151
|
Structural basis for the geometry-driven localization of a small protein. Proc Natl Acad Sci U S A 2015; 112:E1908-15. [PMID: 25825747 DOI: 10.1073/pnas.1423868112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In bacteria, certain shape-sensing proteins localize to differently curved membranes. During sporulation in Bacillus subtilis, the only convex (positively curved) surface in the cell is the forespore, an approximately spherical internal organelle. Previously, we demonstrated that SpoVM localizes to the forespore by preferentially adsorbing onto slightly convex membranes. Here, we used NMR and molecular dynamics simulations of SpoVM and a localization mutant (SpoVM(P9A)) to reveal that SpoVM's atypical amphipathic α-helix inserts deeply into the membrane and interacts extensively with acyl chains to sense packing differences in differently curved membranes. Based on binding to spherical supported lipid bilayers and Monte Carlo simulations, we hypothesize that SpoVM's membrane insertion, along with potential cooperative interactions with other SpoVM molecules in the lipid bilayer, drives its preferential localization onto slightly convex membranes. Such a mechanism, which is distinct from that used by high curvature-sensing proteins, may be widely conserved for the localization of proteins onto the surface of cellular organelles.
Collapse
|
152
|
Elani Y, Purushothaman S, Booth PJ, Seddon JM, Brooks NJ, Law RV, Ces O. Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers. Chem Commun (Camb) 2015; 51:6976-9. [PMID: 25797170 DOI: 10.1039/c5cc00712g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We detail an approach for constructing asymmetric membranes and characterising their mechanical properties, leading to the first measurement of the effect of asymmetry on lipid bilayer mechanics. Our results demonstrate that asymmetry induces a significant increase in rigidity compared to symmetric membranes. Given that all biological membranes are asymmetric our findings have profound implications for the role of this phenomenon in biology.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
153
|
Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz LM, Li J, Vivona S, Pfuetzner RA, Brunger AT, Zhong Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 2015; 520:563-6. [PMID: 25686604 DOI: 10.1038/nature14147] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023]
Abstract
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
Collapse
Affiliation(s)
- Jiajie Diao
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Rong Liu
- 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3] College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yueguang Rong
- 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Minglei Zhao
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Jing Zhang
- 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ying Lai
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Qiangjun Zhou
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Livia M Wilz
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jianxu Li
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Sandro Vivona
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Richard A Pfuetzner
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Axel T Brunger
- 1] Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA [2] Department of Structural Biology, Stanford University, Stanford, California 94305, USA [3] Department of Photon Science, Stanford University, Stanford, California 94305, USA [4] Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA [5] Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Qing Zhong
- 1] Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
154
|
Wasnik V, Wingreen NS, Mukhopadhyay R. Modeling curvature-dependent subcellular localization of the small sporulation protein SpoVM in Bacillus subtilis. PLoS One 2015; 10:e0111971. [PMID: 25625300 PMCID: PMC4307972 DOI: 10.1371/journal.pone.0111971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Recent in vivo experiments suggest that in the bacterium, Bacillus subtilis, the cue for the localization of the small sporulation protein, SpoVM, an essential factor in spore coat formation, is curvature of the bacterial plasma membrane. In vitro measurements of SpoVM adsorption to vesicles of varying sizes also find high sensitivity of adsorption to vesicle radius. This curvature-dependent adsorption is puzzling given the orders of magnitude difference in length scale between an individual protein and the radius of curvature of the cell or vesicle, suggesting protein clustering on the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane adsorption and clustering of SpoVM. Based on our analysis, we hypothesize that the radius dependence of SpoVM adsorption observed in vitro is governed primarily by membrane tension, while for in-vivo localization of SpoVM, we propose a highly sensitive mechanism for curvature sensing based on the formation of macroscopic protein clusters on the membrane.
Collapse
Affiliation(s)
- Vaibhav Wasnik
- Department of Physics, Clark University, Worcester, Massachusetts, United States of America
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ranjan Mukhopadhyay
- Department of Physics, Clark University, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
155
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
156
|
Sato K, Roboti P, Mironov AA, Lowe M. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 2014; 26:537-53. [PMID: 25473115 PMCID: PMC4310744 DOI: 10.1091/mbc.e14-10-1450] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vesicle tethering mediated by the golgin GMAP-210 is required to maintain the structure of the Golgi apparatus. Tethering by GMAP-210 is mediated solely by the ALPS motif, and binding to Rab2 and the length of GMAP-210, although not required for tethering per se, are also critical for its functional role at the Golgi apparatus. Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.
Collapse
Affiliation(s)
- Keisuke Sato
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peristera Roboti
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alexander A Mironov
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
157
|
Horchani H, de Saint-Jean M, Barelli H, Antonny B. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment. PLoS One 2014; 9:e113484. [PMID: 25426975 PMCID: PMC4245137 DOI: 10.1371/journal.pone.0113484] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 10/28/2014] [Indexed: 11/27/2022] Open
Abstract
The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.
Collapse
Affiliation(s)
- Habib Horchani
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
| | - Maud de Saint-Jean
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
- * E-mail: (HB); (BA)
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, Valbonne, France
- * E-mail: (HB); (BA)
| |
Collapse
|
158
|
Beck R, Brügger B, Wieland F. GAPs in the context of COPI: Enzymes, coat components or both? CELLULAR LOGISTICS 2014; 1:52-54. [PMID: 21686253 DOI: 10.4161/cl.1.2.15174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 02/02/2023]
Abstract
TRAFFICKING IN THE EARLY SECRETORY PATHWAY AT FIRST GLANCE IS WELL UNDERSTOOD ACCORDING TO TEXTBOOK KNOWLEDGE: To achieve secretion and to maintain organelle homeostasis, protein and lipid cargo need to be transported constitutively from their origins of biosynthesis to their respective destinations. Thus, secretory cargo exits the ER and is shuttled to the Golgi via vesicular COPII carriers. Lipid and protein cargo is enzymatically modified in the Golgi, transported from cis- to trans- (by mechanisms that are still debated today), and from there travel to their final destinations. The best established roles for COPI vesicles, simply spoken, is to mediate retrograde trafficking of cargo molecules that were transported forward, but need to be transported back.
