151
|
Abstract
Cellular memory is maintained at homeotic genes by cis-regulatory elements whose mechanism of action is unknown. We have examined chromatin at Drosophila homeotic gene clusters by measuring, at high resolution, levels of histone replacement and nucleosome occupancy. Homeotic gene clusters display conspicuous peaks of histone replacement at boundaries of cis-regulatory domains superimposed over broad regions of low replacement. Peaks of histone replacement closely correspond to nuclease-hypersensitive sites, binding sites for Polycomb and trithorax group proteins, and sites of nucleosome depletion. Our results suggest the existence of a continuous process that disrupts nucleosomes and maintains accessibility of cis-regulatory elements.
Collapse
Affiliation(s)
- Yoshiko Mito
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | |
Collapse
|
152
|
Abstract
Nuclear factor (NF)-kappaB and inhibitor of NF-kappaB kinase (IKK) proteins regulate many physiological processes, including the innate- and adaptive-immune responses, cell death and inflammation. Disruption of NF-kappaB or IKK function contributes to many human diseases, including cancer. However, the NF-kappaB and IKK pathways do not exist in isolation and there are many mechanisms that integrate their activity with other cell-signalling networks. This crosstalk constitutes a decision-making process that determines the consequences of NF-kappaB and IKK activation and, ultimately, cell fate.
Collapse
Affiliation(s)
- Neil D Perkins
- College of Life Sciences, Division of Gene Regulation and Expression, James Black Centre, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
153
|
De Bosscher K, Vanden Berghe W, Haegeman G. Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 2006; 25:6868-86. [PMID: 17072333 DOI: 10.1038/sj.onc.1209935] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A variety of studies have shown that some activated nuclear receptors (NRs), especially the glucorticoid receptor, the estrogen receptor and peroxisome proliferator-activated receptor, can inhibit the activity of the transcription factor nuclear factor kappaB (NF-kappaB), which plays a key role in the control of genes involved in inflammation, cell proliferation and apoptosis. This review describes the molecular mechanisms of cross-talk between NRs and NF-kappaB and the biological relevance of this cross-talk. The importance and mechanistic aspects of selective NR modulation are discussed. Also included are future research prospects, which will lead to a new era in the field of NR research with the aim of specifically inhibiting NF-kappaB-driven gene expression for anti-inflammatory, anti-tumor and immune-modulatory purposes.
Collapse
Affiliation(s)
- K De Bosscher
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, Gent, Belgium.
| | | | | |
Collapse
|
154
|
Abstract
Stimulus-induced nuclear factor-kappaB (NF-kappaB) activity, the central mediator of inflammatory responses and immune function, comprises a family of dimeric transcription factors that regulate diverse gene expression programs consisting of hundreds of genes. A family of inhibitor of kappaB (IkappaB) proteins controls NF-kappaB DNA-binding activity and nuclear localization. IkappaB protein metabolism is intricately regulated through stimulus-induced degradation and feedback re-synthesis, which allows for dynamic control of NF-kappaB activity. This network of interactions has been termed the NF-kappaB signaling module. Here, we summarize the current understanding of the molecular structures and biochemical mechanisms that determine NF-kappaB dimer formation and the signal-processing characteristics of the signaling module. We identify NF-kappaB-kappaB site interaction specificities and dynamic control of NF-kappaB activity as mechanisms that generate specificity in transcriptional regulation. We discuss examples of gene regulation that illustrate how these mechanisms may interface with other transcription regulators and promoter-associated events, and how these mechanisms suggest regulatory principles for NF-kappaB-mediated gene activation.
