151
|
Abstract
CRISPR-Cas genome editing technologies have revolutionized modern molecular biology by making targeted DNA edits simple and scalable. These technologies are developed by domesticating naturally occurring microbial adaptive immune systems that display wide diversity of functionality for targeted nucleic acid cleavage. Several CRISPR-Cas single effector enzymes have been characterized and engineered for use in mammalian cells. The unique properties of the single effector enzymes can make a critical difference in experimental use or targeting specificity. This review describes known single effector enzymes and discusses their use in genome engineering applications.
Collapse
Affiliation(s)
- Neena K. Pyzocha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sidi Chen
- Department of Genetics, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- System Biology Institute, 850 West Campus Drive, ISTC 361, West Haven, Connecticut 06516, United States
- MCGD Program, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Immunobiology Program, Yale University, 300 Cedar Street, New Haven, Connecticut 06520, United States
- Comprehensive Cancer Center, Yale University, New Haven, Connecticut 06510, United States
- Stem Cell Center, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
152
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
153
|
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30197654 DOI: 10.3389/fpls.2018.01245.s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genome editing technologies have progressed rapidly and become one of the most important genetic tools in the implementation of pathogen resistance in plants. Recent years have witnessed the emergence of site directed modification methods using meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). Recently, CRISPR/Cas9 has largely overtaken the other genome editing technologies due to the fact that it is easier to design and implement, has a higher success rate, and is more versatile and less expensive. This review focuses on the recent advances in plant protection using CRISPR/Cas9 technology in model plants and crops in response to viral, fungal and bacterial diseases. As regards the achievement of viral disease resistance, the main strategies employed in model species such as Arabidopsis and Nicotiana benthamiana, which include the integration of CRISPR-encoding sequences that target and interfere with the viral genome and the induction of a CRISPR-mediated targeted mutation in the host plant genome, will be discussed. Furthermore, as regards fungal and bacterial disease resistance, the strategies based on CRISPR/Cas9 targeted modification of susceptibility genes in crop species such as rice, tomato, wheat, and citrus will be reviewed. After spending years deciphering and reading genomes, researchers are now editing and rewriting them to develop crop plants resistant to specific pests and pathogens.
Collapse
Affiliation(s)
- Virginia M G Borrelli
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy, University of Milan, Milan, Italy
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
154
|
Abstract
Sequence-specific nucleases (SSNs) are nowadays fundamental tools to generate mutants that impaired in genes of interest. The bioactive molecules screened in the chemical genomics studies affect specific physiological process by disrupting the function of its target protein(s). Mutation analysis of the gene(s) of target protein(s) of the screened chemical is necessary to resolve how the chemical works in plants. Clustered regularly interspersed short palindromic repeats (CRISPR) from Prevotella and Francisella 1 (Cpf1) are newly characterized RNA-directed endonuclease. Several papers have shown clearly that Cpf1 could be a versatile SSN in plant genome engineering. Cfp1 from Francisella novicida (FnCpf1) recognizes TTN as its protospacer adjacent motif (PAM). FnCpf1 utilizes a shorter PAM compared to other known Cpf1s such as AsCpf1 or LbCpf1, which use TTTN as PAM. Since PAM length can be a limiting factor in target selection, this feature of FnCpf1 is practical for targeted mutagenesis experiments. The application of FnCpf1-mediated targeted mutagenesis to the chemical genomics could accelerate to figure out the mechanism of action of screened chemicals. Here, we describe procedures for targeted mutagenesis in rice and tobacco using FnCpf1.