Collapse
Affiliation(s)
- Rainer Beck
- Department of Cell Biology; Yale University School of Medicine; New Haven, CT USA
| | | | | |
Collapse
|
159
|
Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 2014; 42:1418-24. [DOI: 10.1042/bst20140144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many cellular signalling and related events are triggered by the association of peripheral proteins with anionic lipids in the cell membrane (e.g. phosphatidylinositol phosphates or PIPs). This association frequently occurs via lipid-binding modules, e.g. pleckstrin homology (PH), C2 and four-point-one, ezrin, radixin, moesin (FERM) domains, present in peripheral and cytosolic proteins. Multiscale simulation approaches that combine coarse-grained and atomistic MD simulations may now be applied with confidence to investigate the molecular mechanisms of the association of peripheral proteins with model bilayers. Comparisons with experimental data indicate that such simulations can predict specific peripheral protein–lipid interactions. We discuss the application of multiscale MD simulation and related approaches to investigate the association of peripheral proteins which contain PH, C2 or FERM-binding modules with lipid bilayers of differing phospholipid composition, including bilayers containing multiple PIP molecules.
Collapse
|
160
|
Vanni S, Hirose H, Barelli H, Antonny B, Gautier R. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat Commun 2014; 5:4916. [PMID: 25222832 DOI: 10.1038/ncomms5916] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023] Open
Abstract
Two parameters of biological membranes, curvature and lipid composition, direct the recruitment of many peripheral proteins to cellular organelles. Although these traits are often studied independently, it is their combination that generates the unique interfacial properties of cellular membranes. Here, we use a combination of in vivo, in vitro and in silico approaches to provide a comprehensive map of how these parameters modulate membrane adhesive properties. The correlation between the membrane partitioning of model amphipathic helices and the distribution of lipid-packing defects in membranes of different shape and composition explains how macroscopic membrane properties modulate protein recruitment by changing the molecular topography of the membrane interfacial region. Furthermore, our results suggest that the range of conditions that can be obtained in a cellular context is remarkably large because lipid composition and curvature have, under most circumstances, cumulative effects.
Collapse
Affiliation(s)
- Stefano Vanni
- 1] Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 660 route des Lucioles, 06560 Valbonne, France [2]
| | - Hisaaki Hirose
- 1] Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 660 route des Lucioles, 06560 Valbonne, France [2]
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 660 route des Lucioles, 06560 Valbonne, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 660 route des Lucioles, 06560 Valbonne, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 660 route des Lucioles, 06560 Valbonne, France
| |
Collapse
|
161
|
Abstract
In vitro reconstitution is prerequisite to investigate complex cellular functions at the molecular level. Reconstitution systems range from combining complete cellular cytosol with organelle-enriched membrane fractions to liposomal systems where all components are chemically defined and can be chosen at will. Here, we describe the in vitro reconstitution of COPI-coated vesicles from semi-intact cells. Efficient vesicle formation is achieved by simple incubation of permeabilized cells with the minimal set of coat proteins Arf1 and coatomer, and guanosine trinucleotides. GTP hydrolysis or any mechanical manipulations are not required for efficient COPI vesicle release.
Collapse
|
162
|
ArfGAP3 is a component of the photoreceptor synaptic ribbon complex and forms an NAD(H)-regulated, redox-sensitive complex with RIBEYE that is important for endocytosis. J Neurosci 2014; 34:5245-60. [PMID: 24719103 DOI: 10.1523/jneurosci.3837-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3 (ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the oxidized NAD(+) in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to ArfGAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in photoreceptors strongly inhibited endocytotic uptake of FM1-43.
Collapse
|
163
|
Gill RL, Wang X, Tian F. A membrane proximal helix in the cytosolic domain of the human APP interacting protein LR11/SorLA deforms liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:323-8. [PMID: 24866012 DOI: 10.1016/j.bbamem.2014.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/20/2022]
Abstract
Over the last decade, compelling evidence has linked the development of Alzheimer's disease (AD) to defective intracellular trafficking of the amyloid precursor protein (APP). Faulty APP trafficking results in an overproduction of Aβ peptides, which is generally agreed to be the primary cause of AD-related pathogenesis. LR11 (SorLA), a type I transmembrane sorting receptor, has emerged as a key regulator of APP trafficking and processing. It directly interacts with APP and diverts it away from amyloidogenic processing. The 54-residue cytosolic domain of LR11 is essential for its proper intracellular localization and trafficking which, in turn, determines the fate of APP. Here, we have found a surprising membrane-proximal amphipathic helix in the cytosolic domain of LR11. Moreover, a peptide corresponding to this region folds into an α-helical structure in the presence of liposomes and transforms liposomes to small vesicles and tubule-like particles. We postulate that this amphipathic helix may contribute to the dynamic remodeling of membrane structure and facilitate LR11 intracellular transport.
Collapse
Affiliation(s)
- Richard L Gill
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Xingsheng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
164
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
165
|
Kurylowicz M, Paulin H, Mogyoros J, Giuliani M, Dutcher JR. The effect of nanoscale surface curvature on the oligomerization of surface-bound proteins. J R Soc Interface 2014; 11:20130818. [PMID: 24573329 PMCID: PMC3973352 DOI: 10.1098/rsif.2013.0818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 11/12/2022] Open
Abstract
The influence of surface topography on protein conformation and association is used routinely in biological cells to orchestrate and coordinate biomolecular events. In the laboratory, controlling the surface curvature at the nanoscale offers new possibilities for manipulating protein-protein interactions and protein function at surfaces. We have studied the effect of surface curvature on the association of two proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), which perform their function at the oil-water interface in milk emulsions. To control the surface curvature at the nanoscale, we have used a combination of polystyrene (PS) nanoparticles (NPs) and ultrathin PS films to fabricate chemically pure, hydrophobic surfaces that are highly curved and are stable in aqueous buffer. We have used single-molecule force spectroscopy to measure the contour lengths Lc for α-LA and β-LG adsorbed on highly curved PS surfaces (NP diameters of 27 and 50 nm, capped with a 10 nm thick PS film), and we have compared these values in situ with those measured for the same proteins adsorbed onto flat PS surfaces in the same samples. The Lc distributions for β-LG adsorbed onto a flat PS surface contain monomer and dimer peaks at 60 and 120 nm, respectively, while α-LA contains a large monomer peak near 50 nm and a dimer peak at 100 nm, with a tail extending out to 200 nm, corresponding to higher order oligomers, e.g. trimers and tetramers. When β-LG or α-LA is adsorbed onto the most highly curved surfaces, both monomer peaks are shifted to much smaller values of Lc. Furthermore, for β-LG, the dimer peak is strongly suppressed on the highly curved surface, whereas for α-LA the trimer and tetramer tail is suppressed with no significant change in the dimer peak. For both proteins, the number of higher order oligomers is significantly reduced as the curvature of the underlying surface is increased. These results suggest that the surface curvature provides a new method of manipulating protein-protein interactions and controlling the association of adsorbed proteins, with applications to the development of novel biosensors.