Collapse
Affiliation(s)
- A Hoffmann
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
155
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
156
|
Cui R, Tieu B, Recinos A, Tilton RG, Brasier AR. RhoA Mediates Angiotensin II–Induced Phospho-Ser536 Nuclear Factor κB/RelA Subunit Exchange on the Interleukin-6 Promoter in VSMCs. Circ Res 2006; 99:723-30. [PMID: 16960103 DOI: 10.1161/01.res.0000244015.10655.3f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vasoconstrictor angiotensin II (Ang II) accelerates atherosclerosis by inducing vascular gene expression programs, producing monocyte recruitment, and vascular remodeling. In vascular smooth muscle cells (VSMCs), Ang II signaling activates interleukin (IL)-6 expression, a cytokine producing acute-phase inflammation, mediated by the transcription factor nuclear factor κB (NF-κB). The classical NF-κB activation pathway involves cytoplasmic-to-nuclear translocation of the potent RelA transactivating subunit; however, because nuclear RelA is present in VSMCs, the mechanism by which NF-κB activity is controlled is incompletely understood. In this study, we focus on early activation steps controlling RelA activation. Although Ang II only weakly induces ≈1.5-fold RelA nuclear translocation, RelA is nevertheless required because short interfering RNA–mediated RelA knockdown inhibits inducible IL-6 expression. We find instead that Ang II stimulation rapidly induces RelA phosphorylation at serine residue 536, a critical regulatory site in its transactivating domain. Chromatin immunoprecipitation assays indicate no significant changes in total RelA binding to the native IL-6 promoter, but an apparent increase in fractional binding of phospho-Ser536 RelA. Inactivation of RhoA by treatment with
Clostridium botulinum
exoenzyme C3 exotoxin or expression of dominant negative RhoA blocks Ang II–inducible RelA Ser536 phosphorylation and IL-6 expression. Finally, enhanced phospho-Ser536 RelA formation in the aortae of rats chronically infused with Ang II was observed. Together, these data indicate a novel mechanism for Ang II–induced NF-κB activation in VSMCs, mediated by RhoA-induced phospho-Ser536 RelA formation, IL-6 expression, and vascular inflammation.
Collapse
Affiliation(s)
- Ruwen Cui
- Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
157
|
Sharp ZD, Mancini MG, Hinojos CA, Dai F, Berno V, Szafran AT, Smith KP, Lele TP, Lele TT, Ingber DE, Mancini MA. Estrogen-receptor-alpha exchange and chromatin dynamics are ligand- and domain-dependent. J Cell Sci 2006; 119:4101-16. [PMID: 16968748 DOI: 10.1242/jcs.03161] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a mammalian-based promoter chromosomal array system developed for single-cell studies of transcription-factor function. Designed after the prolactin promoter-enhancer, it allows for the direct visualization of estrogen receptor alpha (ERalpha) and/or Pit-1 interactions at a physiologically regulated transcription locus. ERalpha- and ligand-dependent cofactor recruitment, large-scale chromatin modifications and transcriptional activity identified a distinct fingerprint of responses for each condition. Ligand-dependent transcription (more than threefold activation compared with vehicle, or complete repression by mRNA fluorescent in situ hybridization) at the array correlated with its state of condensation, which was assayed using a novel high throughput microscopy approach. In support of the nuclear receptor hit-and-run model, photobleaching studies provided direct evidence of very transient ER-array interactions, and revealed ligand-dependent changes in k(off). ERalpha-truncation mutants indicated that helix-12 and interactions with co-regulators influenced both large-scale chromatin modeling and photobleaching recovery times. These data also showed that the ERalpha DNA-binding domain was insufficient for array targeting. Collectively, quantitative observations from this physiologically relevant biosensor suggest stochastic-based dynamics influence gene regulation at the promoter level.
Collapse
Affiliation(s)
- Z Dave Sharp
- Molecular Medicine, University of Texas Instititue of Biotechnology, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yao J, Munson KM, Webb WW, Lis JT. Dynamics of heat shock factor association with native gene loci in living cells. Nature 2006; 442:1050-3. [PMID: 16929308 DOI: 10.1038/nature05025] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 06/29/2006] [Indexed: 11/08/2022]
Abstract
Direct observation of transcription factor action in the living cell nucleus can provide important insights into gene regulatory mechanisms. Live-cell imaging techniques have enabled the visualization of a variety of intranuclear activities, from chromosome dynamics to gene expression. However, progress in studying transcription regulation of specific native genes has been limited, primarily as a result of difficulties in resolving individual gene loci and in detecting the small number of protein molecules functioning within active transcription units. Here we report that multiphoton microscopy imaging of polytene nuclei in living Drosophila salivary glands allows real-time analysis of transcription factor recruitment and exchange on specific native genes. After heat shock, we have visualized the recruitment of RNA polymerase II (Pol II) to native hsp70 gene loci 87A and 87C in real time. We show that heat shock factor (HSF), the transcription activator of hsp70, is localized to the nucleus before heat shock and translocates from nucleoplasm to chromosomal loci after heat shock. Assays based on fluorescence recovery after photobleaching show a rapid exchange of HSF at chromosomal loci under non-heat-shock conditions but a very slow exchange after heat shock. However, this is not a consequence of a change of HSF diffusibility, as shown here directly by fluorescence correlation spectroscopy. Our results provide strong evidence that activated HSF is stably bound to DNA in vivo and that turnover or disassembly of transcription activator is not required for rounds of hsp70 transcription. This and previous studies indicate that transcription activators display diverse dynamic behaviours in their associations with targeted loci in living cells. Our method can be applied to study the dynamics of many factors involved in transcription and RNA processing, and in their regulation at native heat shock genes in vivo.