Collapse
Affiliation(s)
- Akira Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
155
|
Metje-Sprink J, Menz J, Modrzejewski D, Sprink T. DNA-Free Genome Editing: Past, Present and Future. FRONTIERS IN PLANT SCIENCE 2018; 9:1957. [PMID: 30693009 PMCID: PMC6339908 DOI: 10.3389/fpls.2018.01957] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
Genome Editing using engineered endonuclease (GEEN) systems rapidly took over the field of plant science and plant breeding. So far, Genome Editing techniques have been applied in more than fifty different plants; including model species like Arabidopsis; main crops like rice, maize or wheat as well as economically less important crops like strawberry, peanut and cucumber. These techniques have been used for basic research as proof-of-concept or to investigate gene functions in most of its applications. However, several market-oriented traits have been addressed including enhanced agronomic characteristics, improved food and feed quality, increased tolerance to abiotic and biotic stress and herbicide tolerance. These technologies are evolving at a tearing pace and especially the field of CRISPR based Genome Editing is advancing incredibly fast. CRISPR-Systems derived from a multitude of bacterial species are being used for targeted Gene Editing and many modifications have already been applied to the existing CRISPR-Systems such as (i) alter their protospacer adjacent motif (ii) increase their specificity (iii) alter their ability to cut DNA and (iv) fuse them with additional proteins. Besides, the classical transformation system using Agrobacteria tumefaciens or Rhizobium rhizogenes, other transformation technologies have become available and additional methods are on its way to the plant sector. Some of them are utilizing solely proteins or protein-RNA complexes for transformation, making it possible to alter the genome without the use of recombinant DNA. Due to this, it is impossible that foreign DNA is being incorporated into the host genome. In this review we will present the recent developments and techniques in the field of DNA-free Genome Editing, its advantages and pitfalls and give a perspective on technologies which might be available in the future for targeted Genome Editing in plants. Furthermore, we will discuss these techniques in the light of existing- and potential future regulations.
Collapse
|
156
|
Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. FRONTIERS IN PLANT SCIENCE 2018; 9:1361. [PMID: 30283477 PMCID: PMC6156261 DOI: 10.3389/fpls.2018.01361] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 05/03/2023]
Abstract
Rice (Oryza sativa L.) is the major food source for more than three billion people of the world. In the last few decades, the classical, mutational, and molecular breeding approaches have brought about tremendous increase in rice productivity with the development of novel rice varieties. However, stagnation in rice yield has been reported in recent decade owing to several factors including the emergence of pests and phyto pathogens, climate change, and other environmental issues posing great threat to global food security. There is an urgent need to produce more rice and associated cereals to satisfy the mammoth task of feeding a still growing population expected to reach 9.7 billion by 2050. Advances in genomics and emergence of multiple genome-editing technologies through use of engineered site-specific nucleases (SSNs) have revolutionized the field of plant science and agriculture. Among them, the CRISPR/Cas9 system is the most advanced and widely accepted because of its simplicity, robustness, and high efficiency. The availability of huge genomic resources together with a small genome size makes rice more suitable and feasible for genetic manipulation. As such, rice has been increasingly used to test the efficiency of different types of genome editing technologies to study the functions of various genes and demonstrate their potential in genetic improvement. Recently developed approaches including CRISPR/Cpf1 system and base editors have evolved as more efficient and accurate genome editing tools which might accelerate the pace of crop improvement. In the present review, we focus on the genome editing strategies for rice improvement, thereby highlighting the applications and advancements of CRISPR/Cas9 system. This review also sheds light on the role of CRISPR/Cpf1 and base editors in the field of genome editing highlighting major challenges and future implications of these tools in rice improvement.
Collapse
Affiliation(s)
- Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar, India
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kaijun Zhao,
| |
Collapse
|
157
|
Mishra R, Joshi RK, Zhao K. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. FRONTIERS IN PLANT SCIENCE 2018; 9:1361. [PMID: 30283477 DOI: 10.33389/fpls.2018.01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa L.) is the major food source for more than three billion people of the world. In the last few decades, the classical, mutational, and molecular breeding approaches have brought about tremendous increase in rice productivity with the development of novel rice varieties. However, stagnation in rice yield has been reported in recent decade owing to several factors including the emergence of pests and phyto pathogens, climate change, and other environmental issues posing great threat to global food security. There is an urgent need to produce more rice and associated cereals to satisfy the mammoth task of feeding a still growing population expected to reach 9.7 billion by 2050. Advances in genomics and emergence of multiple genome-editing technologies through use of engineered site-specific nucleases (SSNs) have revolutionized the field of plant science and agriculture. Among them, the CRISPR/Cas9 system is the most advanced and widely accepted because of its simplicity, robustness, and high efficiency. The availability of huge genomic resources together with a small genome size makes rice more suitable and feasible for genetic manipulation. As such, rice has been increasingly used to test the efficiency of different types of genome editing technologies to study the functions of various genes and demonstrate their potential in genetic improvement. Recently developed approaches including CRISPR/Cpf1 system and base editors have evolved as more efficient and accurate genome editing tools which might accelerate the pace of crop improvement. In the present review, we focus on the genome editing strategies for rice improvement, thereby highlighting the applications and advancements of CRISPR/Cas9 system. This review also sheds light on the role of CRISPR/Cpf1 and base editors in the field of genome editing highlighting major challenges and future implications of these tools in rice improvement.