Collapse
Affiliation(s)
| | | | | | | | - J. R. Dutcher
- Department of Physics, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| |
Collapse
|
166
|
Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B, Melia. TJ. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 2014; 16:415-24. [PMID: 24747438 PMCID: PMC4111135 DOI: 10.1038/ncb2940] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 02/27/2014] [Indexed: 02/07/2023]
Abstract
The components supporting autophagosome growth on the cup-like isolation membrane are likely to be different from those found on closed and maturing autophagosomes. The highly curved rim of the cup may serve as a functionally required surface for transiently associated components of the early acting autophagic machinery. Here we demonstrate that the E2-like enzyme, Atg3, facilitates LC3/GABARAP lipidation only on membranes exhibiting local lipid-packing defects. This activity requires an amino-terminal amphipathic helix similar to motifs found on proteins targeting highly curved intracellular membranes. By tuning the hydrophobicity of this motif, we can promote or inhibit lipidation in vitro and in rescue experiments in Atg3-knockout cells, implying a physiologic role for this stress detection. The need for extensive lipid-packing defects suggests that Atg3 is designed to work at highly curved membranes, perhaps including the limiting edge of the growing phagophore.
Collapse
Affiliation(s)
- Sangeeta Nath
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Julia Dancourt
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Vladimir Shteyn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Gabriella Puente
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Wendy M. Fong
- Departments of Neurology, Pathology and Cell Biology, Columbia University, NY, NY
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Ai Yamamoto
- Departments of Neurology, Pathology and Cell Biology, Columbia University, NY, NY
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS et université de Nice, France
| | - Thomas J. Melia.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
167
|
Hsu JW, Chen ZJ, Liu YW, Lee FJS. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. J Cell Sci 2014; 127:2615-20. [PMID: 24706946 DOI: 10.1242/jcs.143057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small GTPase ADP-ribosylation factors (ARFs) are key regulators of membrane trafficking and their activities are determined by guanine-nucleotide-binding status. In Saccharomyces cerevisiae, Arl1p, an ARF-like protein, is responsible for multiple trafficking pathways at the Golgi. The GTP-hydrolysis activity of Arl1p is stimulated by its GTPase-activating protein Gcs1p, and binding with its effector Imh1p protects Arl1p from premature inactivation. However, the mechanism involved in the timing of Arl1p inactivation is unclear. Here, we demonstrate that another Arl1p effector, the lipid flippase Drs2p, is required for Gcs1p-stimulated inactivation of Arl1p. Drs2p is known to be activated by Arl1p and is involved in vesicle formation through its ability to create membrane asymmetry. We found that the flippase activity of Drs2p is required for proper membrane targeting of Gcs1p in vivo. Through modification of the membrane environment, Drs2p promotes the affinity of Gcs1p for the Golgi, where it binds to active Arl1p. Together, Imh1p and Drs2p modulate the activity of Gcs1p by timing its interaction with Arl1p, hence providing feedback regulation of Arl1p activity.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zzu-Jung Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
168
|
Campelo F, Kozlov MM. Sensing membrane stresses by protein insertions. PLoS Comput Biol 2014; 10:e1003556. [PMID: 24722359 PMCID: PMC3983069 DOI: 10.1371/journal.pcbi.1003556] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/18/2014] [Indexed: 01/28/2023] Open
Abstract
Protein domains shallowly inserting into the membrane matrix are ubiquitous in peripheral membrane proteins involved in various processes of intracellular membrane shaping and remodeling. It has been suggested that these domains sense membrane curvature through their preferable binding to strongly curved membranes, the binding mechanism being mediated by lipid packing defects. Here we make an alternative statement that shallow protein insertions are universal sensors of the intra-membrane stresses existing in the region of the insertion embedding rather than sensors of the curvature per se. We substantiate this proposal computationally by considering different independent ways of the membrane stress generation among which some include changes of the membrane curvature whereas others do not alter the membrane shape. Our computations show that the membrane-binding coefficient of shallow protein insertions is determined by the resultant stress independently of the way this stress has been produced. By contrast, consideration of the correlation between the insertion binding and the membrane curvature demonstrates that the binding coefficient either increases or decreases with curvature depending on the factors leading to the curvature generation. To validate our computational model, we treat quantitatively the experimental results on membrane binding by ALPS1 and ALPS2 motifs of ArfGAP1.
