151
|
Czajkowsky DM, Liu J, Hamlin JL, Shao Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol 2008; 375:12-9. [PMID: 17999930 PMCID: PMC2151843 DOI: 10.1016/j.jmb.2007.10.046] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 10/05/2007] [Accepted: 10/16/2007] [Indexed: 01/24/2023]
Abstract
It is generally believed that DNA replication in most eukaryotes proceeds according to a precise program in which there is a defined temporal order by which each chromosomal region is duplicated. However, the regularity of this program at the level of individual chromosomes, in terms of both the relative timing and the size of the DNA domain, has not been addressed. Here, the replication of chromosome VI from synchronized budding yeast was studied at a resolution of approximately 1 kb with DNA combing and fluorescence microscopy. Contrary to what would be expected from cells following a rigorous temporal program, no two molecules exhibited the same replication pattern. Moreover, a direct evaluation of the extent to which the replication of distant chromosomal segments was coordinated indicates that the overwhelming majority of these segments were replicated independently. Importantly, averaging the patterns of all the fibers examined recapitulates the ensemble-averaged patterns obtained from population studies of the replication of chromosome VI. Thus, rather than an absolutely defined temporal order of replication, replication timing appears to be essentially probabilistic within individual cells, exhibiting only temporal tendencies within extended domains.
Collapse
Affiliation(s)
- Daniel M. Czajkowsky
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jie Liu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Joyce L. Hamlin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Zhifeng Shao
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
152
|
Mickle KL, Oliva A, Huberman JA, Leatherwood J. Checkpoint effects and telomere amplification during DNA re-replication in fission yeast. BMC Mol Biol 2007; 8:119. [PMID: 18154680 PMCID: PMC2265721 DOI: 10.1186/1471-2199-8-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/21/2007] [Indexed: 11/26/2022] Open
Abstract
Background Although much is known about molecular mechanisms that prevent re-initiation of DNA replication on newly replicated DNA during a single cell cycle, knowledge is sparse regarding the regions that are most susceptible to re-replication when those mechanisms are bypassed and regarding the extents to which checkpoint pathways modulate re-replication. We used microarrays to learn more about these issues in wild-type and checkpoint-mutant cells of the fission yeast, Schizosaccharomyces pombe. Results We found that over-expressing a non-phosphorylatable form of the replication-initiation protein, Cdc18 (known as Cdc6 in other eukaryotes), drove re-replication of DNA sequences genome-wide, rather than forcing high level amplification of just a few sequences. Moderate variations in extents of re-replication generated regions spanning hundreds of kilobases that were amplified (or not) ~2-fold more (or less) than average. However, these regions showed little correlation with replication origins used during S phase. The extents and locations of amplified regions in cells deleted for the checkpoint genes encoding Rad3 (ortholog of human ATR and budding yeast Mec1) and Cds1 (ortholog of human Chk2 and budding yeast Rad53) were similar to those in wild-type cells. Relatively minor but distinct effects, including increased re-replication of heterochromatic regions, were found specifically in cells lacking Rad3. These might be due to Cds1-independent roles for Rad3 in regulating re-replication and/or due to the fact that cells lacking Rad3 continued to divide during re-replication, unlike wild-type cells or cells lacking Cds1. In both wild-type and checkpoint-mutant cells, regions near telomeres were particularly susceptible to re-replication. Highly re-replicated telomere-proximal regions (50–100 kb) were, in each case, followed by some of the least re-replicated DNA in the genome. Conclusion The origins used, and the extent of replication fork progression, during re-replication are largely independent of the replication and DNA-damage checkpoint pathways mediated by Cds1 and Rad3. The fission yeast pattern of telomere-proximal amplification adjacent to a region of under-replication has also been seen in the distantly-related budding yeast, which suggests that subtelomeric sequences may be a promising place to look for DNA re-replication in other organisms.