Collapse
Affiliation(s)
- Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
158
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30065734 DOI: 10.3389/fpls.2018.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Karthikeyan Ramasamy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
159
|
Swiat MA, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran JM, Daran-Lapujade P. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:12585-12598. [PMID: 29106617 PMCID: PMC5716609 DOI: 10.1093/nar/gkx1007] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 11/14/2022] Open
Abstract
Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Saccharomyces cerevisiae. FnCpf1 very efficiently and precisely promoted repair DNA recombination with efficiencies up to 100%. Furthermore, FnCpf1 was shown to introduce point mutations with high fidelity. While editing multiple loci with Cas9 is hampered by the need for multiple or complex expression constructs, processing itself a customized CRISPR array FnCpf1 was able to edit four genes simultaneously in yeast with a 100% efficiency. A remarkable observation was the unexpected, strong preference of FnCpf1 to cleave DNA at target sites harbouring 5′-TTTV-3′ PAM sequences, a motif reported to be favoured by Cpf1 homologs of Acidaminococcus and Lachnospiraceae. The present study supplies several experimentally tested guidelines for crRNA design, as well as plasmids for FnCpf1 expression and easy construction of crRNA expression cassettes in S. cerevisiae. FnCpf1 proves to be a powerful addition to S. cerevisiae CRISPR toolbox.
Collapse
Affiliation(s)
- Michal A Swiat
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
160
|
Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res 2017; 45:11295-11304. [PMID: 28977650 PMCID: PMC5737432 DOI: 10.1093/nar/gkx783] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023] Open
Abstract
Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications.
Collapse
Affiliation(s)
- Mengjun Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Li Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Yilu Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiubin He
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Huihui Sun
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Haihua Xie
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Junhao Fu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Changbao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jin Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Ding Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Haitao Xi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dongyu Xue
- Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Qi Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
- To whom correspondence should be addressed. Tel: +86 577 8883 1367; Fax: +86 577 8883 1367;
| |
Collapse
|
161
|
Trait stacking in modern agriculture: application of genome editing tools. Emerg Top Life Sci 2017; 1:151-160. [PMID: 33525762 DOI: 10.1042/etls20170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
Advances in plant transgenic technology in the 20th century overcame the major hurdle for transfer of genetic material between species. This not only enabled fundamental insights into plant biology, but also revolutionized commercial agriculture. Adoption of transgenic plants in industrial agriculture has reduced pesticide application, while bringing significant increase in crop yields and farmers' profits. The progress made in transgenic technology over the last three decades paved the way mainly for simple single-gene insect and herbicide tolerance (HT) trait products. Modern agriculture demands stacking and pyramiding of complex traits that provide broad-spectrum insect and HT with other agronomic traits. In addition, more recent developments in genome editing provide unique opportunities to create precise on-demand genome modifications to enhance crop productivity. The major challenge for the plant biotech industry therefore remains to combine multiple forms of traits needed to create commercially viable stacked product. This review provides a historical perspective of conventional breeding stacks, current status of molecular stacks and future developments needed to enable genome-editing technology for trait stacking.
Collapse
|
162
|
Recent advances in DNA-free editing and precise base editing in plants. Emerg Top Life Sci 2017; 1:161-168. [PMID: 33525763 DOI: 10.1042/etls20170021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Genome-editing technologies based on the CRISPR (clustered regularly interspaced short palindromic repeat) system have been widely used in plants to investigate gene function and improve crop traits. The recently developed DNA-free delivery methods and precise base-editing systems provide new opportunities for plant genome engineering. In this review, we describe the novel DNA-free genome-editing methods in plants. These methods reduce off-target effects and may alleviate regulatory concern about genetically modified plants. We also review applications of base-editing systems, which are highly effective in generating point mutations and are of great value for introducing agronomically valuable traits. Future perspectives for DNA-free editing and base editing are also discussed.
Collapse
|
163
|
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 2017; 7:11606. [PMID: 28912524 PMCID: PMC5599503 DOI: 10.1038/s41598-017-11760-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing of plants has the potential to reshape global agriculture through the targeted engineering of endogenous pathways or the introduction of new traits. To develop a CRISPR nuclease-based platform that would enable higher efficiencies of precise gene insertion or replacement, we screened the Cpf1 nucleases from Francisella novicida and Lachnospiraceae bacterium ND2006 for their capability to induce targeted gene insertion via homology directed repair. Both nucleases, in the presence of a guide RNA and repairing DNA template flanked by homology DNA fragments to the target site, were demonstrated to generate precise gene insertions as well as indel mutations at the target site in the rice genome. The frequency of targeted insertion for these Cpf1 nucleases, up to 8%, is higher than most other genome editing nucleases, indicative of its effective enzymatic chemistry. Further refinements and broad adoption of the Cpf1 genome editing technology have the potential to make a dramatic impact on plant biotechnology.