Collapse
Affiliation(s)
- Felix Campelo
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael M. Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
169
|
Stahelin RV, Scott JL, Frick CT. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 2014; 182:3-18. [PMID: 24556335 DOI: 10.1016/j.chemphyslip.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022]
Abstract
Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Cary T Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
170
|
Chen J, Smoyer CJ, Slaughter BD, Unruh JR, Jaspersen SL. The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. ACTA ACUST UNITED AC 2014; 204:523-39. [PMID: 24515347 PMCID: PMC3926959 DOI: 10.1083/jcb.201307043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the nuclear pore complex and spindle pole body to ensure proper nuclear envelope insertion of both complexes. In closed mitotic systems such as Saccharomyces cerevisiae, nuclear pore complexes (NPCs) and the spindle pole body (SPB) must assemble into an intact nuclear envelope (NE). Ndc1 is a highly conserved integral membrane protein involved in insertion of both complexes. In this study, we show that Ndc1 interacts with the SUN domain–containing protein Mps3 on the NE in live yeast cells using fluorescence cross-correlation spectroscopy. Genetic and molecular analysis of a series of new ndc1 alleles allowed us to understand the role of Ndc1–Mps3 binding at the NE. We show that the ndc1-L562S allele is unable to associate specifically with Mps3 and find that this mutant is lethal due to a defect in SPB duplication. Unlike other ndc1 alleles, the growth and Mps3 binding defect of ndc1-L562S is fully suppressed by deletion of POM152, which encodes a NPC component. Based on our data we propose that the Ndc1–Mps3 interaction is important for controlling the distribution of Ndc1 between the NPC and SPB.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | | | | |
Collapse
|
171
|
Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 2014; 155:830-43. [PMID: 24209621 DOI: 10.1016/j.cell.2013.09.056] [Citation(s) in RCA: 752] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/12/2013] [Accepted: 09/23/2013] [Indexed: 12/01/2022]
Abstract
Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. This architecture suggests the ability to both tether organelles and transport lipids between them. We show that in oxysterol binding protein (OSBP) these two activities are coupled by a four-step cycle. Membrane tethering by the PH domain and the FFAT motif enables sterol transfer by the lipid transfer domain (ORD), followed by back transfer of PI(4)P by the ORD. Finally, PI(4)P is hydrolyzed in cis by the ER protein Sac1. The energy provided by PI(4)P hydrolysis drives sterol transfer and allows negative feedback when PI(4)P becomes limiting. Other lipid transfer proteins are tethered by the same mechanism. Thus, OSBP-mediated back transfer of PI(4)P might coordinate the transfer of other lipid species at the ER-Golgi interface.
Collapse
Affiliation(s)
- Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice Sophia Antipolis and CNRS, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
172
|
Ramadas R, Thattai M. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys J 2014; 104:2553-63. [PMID: 23746528 DOI: 10.1016/j.bpj.2013.03.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organelles, using a minimal biophysical model of traffic. Our model incorporates membrane-bound compartments, coat proteins and adaptors that drive vesicles to bud and segregate cargo from source compartments, and SNARE proteins and associated factors that cause vesicles to fuse into specific destination compartments. In simulations, arbitrary numbers of compartments with heterogeneous initial compositions segregate into a few compositionally distinct subsets that we term organelles. The global structure of the traffic system (i.e., the number, composition, and connectivity of organelles) is determined completely by local molecular interactions. On evolutionary timescales, duplication of the budding and fusion machinery followed by loss of cross-interactions leads to the emergence of new organelles, with increased molecular specificity being necessary to maintain larger organellar repertoires. These results clarify potential modes of early eukaryotic evolution as well as more recent eukaryotic diversification.
Collapse
Affiliation(s)
- Rohini Ramadas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
173
|
Yorimitsu T, Sato K, Takeuchi M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. FRONTIERS IN PLANT SCIENCE 2014; 5:411. [PMID: 25191334 PMCID: PMC4140167 DOI: 10.3389/fpls.2014.00411] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/03/2014] [Indexed: 05/21/2023]
Abstract
Small GTPase proteins play essential roles in the regulation of vesicular trafficking systems in eukaryotic cells. Two types of small GTPases, secretion-associated Ras-related protein (Sar) and ADP-ribosylation factor (Arf), act in the biogenesis of transport vesicles. Sar/Arf GTPases function as molecular switches by cycling between active, GTP-bound and inactive, GDP-bound forms, catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins, respectively. Activated Sar/Arf GTPases undergo a conformational change, exposing the N-terminal amphipathic α-helix for insertion into membranes. The process triggers the recruitment and assembly of coat proteins to the membranes, followed by coated vesicle formation and scission. In higher plants, Sar/Arf GTPases also play pivotal roles in maintaining the dynamic identity of organelles in the secretory pathway. Sar1 protein strictly controls anterograde transport from the endoplasmic reticulum (ER) through the recruitment of plant COPII coat components onto membranes. COPII vesicle transport is responsible for the organization of highly conserved polygonal ER networks. In contrast, Arf proteins contribute to the regulation of multiple trafficking routes, including transport through the Golgi complex and endocytic transport. These transport systems have diversified in the plant kingdom independently and exhibit several plant-specific features with respect to Golgi organization, endocytic cycling, cell polarity and cytokinesis. The functional diversification of vesicular trafficking systems ensures the multicellular development of higher plants. This review focuses on the current knowledge of Sar/Arf GTPases, highlighting the molecular details of GTPase regulation in vesicle formation in yeast and advances in knowledge of the characteristics of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
| | - Masaki Takeuchi
- Department of Chemistry, Graduate School of Science, University of TokyoTokyo, Japan
- *Correspondence: Masaki Takeuchi, Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan e-mail:
| |
Collapse
|
174
|
TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration. PLoS Biol 2013; 11:e1001726. [PMID: 24311986 PMCID: PMC3848981 DOI: 10.1371/journal.pbio.1001726] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022] Open
Abstract
The cancer-associated TRAF4 protein has a TRAF domain that is a bona fide phosphoinositide-binding domain and involved in the modulation of tight junctions and cell migration. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. Tumor necrosis factor (TNF) receptor-associated factor 4, also known as TRAF4, is an unusual member of the TRAF protein family. While TRAFs are primarily known as regulators of inflammation, antiviral responses, and apoptosis, research on TRAF4 has identified its involvement in development and cancer. Importantly TRAF4 overexpression has been associated with a poor prognosis in breast cancers. TRAF4 has multiple subcellular localizations: to the plasma membrane in tight junctions (TJs), cytoplasmic and nuclear. The recruitment mechanisms and the functional impact of these distinct localizations are not completely understood. Here we investigate how TRAF4 is recruited to TJs and its involvement in cell–cell contacts in mammary epithelial cells (MECs). We show that the TRAF domain of all TRAFs contains a lipid binding module, and that TRAF4 uses this domain to form a trimeric complex that associates with phosphoinositides at the plasma membrane. Moreover this interaction is necessary for its recruitment to TJs. Additionally, we show that through its interaction with lipids TRAF4 delays TJ assembly and increases cell migration. We propose that TRAF4 has an important function in cancer progression by destabilizing TJs and favoring cell migration.