Collapse
Affiliation(s)
- Katie L Mickle
- Department of Microbiology and Molecular Genetics, SUNY at Stony Brook, Stony Brook, New York 11794-5222, USA.
| | | | | | | |
Collapse
|
153
|
Mickle KL, Ramanathan S, Rosebrock A, Oliva A, Chaudari A, Yompakdee C, Scott D, Leatherwood J, Huberman JA. Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol Biol 2007; 8:112. [PMID: 18093330 PMCID: PMC2235891 DOI: 10.1186/1471-2199-8-112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 12/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). RESULTS Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells. CONCLUSION The fact that approximately 97% of fission yeast replication origins - both early and late - are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.
Collapse
Affiliation(s)
- Katie L Mickle
- Department of Microbiology and Molecular Genetics, SUNY at Stony Brook, Stony Brook, New York 11794-5222, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Froget B, Blaisonneau J, Lambert S, Baldacci G. Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint. Mol Biol Cell 2007; 19:445-56. [PMID: 18032583 DOI: 10.1091/mbc.e07-07-0728] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.
Collapse
Affiliation(s)
- Benoît Froget
- Institut Curie-Centre National de la Recherche Scientifique, Régulation de la réplication des eucaryotes, Université Paris Sud-XI, Bat 110, 91405 Orsay, France
| | | | | | | |
Collapse
|
155
|
Marilley M, Milani P, Thimonier J, Rocca-Serra J, Baldacci G. Atomic force microscopy of DNA in solution and DNA modelling show that structural properties specify the eukaryotic replication initiation site. Nucleic Acids Res 2007; 35:6832-45. [PMID: 17933778 PMCID: PMC2175326 DOI: 10.1093/nar/gkm733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication origins (ORIs) of Schizosaccharomyces pombe, like those in most eukaryotes, are long chromosomal regions localized within A+T-rich domains. Although there is no consensus sequence, the interacting proteins are strongly conserved, suggesting that DNA structure is important for ORI function. We used atomic force microscopy in solution and DNA modelling to study the structural properties of the Spars1 origin. We show that this segment is the least stable of the surrounding DNA (9 kb), and contains regions of intrinsically bent elements (strongly curved and inherently supercoiled DNAs). The pORC-binding site co-maps with a superhelical DNA region, where the spatial arrangement of adenine/thymine stretches may provide the binding substrate. The replication initiation site (RIP) is located within a strongly curved DNA region. On pORC unwinding, this site shifts towards the apex of the curvature, thus potentiating DNA melting there. Our model is entirely consistent with the sequence variability, large size and A+T-richness of ORIs, and also accounts for the multistep nature of the initiation process, the specificity of pORC-binding site(s), and the specific location of RIP. We show that the particular DNA features and dynamic properties identified in Spars1 are present in other eukaryotic origins.
Collapse
Affiliation(s)
- Monique Marilley
- Régulation génique et fonctionnelle & microscopie champ proche, EA 3290, IFR 125, Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille cedex 5, France.
| | | | | | | | | |
Collapse
|
156
|
Eshaghi M, Karuturi RKM, Li J, Chu Z, Liu ET, Liu J. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe. PLoS One 2007; 2:e722. [PMID: 17684567 PMCID: PMC1934932 DOI: 10.1371/journal.pone.0000722] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 07/09/2007] [Indexed: 11/18/2022] Open
Abstract
Background During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins) that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. Methodology/Principal Findings Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Δ cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Δ cells after HU removal, owing to the firing at the remaining unused (inefficient) origins during HU treatment. Conclusions/Significance Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.
Collapse
Affiliation(s)
- Majid Eshaghi
- Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - R. Krishna M. Karuturi
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Juntao Li
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Zhaoqing Chu
- Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Edison T. Liu
- Cancer Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Jianhua Liu
- Systems Biology, Genome Institute of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
157
|
Cromie GA, Hyppa RW, Cam HP, Farah JA, Grewal SIS, Smith GR. A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet 2007; 3:e141. [PMID: 17722984 PMCID: PMC1950956 DOI: 10.1371/journal.pgen.0030141] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/09/2007] [Indexed: 01/21/2023] Open
Abstract
Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located approximately 65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans.