Collapse
Affiliation(s)
- Jie Yao
- Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
159
|
Voss TC, John S, Hager GL. Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription. Mol Endocrinol 2006; 20:2641-55. [PMID: 16873444 DOI: 10.1210/me.2006-0091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glucocorticoid receptor (GR) dynamically interacts with response elements in the mouse mammary tumor virus (MMTV) promoter to regulate steroid-dependent transcription. In a clonal mammary carcinoma cell line containing a tandem array of MMTV promoter-reporter gene cassettes integrated at a single genomic locus, direct binding of a green fluorescent protein (GFP)-GR fusion protein to the MMTV regulatory elements can be observed in living cells. After ligand treatment, MMTV-dependent transcription in individual cells was detected by RNA fluorescence in situ hybridization (FISH). High-resolution fluorescence images were acquired from large numbers of randomly selected cells. Images were analyzed with a novel automated computer algorithm, measuring the RNA FISH signal and the relative GFP-GR fluorescence intensity at the MMTV array for each cell. Although dexamethasone increased the mean RNA FISH signal approximately 10-fold, RU486 produced only about a 2-fold induction, as expected for this mixed antagonist. For all treatment conditions, the relative GFP-GR fluorescence at the array for the averaged cells paralleled the RNA FISH measurements, suggesting that image analysis accurately detected an increase in steady-state GR association with the MMTV array that was responsible for the increase in transcriptional activity. The antagonist-dependent decreases in GR association with the MMTV promoter were confirmed by chromatin immunoprecipitation experiments, supporting the image analysis results. A pronounced cell-to-cell variability was observed in RNA FISH signal and GR-MMTV association within treatment groups. We observed a nonlinear relationship between GR-MMTV association and RNA FISH in individual cells, indicating that differences in GR-MMTV interaction account for some, but not all, of the transcriptional heterogeneity between individual cells. In selected cell subpopulations with equal levels of GR-MMTV association, there was a decrease in RNA FISH signal with RU486 treatment compared with dexamethasone treatment. These results indicate that stochastic events occurring after GR-promoter association, such as the actions of chromatin remodeling complexes or other cofactors, change in a ligand-dependent manner and regulate heterogeneous transcription in individual cells.
Collapse
Affiliation(s)
- Ty C Voss
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | |
Collapse
|
160
|
Krishna S, Jensen MH, Sneppen K. Minimal model of spiky oscillations in NF-kappaB signaling. Proc Natl Acad Sci U S A 2006; 103:10840-5. [PMID: 16829571 PMCID: PMC1544135 DOI: 10.1073/pnas.0604085103] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Indexed: 11/18/2022] Open
Abstract
The NF-kappaB signaling system is involved in a variety of cellular processes including immune response, inflammation, and apoptosis. Recent experiments have found oscillations in the nuclear-cytoplasmic translocation of the NF-kappaB transcription factor [Hoffmann, A., et al. (2002) Science 298, ; Nelson, D. E., et al. (2004) Science 306, .] How the cell uses the oscillations to differentiate input conditions and send specific signals to downstream genes is an open problem. We shed light on this issue by examining the small core network driving the oscillations, which we show is designed to produce periodic spikes in nuclear NF-kappaB concentration. The presence of oscillations is extremely robust to variation of parameters, depending mainly on the saturation of the active degradation rate of IkappaB, an inhibitor of NF-kappaB. The oscillations can be used to regulate downstream genes in a variety of ways. In particular, we show that genes to whose operator sites NF-kappaB binds and dissociates fast can respond very sensitively to changes in the input signal, with effective Hill coefficients of >20.
Collapse
Affiliation(s)
- Sandeep Krishna
- Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
161
|
Natoli G. Tuning up inflammation: how DNA sequence and chromatin organization control the induction of inflammatory genes by NF-kappaB. FEBS Lett 2006; 580:2843-9. [PMID: 16530189 DOI: 10.1016/j.febslet.2006.02.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 11/28/2022]
Abstract
NF-kappaB is a collective name given to a family of ubiquitous transcription factors (TFs) activated in response to inflammatory stimuli and environmental stressors, and required for the activation of many crucial inflammatory and immune response genes. NF-kappaB is activated by degradation of its cytoplasmic anchors, the IkappaBs, and subsequent nuclear translocation and accumulation. Once entered in the nucleus NF-kappaB activates transcription of hundreds of genes; however, each inflammatory gene must be expressed and turned off with peculiar kinetics that suit its specific function. Chromatin organization plays a major role in controlling the kinetics of NF-kappaB recruitment to target genes and it represents an integration point mediating TF cooperativity.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| |
Collapse
|