Collapse
|
175
|
Kirsten ML, Baron RA, Seabra MC, Ces O. Rab1a and Rab5a preferentially bind to binary lipid compositions with higher stored curvature elastic energy. Mol Membr Biol 2013; 30:303-14. [PMID: 23815289 DOI: 10.3109/09687688.2013.818725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rab proteins are a large family of GTP-binding proteins that regulate cellular membrane traffic and organelle identity. Rab proteins cycle between association with membranes and binding to RabGDI. Bound on membranes, each Rab has a very specific cellular location and it is this remarkable degree of specificity with which Rab GTPases recognize distinct subsets of intracellular membranes that forms the basis of their ability to act as key cellular regulators, determining the recruitment of downstream effectors to the correct membrane at the correct time. The molecular mechanisms controlling Rab localization remain poorly understood. Here, we present a fluorescence-based assay to investigate Rab GTPase membrane extraction and delivery by RabGDI. Using EGFP-Rab fusion proteins the amount of Rab:GDI complex obtained by GDI extraction of Rab proteins from HEK293 membranes could be determined, enabling control of complex concentration. Subsequent partitioning of the Rab GTPases into vesicles made up of artificial binary lipid mixtures showed for the first time, that the composition of the target membrane plays a key role in the localization of Rab proteins by sensing the stored curvature elastic energy in the membrane.
Collapse
Affiliation(s)
- Marie L Kirsten
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | |
Collapse
|
176
|
Buchkovich NJ, Henne WM, Tang S, Emr SD. Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev Cell 2013; 27:201-214. [PMID: 24139821 DOI: 10.1016/j.devcel.2013.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/09/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) have emerged as key cellular machinery that drive topologically unique membrane deformation and scission. Understanding how the ESCRT-III polymer interacts with membrane, promoting and/or stabilizing membrane deformation, is an important step in elucidating this sculpting mechanism. Using a combination of genetic and biochemical approaches, both in vivo and in vitro, we identify two essential modules required for ESCRT-III-membrane association: an electrostatic cluster and an N-terminal insertion motif. Mutating either module in yeast causes cargo sorting defects in the MVB pathway. We show that the essential N-terminal insertion motif provides a stable anchor for the ESCRT-III polymer. By replacing this N-terminal motif with well-characterized membrane insertion modules, we demonstrate that the N terminus of Snf7 has been tuned to maintain the topological constraints associated with ESCRT-III-filament-mediated membrane invagination and vesicle formation. Our results provide insights into the spatially unique, ESCRT-III-mediated membrane remodeling.
Collapse
Affiliation(s)
- Nicholas J Buchkovich
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - William Mike Henne
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shaogeng Tang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
177
|
Payet LA, Pineau L, Snyder ECR, Colas J, Moussa A, Vannier B, Bigay J, Clarhaut J, Becq F, Berjeaud JM, Vandebrouck C, Ferreira T. Saturated Fatty Acids Alter the Late Secretory Pathway by Modulating Membrane Properties. Traffic 2013; 14:1228-41. [DOI: 10.1111/tra.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Laurie-Anne Payet
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | | | - Ellen C. R. Snyder
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jenny Colas
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Ahmed Moussa
- Ecole Nationale des Sciences Appliquées de Tanger; BP 1818 90000 Tanger Morocco
| | - Brigitte Vannier
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Joelle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire; UMR CNRS 7275, Université de Nice-Sophia Antipolis; 660 Route des Lucioles, Sophia Antipolis 06560 Valbonne France
| | - Jonathan Clarhaut
- INSERM CIC 0802; CHU de Poitiers; 2 rue de la Milétrie 86021 Poitiers France
| | - Frédéric Becq
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jean-Marc Berjeaud
- Université de Poitiers; Ecologie et Biologie des Interactions; UMR CNRS 7267, 40 avenue du Recteur Pineau 86022 Poitiers Cedex France
| | - Clarisse Vandebrouck
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Thierry Ferreira
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| |
Collapse
|
178
|
Aizel K, Biou V, Navaza J, Duarte LV, Campanacci V, Cherfils J, Zeghouf M. Integrated conformational and lipid-sensing regulation of endosomal ArfGEF BRAG2. PLoS Biol 2013; 11:e1001652. [PMID: 24058294 PMCID: PMC3769224 DOI: 10.1371/journal.pbio.1001652] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
The structure of endosomal ArfGEF BRAG2 in complex with Arf1, combined with an analysis of this GEF's efficiency on membranes, reveals a regulatory mechanism that simultaneously optimizes membrane recruitment and nucleotide exchange. The mechanisms whereby guanine nucleotide exchange factors (GEFs) coordinate their subcellular targeting to their activation of small GTPases remain poorly understood. Here we analyzed how membranes control the efficiency of human BRAG2, an ArfGEF involved in receptor endocytosis, Wnt signaling, and tumor invasion. The crystal structure of an Arf1–BRAG2 complex that mimics a membrane-bound intermediate revealed an atypical PH domain that is constitutively anchored to the catalytic Sec7 domain and interacts with Arf. Combined with the quantitative analysis of BRAG2 exchange activity reconstituted on membranes, we find that this PH domain potentiates nucleotide exchange by about 2,000-fold by cumulative conformational and membrane-targeting contributions. Furthermore, it restricts BRAG2 activity to negatively charged membranes without phosphoinositide specificity, using a positively charged surface peripheral to but excluding the canonical lipid-binding pocket. This suggests a model of BRAG2 regulation along the early endosomal pathway that expands the repertoire of GEF regulatory mechanisms. Notably, it departs from the auto-inhibitory and feedback loop paradigm emerging from studies of SOS and cytohesins. It also uncovers a novel mechanism of unspecific lipid-sensing by PH domains that may allow sustained binding to maturating membranes. Understanding the molecular mechanisms that allow guanine exchange factor proteins (GEFs) to coordinate their GDP/GTP exchange activity with their being targeted to specific intracellular membranes is an important issue. In this study, we solved the crystal structure of the ArfGEF BRAG2, an endosomal protein that is involved in invasive phenotypes in various tumors, in a complex with the small GTPase Arf1. We show that the pleckstrin homology (PH) domain of BRAG2 atypically does not auto-inhibit its Sec7 domain (as has been seen in ArfGEFs belonging to the cytohesin family), but instead potentiates nucleotide exchange 10-fold in solution and up to 2,000-fold in the presence of liposomes. This stimulatory effect requires negatively charged membranes, and does not involve a preference of the PH domain for specific phosphoinositides or the use of its canonical lipid-binding pocket. This uncovers a regulatory mechanism in which the PH domain controls GEF efficiency by concurrently optimizing membrane recruitment and nucleotide exchange.