Collapse
Affiliation(s)
- Gareth A Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Randy W Hyppa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hugh P Cam
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph A Farah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shiv I. S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
158
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
159
|
Costa S, Blow JJ. The elusive determinants of replication origins. EMBO Rep 2007; 8:332-4. [PMID: 17401406 PMCID: PMC1852751 DOI: 10.1038/sj.embor.7400954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Affiliation(s)
- Silvia Costa
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
| | - J Julian Blow
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
- Tel: +44 (0)1382 385797; Fax: +44 (0)1382 388072;
e-mail:
| |
Collapse
|
160
|
Brister JR, Nossal NG. Multiple origins of replication contribute to a discontinuous pattern of DNA synthesis across the T4 genome during infection. J Mol Biol 2007; 368:336-48. [PMID: 17346743 PMCID: PMC1934900 DOI: 10.1016/j.jmb.2007.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/29/2007] [Accepted: 02/02/2007] [Indexed: 11/25/2022]
Abstract
Chromosomes provide a template for a number of DNA transactions, including replication and transcription, but the dynamic interplay between these activities is poorly understood at the genomic level. The bacteriophage T4 has long served as a model for the study of DNA replication, transcription, and recombination, and should be an excellent model organism in which to integrate in vitro biochemistry into a chromosomal context. As a first step in characterizing the dynamics of chromosomal transactions during T4 infection, we have employed a unique set of macro array strategies to identify the origins of viral DNA synthesis and monitor the actual accumulation of nascent DNA across the genome in real time. We show that T4 DNA synthesis originates from at least five discrete loci within a single population of infected cells, near oriA, oriC, oriE, oriF, and oriG, the first direct evidence of multiple, active origins within a single population of infected cells. Although early T4 DNA replication is initiated at defined origins, continued synthesis requires viral recombination. The relationship between these two modes of replication during infection has not been well understood, but we observe that the switch between origin and recombination-mediated replication is dependent on the number of infecting viruses. Finally, we demonstrate that the nascent DNAs produced from origin loci are regulated spatially and temporally, leading to the accumulation of multiple, short DNAs near the origins, which are presumably used to prime subsequent recombination-mediated replication. These results provide the foundation for the future characterization of the molecular dynamics that contribute to T4 genome function and evolution and may provide insights into the replication of other multi origin chromosomes.
Collapse
Affiliation(s)
- J Rodney Brister
- Laboratory of Molecular and Cellular Biological, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1770, USA.
| | | |
Collapse
|
161
|
Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 2007; 282:11705-14. [PMID: 17314092 PMCID: PMC3033201 DOI: 10.1074/jbc.m700399200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.
Collapse
Affiliation(s)
- Christian Speck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
162
|
Hayashi M, Katou Y, Itoh T, Tazumi M, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 2007; 26:1327-39. [PMID: 17304213 PMCID: PMC1817633 DOI: 10.1038/sj.emboj.7601585] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/08/2007] [Indexed: 12/11/2022] Open
Abstract
DNA replication of eukaryotic chromosomes initiates at a number of discrete loci, called replication origins. Distribution and regulation of origins are important for complete duplication of the genome. Here, we determined locations of Orc1 and Mcm6, components of pre-replicative complex (pre-RC), on the whole genome of Schizosaccharomyces pombe using a high-resolution tiling array. Pre-RC sites were identified in 460 intergenic regions, where Orc1 and Mcm6 colocalized. By mapping of 5-bromo-2'-deoxyuridine (BrdU)-incorporated DNA in the presence of hydroxyurea (HU), 307 pre-RC sites were identified as early-firing origins. In contrast, 153 pre-RC sites without BrdU incorporation were considered to be late and/or inefficient origins. Inactivation of replication checkpoint by Cds1 deletion resulted in BrdU incorporation with HU specifically at the late origins. Early and late origins tend to distribute separately in large chromosome regions. Interestingly, pericentromeric heterochromatin and the silent mating-type locus replicated in the presence of HU, whereas the inner centromere or subtelomeric heterochromatin did not. Notably, MCM did not bind to inner centromeres where origin recognition complex was located. Thus, replication is differentially regulated in chromosome domains.