Collapse
Affiliation(s)
- Matthew B Begemann
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA.
| | - Benjamin N Gray
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Emma January
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Gina C Gordon
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Yonghua He
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Haijun Liu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Xingrong Wu
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| | - Thomas P Brutnell
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, 975N, Warson Road, St. Louis, MO, 63132, USA
| | - Mohammed Oufattole
- Benson Hill Biosystems, 1100 Corporate Square Dr, St. Louis, MO, 63132, USA
| |
Collapse
|
164
|
Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA-guided genome editing enzymes. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:917-926. [PMID: 28371222 PMCID: PMC5506654 DOI: 10.1111/pbi.12736] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 05/14/2023]
Abstract
CRISPR-mediated genome editing using the Streptococcus pyogenes Cas9 enzyme is revolutionizing life science by providing new, precise, facile and high-throughput tools for genetic modification by the specific targeting of double-strand breaks in the genome of hosts. Plant biotechnologists have extensively used the S. pyogenes Cas9-based system since its inception in 2013. However, there are still some limitations to its even broader usage in plants. Major restrictions, especially in agricultural biotechnology, are the currently unclear regulatory status of plants modified with CRISPR/Cas9 and the lack of suitable delivery methods for some plant species. Solutions to these limitations could come in the form of new variants of genome editing enzymes that have recently been discovered and have already proved comparable to or even better in performance than S. pyogenes CRISPR/Cas9 in terms of precision and ease of delivery in mammal cells. Although some of them have already been tested in plants, most of them are less well known in the plant science community. In this review, we describe the following new enzyme systems engineered for genome editing, transcriptional regulation and cellular imaging-C2c2 from L. shahii; Cas9 from F. novicida, S. aureus, S. thermophiles, N. meningitidis; Cpf1 from F. novicida, Acidaminococcus and Lachnospiraceae; nickase, split, enhanced and other Cas9 variants from S. pyogenes; catalytically inactive SpCas9 linked to various nuclease or gene-regulating domains-with an emphasis on their advantages in comparison with the broadly used SpCas9. In addition, we discuss new possibilities they offer in plant biotechnology.
Collapse
Affiliation(s)
- Jana Murovec
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Žan Pirc
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Bing Yang
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
165
|
Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. MOLECULAR PLANT 2017; 10:1011-1013. [PMID: 28315752 DOI: 10.1016/j.molp.2017.03.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/19/2023]
Affiliation(s)
- Mugui Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yanfei Mao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiaoping Tao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
166
|
Zaidi SSEA, Mahfouz MM, Mansoor S. CRISPR-Cpf1: A New Tool for Plant Genome Editing. TRENDS IN PLANT SCIENCE 2017; 22:550-553. [PMID: 28532598 DOI: 10.1016/j.tplants.2017.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 05/20/2023]
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
167
|
Stella S, Alcón P, Montoya G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 2017; 546:559-563. [PMID: 28562584 DOI: 10.1038/nature22398] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/27/2017] [Indexed: 12/19/2022]
Abstract
Cpf1 is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here we provide insight into its DNA-targeting mechanism by determining the structure of Francisella novicida Cpf1 with the triple-stranded R-loop generated after DNA cleavage. The structure reveals the machinery involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner into the double-stranded DNA. Unzipping of the double-stranded DNA occurs in a cleft arranged by acidic and hydrophobic residues facilitating the crRNA-DNA hybrid formation. The PAM single-stranded DNA is funnelled towards the nuclease site through a mixed hydrophobic and basic cavity. In this catalytic conformation, the PAM-interacting domain and the helix-loop-helix motif in the REC1 domain adopt a 'rail' shape and 'flap-on' conformations, respectively, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms the 'septum', separating the displaced PAM strand and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1.