Collapse
Affiliation(s)
- Kaheina Aizel
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Valérie Biou
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Jorge Navaza
- Institut de Biologie Structurale, CNRS/CEA/Université Joseph Fourier, Grenoble, France
- Unidad de Biofísica CSIC-UPV/EHU, Leioa, Bizkaia, Spain
| | - Lionel V. Duarte
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Valérie Campanacci
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
- * E-mail: (JC); (MZ)
| | - Mahel Zeghouf
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
- * E-mail: (JC); (MZ)
| |
Collapse
|
179
|
Xu P, Baldridge RD, Chi RJ, Burd CG, Graham TR. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. ACTA ACUST UNITED AC 2013; 202:875-86. [PMID: 24019533 PMCID: PMC3776346 DOI: 10.1083/jcb.201305094] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drs2 flippase increases membrane curvature and anionic phospholipid composition of the membrane by flipping phosphatidylserine, which is critical for vesicular transport between the trans-Golgi network and early endosomes. Vesicle-mediated protein transport between organelles of the secretory and endocytic pathways is strongly influenced by the composition and organization of membrane lipids. In budding yeast, protein transport between the trans-Golgi network (TGN) and early endosome (EE) requires Drs2, a phospholipid translocase in the type IV P-type ATPase family. However, downstream effectors of Drs2 and specific phospholipid substrate requirements for protein transport in this pathway are unknown. Here, we show that the Arf GTPase-activating protein (ArfGAP) Gcs1 is a Drs2 effector that requires a variant of the ArfGAP lipid packing sensor (+ALPS) motif for localization to TGN/EE membranes. Drs2 increases membrane curvature and anionic phospholipid composition of the cytosolic leaflet, both of which are sensed by the +ALPS motif. Using mutant forms of Drs2 and the related protein Dnf1, which alter their ability to recognize phosphatidylserine, we show that translocation of this substrate to the cytosolic leaflet is essential for +ALPS binding and vesicular transport between the EE and the TGN.
Collapse
Affiliation(s)
- Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | | | | | | | | |
Collapse
|
180
|
Hishikawa D, Shindou H, Harayama T, Ogasawara R, Suwabe A, Shimizu T. Identification of Sec14‐like 3 as a novel lipid‐packing sensor in the lung. FASEB J 2013; 27:5131-40. [DOI: 10.1096/fj.13-237941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hideo Shindou
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Takeshi Harayama
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Rie Ogasawara
- Department of Laboratory MedicineSchool of MedicineIwate Medical UniversityUchimaruMoriokaJapan
| | - Akira Suwabe
- Department of Laboratory MedicineSchool of MedicineIwate Medical UniversityUchimaruMoriokaJapan
| | - Takao Shimizu
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of Biochemistry and Molecular BiologyFaculty of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
181
|
Smoyer CJ, Jaspersen SL. Breaking down the wall: the nuclear envelope during mitosis. Curr Opin Cell Biol 2013; 26:1-9. [PMID: 24529240 DOI: 10.1016/j.ceb.2013.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
A defining feature of eukaryotic cells is the nucleus, which houses the genome inside the nuclear envelope (NE): a double lipid bilayer that separates the nuclear and cytoplasmic materials. Although the NE is commonly viewed as a barrier that is overcome only by embedded nuclear pore complexes (NPCs) that facilitate nuclear-cytoplasmic trafficking, recent work in a wide range of eukaryotes reveals that the NE is a dynamic organelle that is modified each time the cell divides to ultimately establish two functional daughter nuclei. Here, we review how studies of divergent mitotic strategies have helped elucidate common properties of NE biology that allow it to function throughout the cell cycle.
Collapse
Affiliation(s)
- Christine J Smoyer
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
182
|
Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C, Fuchs PFJ, Antonny B. Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys J 2013; 104:575-84. [PMID: 23442908 DOI: 10.1016/j.bpj.2012.11.3837] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
Sensing membrane curvature allows fine-tuning of complex reactions that occur at the surface of membrane-bound organelles. One of the most sensitive membrane curvature sensors, the Amphipathic Lipid Packing Sensor (ALPS) motif, does not seem to recognize the curved surface geometry of membranes per se; rather, it recognizes defects in lipid packing that arise from membrane bending. In a companion paper, we show that these defects can be mimicked by introducing conical lipids in a flat lipid bilayer, in agreement with experimental observations. Here, we use molecular-dynamics (MD) simulations to characterize ALPS binding to such lipid bilayers. The ALPS motif recognizes lipid-packing defects by a conserved mechanism: peptide partitioning is driven by the insertion of hydrophobic residues into large packing defects that are preformed in the bilayer. This insertion induces only minor modifications in the statistical distribution of the free packing defects. ALPS insertion is severely hampered when monounsaturated lipids are replaced by saturated lipids, leading to a decrease in packing defects. We propose that the hypersensitivity of ALPS motifs to lipid packing defects results from the repetitive use of hydrophobic insertions along the monotonous ALPS sequence.
Collapse
Affiliation(s)
- Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, Valbonne, France
| | | | | | | | | | | | | |
Collapse
|
183
|
Khattree N, Ritter LM, Goldberg AFX. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. J Cell Sci 2013; 126:4659-70. [PMID: 23886945 DOI: 10.1242/jcs.126888] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally.
