time-warping of chewing sequences and automatic model selection, and maps the latent states to chewing behaviors at fine timescales. SIGNIFICANCE Our work shows that neural representations of MIo ensembles display spatiotemporal patterns in chewing gape cycles at different chew sequence stages, and these patterns vary in a stage-dependent manner. Unsupervised learning and decoding analysis may reveal the link between complex MIo spatiotemporal patterns and chewing kinematics.
Collapse
Affiliation(s)
- Shizhao Liu
- Department of Psychiatry, Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, United States of America. Department of Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
158
|
Williamson RC, Doiron B, Smith MA, Yu BM. Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction. Curr Opin Neurobiol 2019; 55:40-47. [PMID: 30677702 DOI: 10.1016/j.conb.2018.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
A long-standing goal in neuroscience has been to bring together neuronal recordings and neural network modeling to understand brain function. Neuronal recordings can inform the development of network models, and network models can in turn provide predictions for subsequent experiments. Traditionally, neuronal recordings and network models have been related using single-neuron and pairwise spike train statistics. We review here recent studies that have begun to relate neuronal recordings and network models based on the multi-dimensional structure of neuronal population activity, as identified using dimensionality reduction. This approach has been used to study working memory, decision making, motor control, and more. Dimensionality reduction has provided common ground for incisive comparisons and tight interplay between neuronal recordings and network models.
Collapse
Affiliation(s)
- Ryan C Williamson
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent Doiron
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Electrical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
159
|
Perich MG, Gallego JA, Miller LE. A Neural Population Mechanism for Rapid Learning. Neuron 2018; 100:964-976.e7. [PMID: 30344047 DOI: 10.1016/j.neuron.2018.09.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/16/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
Long-term learning of language, mathematics, and motor skills likely requires cortical plasticity, but behavior often requires much faster changes, sometimes even after single errors. Here, we propose one neural mechanism to rapidly develop new motor output without altering the functional connectivity within or between cortical areas. We tested cortico-cortical models relating the activity of hundreds of neurons in the premotor (PMd) and primary motor (M1) cortices throughout adaptation to reaching movement perturbations. We found a signature of learning in the "output-null" subspace of PMd with respect to M1 reflecting the ability of premotor cortex to alter preparatory activity without directly influencing M1. The output-null subspace planning activity evolved with adaptation, yet the "output-potent" mapping that captures information sent to M1 was preserved. Our results illustrate a population-level cortical mechanism to progressively adjust the output from one brain area to its downstream structures that could be exploited for rapid behavioral adaptation.
Collapse
Affiliation(s)
- Matthew G Perich
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Juan A Gallego
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Neural and Cognitive Engineering Group, Centre for Automation and Robotics, CSIC-UPM, 28500 Arganda del Rey, Madrid, Spain
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA; Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|