Collapse
Affiliation(s)
- Stefano Stella
- Protein Structure &Function Programme, Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Pablo Alcón
- Protein Structure &Function Programme, Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Protein Structure &Function Programme, Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
168
|
Minkenberg B, Wheatley M, Yang Y. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:111-132. [PMID: 28712493 DOI: 10.1016/bs.pmbts.2017.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9 system is a prevalent and versatile genome-editing tool of choice for basic and applied biological research. An exchange of a 20-bp spacer sequence in the gRNA can easily reprogram Cas9 to target a different DNA site. By expressing or providing multiple gRNAs, the system also enables multiplex genome editing at high efficiencies. Current approaches for providing multiple gRNAs in vivo include the use of multigene cassettes to express several gRNAs, Csy4-based excision, arrays of crRNAs, ribozyme-flanked gRNAs, tRNA-dependent cleavage of gRNAs, and direct introduction of Cas9 proteins preloaded with different gRNAs. By simultaneously targeting multiple DNA sequences, multiplex genome editing can be used to knockout multiple genes or delete chromosomal fragments. Off-target risk can also be reduced by Cas9-dimers that require the simultaneous expression of two gRNAs. With multiple gRNAs, specific gene expression or methylation status can be efficiently controlled by dCas9 fused to activators, repressors, methyltransferase, demethylase, or other functional domains. As a result, multiplex genome editing is expected to accelerate functional discovery of plant genes as well as genetic improvement of agricultural crops.
Collapse
Affiliation(s)
| | - Matthew Wheatley
- The Pennsylvania State University, University Park, PA, United States
| | - Yinong Yang
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
169
|
Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 2017; 3:17018. [PMID: 28607761 PMCID: PMC5460296 DOI: 10.1038/celldisc.2017.18] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 system has been widely applied in both transcriptional regulation and epigenetic studies. However, for multiple targets, independent expression of multiple single guide RNAs (sgRNAs) is needed, which is less convenient. To address the problem, we employed a DNase-dead Cpf1 mutant (ddCpf1) for multiplex gene regulation. We demonstrated that ddCpf1 alone could be employed for gene repression in Escherichia coli, and the repression was more effective with CRISPR RNAs (crRNAs) specifically targeting to the template strand of its target genes, which was different from that of dCas9. When targeting the promoter region, both strands showed effective repression by the ddCpf1/crRNA complex. The whole-transcriptome RNA-seq technique was further employed to demonstrate the high specificity of ddCpf1-mediated repression. Besides, we proved that the remaining RNase activity in ddCpf1 was capable of processing a precursor CRISPR array to simply generate multiple mature crRNAs in vivo, facilitating multiplex gene regulation. With the employment of this multiplex gene regulation strategy, we also showed how to quickly screen a library of candidate targets, that is, the two-component systems in E. coli. Therefore, based on our findings here, the CRISPR-ddCpf1 system may be further developed and widely applied in both biological research and clinical studies.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingman Wang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuxiang Cheng
- Shanghai Tolo Biotechnology Company Limited, Shanghai, China
| | - Xuan Zheng
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
170
|
Bi H, Yang B. Gene Editing With TALEN and CRISPR/Cas in Rice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:81-98. [PMID: 28712502 DOI: 10.1016/bs.pmbts.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered, site-specific nucleases induce genomic double-strand DNA breaks and break repair processes enable genome editing in a plethora of eukaryotic genomes. TALENs (transcription activator-like effector nucleases) and CRISPR/Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) are potent biotechnological tools used for genome editing. In rice, species-tailored editing tools have proven to be efficient and easy to use. Both tools are capable of generating DNA double-strand breaks (DSBs) in vivo and such breaks can be repaired either by error-prone NHEJ (nonhomologous end joining) that leads to nucleotide insertions or deletions or by HDR (homology-directed repair) if an appropriate exogenous DNA template is provided. NHEJ repair often results in gene knockout, while HDR results in precise nucleotide sequence or gene replacement. In this review, we revisit the molecular mechanisms underlying DSB repair in eukaryotes and review the TALEN and CRISPR technologies (CRISPR/Cas9, CRISPR/Cpf1, and Base Editor) developed and utilized for genome editing by scientists in rice community.