Collapse
Affiliation(s)
- Nidhi Khattree
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | | | | |
Collapse
|
184
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
185
|
Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013391. [PMID: 23732476 DOI: 10.1101/cshperspect.a013391] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels--SNARE proteins--to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Biozentrum, Growth & Development, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
186
|
Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. PLoS One 2013; 8:e62963. [PMID: 23638170 PMCID: PMC3639266 DOI: 10.1371/journal.pone.0062963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
Arfaptin2 contains a Bin/Amphiphysin/Rvs (BAR) domain and directly interacts with proteins of the Arf/Arl family in their active GTP-bound state. It has been proposed that BAR domains are able to sense membrane curvature and to induce membrane tubulation. We report here that active Arf1 is required for the recruitment of Arfaptin2 to artificial liposomes mimicking the Golgi apparatus lipid composition. The Arf1-dependent recruitment of Arfaptin2 increases with membrane curvature, while the recruitment of Arf1 itself is not sensitive to curvature. At high protein concentrations, the binding of Arfaptin2 induces membrane tubulation. Finally, membrane-bound Arfaptin2 is released from the liposome when ArfGAP1 catalyzes the hydrolysis of GTP to GDP in Arf1. These results show that both Arf1 activation and high membrane curvature are required for efficient recruitment of Arfaptin2 to membranes.
Collapse
|
187
|
Giridharan SSP, Cai B, Vitale N, Naslavsky N, Caplan S. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis. Mol Biol Cell 2013; 24:1776-90, S1-15. [PMID: 23596323 PMCID: PMC3667729 DOI: 10.1091/mbc.e13-01-0026] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid (PA), a novel lipid component of recycling endosomes (REs). Interactions between these proteins stabilize their association with membranes and allow nucleation of tubules by syndapin2. A new role is highlighted for PA in recycling, suggesting a mechanism for tubular RE formation. Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.
Collapse
|
188
|
Zendeh-boodi Z, Yamamoto T, Sakane H, Tanaka K. Identification of a second amphipathic lipid-packing sensor-like motif that contributes to Gcs1p function in the early endosome-to-TGN pathway. J Biochem 2013; 153:573-87. [PMID: 23564908 DOI: 10.1093/jb/mvt025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ArfGAPs, GTPase-activating proteins for Arf small GTPases, are involved in multiple steps of vesicle formation of various transport pathways. Amphipathic lipid-packing sensor (ALPS) motif was first identified in the C-terminal regions of ArfGAP1 and its yeast homologue Gcs1p as a region that adsorbs preferentially onto highly curved membranes by folding into an amphipathic α-helix (AH). We previously showed that Gcs1p functionally interacted with the phospholipid flippase Cdc50p-Drs2p in the early endosome-to-TGN retrieval pathway. In this study, we performed functional analyses of the C-terminal region of Gcs1p containing ALPS. Hydrophobic cluster analysis suggested that there is another potential AH-forming region downstream of ALPS in Gcs1p. Mutational analysis suggested that the ALPS motif is important for the Gcs1p function in the Golgi-to-ER retrograde pathway, whereas ALPS and the predicted AH region redundantly function in the post-Golgi pathways including the early endosome-to-TGN pathway. Liposome flotation assay indicated that this downstream region preferentially interacted with liposomes of smaller size. The region containing the ALPS motif was also required for the interaction with SNARE proteins including Snc1p and Tlg1p. These results suggest that ALPS and the predicted AH region are involved in the regulation and function of Gcs1p by interacting with membrane phospholipids and vesicle proteins.
Collapse
Affiliation(s)
- Zahra Zendeh-boodi
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, N15 W7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
189
|
Doan T, Coleman J, Marquis KA, Meeske AJ, Burton BM, Karatekin E, Rudner DZ. FisB mediates membrane fission during sporulation in Bacillus subtilis. Genes Dev 2013; 27:322-34. [PMID: 23388828 DOI: 10.1101/gad.209049.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
How bacteria catalyze membrane fission during growth and differentiation is an outstanding question in prokaryotic cell biology. Here, we describe a protein (FisB, for fission protein B) that mediates membrane fission during the morphological process of spore formation in Bacillus subtilis. Sporulating cells divide asymmetrically, generating a large mother cell and smaller forespore. After division, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Membrane fission releases the forespore into the mother cell cytoplasm. Cells lacking FisB are severely and specifically impaired in the fission reaction. Moreover, GFP-FisB forms dynamic foci that become immobilized at the site of fission. Purified FisB catalyzes lipid mixing in vitro and is only required in one of the fusing membranes, suggesting that FisB-lipid interactions drive membrane remodeling. Consistent with this idea, the extracytoplasmic domain of FisB binds with remarkable specificity to cardiolipin, a lipid enriched in the engulfing membranes and regions of negative curvature. We propose that membrane topology at the final stage of engulfment and FisB-cardiolipin interactions ensure that the mother cell membranes are severed at the right time and place. The unique properties of FisB set it apart from the known fission machineries in eukaryotes, suggesting that it represents a new class of fission proteins.
Collapse
Affiliation(s)
- Thierry Doan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Schlacht A, Mowbrey K, Elias M, Kahn RA, Dacks JB. Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins. Traffic 2013; 14:636-49. [PMID: 23433073 DOI: 10.1111/tra.12063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
The organelle paralogy hypothesis is one model for the acquisition of nonendosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase activating proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of the Arf GAP protein family. Of the 10 subfamilies previously defined in humans, we find that 5 were likely present in the last eukaryotic common ancestor. Of the 3 most recently derived subfamilies, 1 was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while 2 arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor and integrate the Arf GAP family into a proposed mechanism for the evolution of nonendosymbiotic organelles.