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Katou
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute Inc., Chiyoda-ku, Tokyo, Japan
| | - Mitsutoshi Tazumi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshiki Yamada
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tatsuro Takahashi
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Katsuhiko Shirahige
- Riken Genomic Science Center, Human Genome Research Group, Genome Informatics Team, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Center for Biological Resources and Informatics, Division of Gene Research, and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hisao Masukata
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. Tel.: +81 6 6850 5432; Fax: +81 6 6850 5440; E-mail:
| |
Collapse
|
163
|
Meister P, Taddei A, Ponti A, Baldacci G, Gasser SM. Replication foci dynamics: replication patterns are modulated by S-phase checkpoint kinases in fission yeast. EMBO J 2007; 26:1315-26. [PMID: 17304223 PMCID: PMC1817620 DOI: 10.1038/sj.emboj.7601538] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/11/2006] [Indexed: 12/22/2022] Open
Abstract
Although the molecular enzymology of DNA replication is well characterised, how and why it occurs in discrete nuclear foci is unclear. Using fission yeast, we show that replication takes place in a limited number of replication foci, whose distribution changes with progression through S phase. These sites define replication factories which contain on average 14 replication forks. We show for the first time that entire foci are mobile, able both to fuse and re-segregate. These foci form distinguishable patterns during S phase, whose succession is reproducible, defining early-, mid- and late-S phase. In wild-type cells, this same temporal sequence can be detected in the presence of hydroxyurea (HU), despite the reduced rate of replication. In cells lacking the intra-S checkpoint kinase Cds1, replication factories dismantle on HU. Intriguingly, even in the absence of DNA damage, the replication foci in cds1 cells assume a novel distribution that is not present in wild-type cells, arguing that Cds1 kinase activity contributes to the spatio-temporal organisation of replication during normal cell growth.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
| | - Angela Taddei
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- UMR218, CNRS/Institut Curie, 26 rue d'Ulm, Paris, France
| | - Aaron Ponti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Giuseppe Baldacci
- UMR2027, CNRS/Institut Curie, Bâtiment 110, Centre Universitaire, Orsay Cedex, France
- These authors contributed equally to this work
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- These authors contributed equally to this work
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. Tel.: +41 61 697 7255; Fax +41 61 697 6862; E-mail:
| |
Collapse
|
164
|
Penkett CJ, Birtle ZE, Bähler J. Simplified primer design for PCR-based gene targeting and microarray primer database: two web tools for fission yeast. Yeast 2006; 23:921-8. [PMID: 17072893 PMCID: PMC2964512 DOI: 10.1002/yea.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/31/2006] [Indexed: 11/07/2022] Open
Abstract
PCR-based gene targeting is a popular method for manipulating yeast genes in their normal chromosomal locations. The manual design of primers, however, can be cumbersome and error-prone. We have developed a straightforward web-based tool that applies user-specified inputs to automate and simplify the task of primer selection for deletion, tagging and/or regulated expression of genes in Schizosaccharomyces pombe. This tool, named PPPP (for Pombe PCR Primer Programs), is available at http://www.sanger.ac.uk/PostGenomics/S_pombe/software/. We also present a searchable Microarray Primer Database to retrieve the sequences and accompanying information for primers and PCR products used to build our in-house Sz. pombe microarrays. This database contains information on both coding and intergenic regions to provide context for the microarray data, and it should be useful also for other applications, such as quantitative PCR. The database can be accessed at http://www.sanger.ac.uk/PostGenomics/S_pombe/microarray/.
Collapse
Affiliation(s)
| | | | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger InstituteCambridge CB10 1HH, UK
| |
Collapse
|