Collapse
Affiliation(s)
- Alexander Schlacht
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
191
|
Abstract
Small GTPases use GDP/GTP alternation to actuate a variety of functional switches that are pivotal for cell dynamics. The GTPase switch is turned on by GEFs, which stimulate dissociation of the tightly bound GDP, and turned off by GAPs, which accelerate the intrinsically sluggish hydrolysis of GTP. For Ras, Rho, and Rab GTPases, this switch incorporates a membrane/cytosol alternation regulated by GDIs and GDI-like proteins. The structures and core mechanisms of representative members of small GTPase regulators from most families have now been elucidated, illuminating their general traits combined with scores of unique features. Recent studies reveal that small GTPase regulators have themselves unexpectedly sophisticated regulatory mechanisms, by which they process cellular signals and build up specific cell responses. These mechanisms include multilayered autoinhibition with stepwise release, feedback loops mediated by the activated GTPase, feed-forward signaling flow between regulators and effectors, and a phosphorylation code for RhoGDIs. The flipside of these highly integrated functions is that they make small GTPase regulators susceptible to biochemical abnormalities that are directly correlated with diseases, notably a striking number of missense mutations in congenital diseases, and susceptible to bacterial mimics of GEFs, GAPs, and GDIs that take command of small GTPases in infections. This review presents an overview of the current knowledge of these many facets of small GTPase regulation.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Centre deRecherche de Gif, Gif-sur-Yvette, France
| | | |
Collapse
|
192
|
Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2013; 23:886-95. [PMID: 23153485 DOI: 10.1016/j.devcel.2012.10.009] [Citation(s) in RCA: 389] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | |
Collapse
|
193
|
Yokoyama H, Ikeda K, Wakabayashi M, Ishihama Y, Nakano M. Effects of lipid membrane curvature on lipid packing state evaluated by isothermal titration calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:857-860. [PMID: 23270307 DOI: 10.1021/la304532k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this report, we present a novel approach for the elucidation of the physicochemical properties of lipid membranes by isothermal titration calorimetry (ITC) to quantify the heat absorbed during the solubilization of vesicles into TritonX-100 micelles. By using large and small unilamellar vesicles for comparison, this method provides calorimetric data on the gel-to-liquid-crystalline phase transition and its curvature effects and, in particular, the enthalpy change upon membrane deformation from a planar to a curved shape, which cannot be obtained by the conventional approach using differential scanning calorimetry. The results showed quantitatively that the increase in membrane curvature increases the enthalpy of 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes both below and above the phase-transition temperature, and that the effect is more significant for the former condition. The calorimetric data obtained are further discussed in relation to the elastic bending energy of the membranes and membrane-peptide interaction.
Collapse
Affiliation(s)
- Hirokazu Yokoyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
194
|
Effect of amino acid distribution of amphipathic helical peptide derived from human apolipoprotein A-I on membrane curvature sensing. FEBS Lett 2013; 587:510-5. [PMID: 23347831 DOI: 10.1016/j.febslet.2013.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022]
Abstract
Amphipathic helix, which senses membrane curvature, is of growing interest. Here we explore the effect of amino acid distribution of amphipathic helical peptide derived from the C-terminal region (residues 220-241) of human apolipoprotein (apo) A-I on membrane curvature sensing. This peptide preferred a curved membrane in a manner similar to full-length apoA-I, although its model peptide did not sense membrane curvature. Substitution of several residues both on the polar and non-polar faces of the amphipathic helix had no significant effect on sensing, suggestive of the elaborate molecular architecture in the C-terminal helical region of apoA-I to exert lipid efflux function.
Collapse
|
195
|
Kasson PM, Hess B, Lindahl E. Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions. Chem Phys Lipids 2013; 169:106-12. [PMID: 23318532 DOI: 10.1016/j.chemphyslip.2013.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022]
Abstract
Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations.
Collapse
Affiliation(s)
- Peter M Kasson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 29908, USA.
| | | | | |
Collapse
|
196
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
197
|
Bouvet S, Golinelli-Cohen MP, Contremoulins V, Jackson CL. Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. J Cell Sci 2013; 126:4794-805. [DOI: 10.1242/jcs.134254] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lipid droplet metabolism and secretory pathway trafficking both require activation of the Arf1 small G protein. The spatio-temporal regulation of Arf1 activation is mediated by guanine nucleotide exchange factors (GEFs) of the GBF and BIG families, but the mechanisms of their localization to multiple sites within cells are poorly understood. Here we show that GBF1 has a lipid-binding domain (HDS1) immediately downstream of the catalytic Sec7 domain, which mediates association with both lipid droplets and Golgi membranes in cells, and with bilayer liposomes and artificial droplets in vitro. An amphipathic helix within HDS1 is necessary and sufficient for lipid binding, both in vitro and in cells. The HDS1 domain of GBF1 is stably associated with lipid droplets in cells, and the catalytic Sec7 domain inhibits this potent lipid droplet binding capacity. Additional sequences upstream of the Sec7 domain-HDS1 tandem are required for localization to Golgi membranes. This mechanism provides insight into crosstalk between lipid droplet function and secretory trafficking.
Collapse
|
198
|
Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes. Proc Natl Acad Sci U S A 2012; 110:111-6. [PMID: 23251034 DOI: 10.1073/pnas.1201658110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rasal, belonging to the GAP1 subfamily of Ras GTPase-activating proteins (RasGAPs) with dual RasGAP/RapGAP specificity, is epigenetically silenced in several tumor types. Surprisingly, the isolated protein has GAP activity on Rap but not on Ras. Its membrane recruitment is regulated by interaction with calcium and lipids, which simultaneously induces its RasGAP activity through a yet unknown mechanism. Here we show that the interaction of Rasal with membranes induces Rasal RasGAP activity by spatial and conformational regulation, although it does not have any effect on its RapGAP activity. Not only is colocalization of Rasal and Ras in the membrane essential for RasGAP activation, but direct and Ca-dependent interaction between the tandem C2 domains of Rasal and lipids of the membrane is also required. Whereas the C2A domain binds specifically phosphatidylserine, the C2B domain interacts with several phosphoinositol lipids. Finally we show, that similar to the C2 domains of synaptotagmins, the Rasal tandem C2 domains are able to sense and induce membrane curvature by the insertion of hydrophobic loops into the membrane.
Collapse
|
199
|
Hachiro T, Yamamoto T, Nakano K, Tanaka K. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast. J Biol Chem 2012; 288:3594-608. [PMID: 23250744 DOI: 10.1074/jbc.m112.416263] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH(2)-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH(2)-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.
Collapse
Affiliation(s)
- Takeru Hachiro
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, N15 W7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
200
|
Abstract
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|