Collapse
Affiliation(s)
- Honghao Bi
- Iowa State University, Ames, IA, United States
| | - Bing Yang
- Iowa State University, Ames, IA, United States.
| |
Collapse
|
171
|
Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogué F. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods 2017; 121-122:103-117. [PMID: 28478103 DOI: 10.1016/j.ymeth.2017.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022] Open
Abstract
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| | - Anouchka Guyon-Debast
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - François Maclot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Kostlend Mara
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Florence Charlot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Fabien Nogué
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| |
Collapse
|
172
|
Zhang Y, Ma X, Xie X, Liu YG. CRISPR/Cas9-Based Genome Editing in Plants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:133-150. [PMID: 28712494 DOI: 10.1016/bs.pmbts.2017.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, genome editing technologies have shown great potential in plants. The newly developed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a new generation of genome editing tool rapidly replacing the earlier zinc finger nucleases and transcription activator-like effector nucleases systems. Indeed, due to its advantages of simplicity and high efficiency, the CRISPR/Cas9-based genome editing system is becoming a powerful tool in plant science research. Here, we introduce the technical features of the plant CRISPR/Cas9-based genome editing system and its applications in plant functional genomics studies and genetic improvement.
Collapse
Affiliation(s)
- Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China; College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xingliang Ma
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China; College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China; College of Life Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
173
|
Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. PLANT CELL REPORTS 2017; 36:745-757. [PMID: 28349358 DOI: 10.1007/s00299-017-2118-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.
Collapse
Affiliation(s)
- Xiaojia Yin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Akshaya K Biswal
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline Dionora
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Kristel M Perdigon
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | | | - Shamik Mazumdar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Departamento de Biologıá Molecular de Plantas, Instituto de Biotecnologıá, Universidad Nacional Autónoma de Mexico Cuernavaca, Cuernavaca, Mexico
| | - Hsiang-Chun Lin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Robert A Coe
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Tobias Kretzschmar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul W Quick
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
174
|
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:819-833. [PMID: 28027431 DOI: 10.1111/tpj.13469] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants.
Collapse
Affiliation(s)
- Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
175
|
Malzahn A, Lowder L, Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci 2017; 7:21. [PMID: 28451378 PMCID: PMC5404292 DOI: 10.1186/s13578-017-0148-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
Genome editing promises giant leaps forward in advancing biotechnology, agriculture, and basic research. The process relies on the use of sequence specific nucleases (SSNs) to make DNA double stranded breaks at user defined genomic loci, which are subsequently repaired by two main DNA repair pathways: non-homologous end joining (NHEJ) and homology directed repair (HDR). NHEJ can result in frameshift mutations that often create genetic knockouts. These knockout lines are useful for functional and reverse genetic studies but also have applications in agriculture. HDR has a variety of applications as it can be used for gene replacement, gene stacking, and for creating various fusion proteins. In recent years, transcription activator-like effector nucleases and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated protein 9 or CRISPR from Prevotella and Francisella 1 have emerged as the preferred SSNs for research purposes. Here, we review their applications in plant research, discuss current limitations, and predict future research directions in plant genome editing.
Collapse
Affiliation(s)
- Aimee Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | - Levi Lowder
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850 USA
| |
Collapse
|
176
|
Swarts DC, van der Oost J, Jinek M. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol Cell 2017; 66:221-233.e4. [PMID: 28431230 PMCID: PMC6879319 DOI: 10.1016/j.molcel.2017.03.016] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 12/26/2022]
Abstract
The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Proteins/chemistry
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Catalysis
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Francisella/enzymology
- Francisella/genetics
- Gene Editing/methods
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Daan C Swarts
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
177
|
Fondong VN. The Search for Resistance to Cassava Mosaic Geminiviruses: How Much We Have Accomplished, and What Lies Ahead. FRONTIERS IN PLANT SCIENCE 2017; 8:408. [PMID: 28392798 PMCID: PMC5365051 DOI: 10.3389/fpls.2017.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 05/23/2023]
Abstract
The cassava mosaic disease (CMD), which occurs in all cassava growing regions of Africa and the Indian subcontinent, is caused by cassava mosaic geminiviruses (CMGs). CMGs are considered to be the most damaging vector-borne plant pathogens. So far, the most successful approach used to control these viruses has been the transfer of a polygenic recessive resistance locus, designated CMD1, from wild cassava to cassava cultivars. Further progress in harnessing natural resistance to contain CMGs has come from the discovery of the dominant monogenic resistance locus, CMD2, in some West African cassava cultivars. CMD2 has been combined with CMD1 through genetic crosses. Because of the limitations of the cassava breeding approach, especially with regard to time required to produce a variety and the loss of preferred agronomic attributes, efforts have been directed toward the deployment of genetic engineering approaches. Most of these approaches have been centered on RNA silencing strategies, developed mainly in the model plant Nicotiana benthamiana. Early RNA silencing platforms assessed for CMG resistance have been use of viral genes for co-suppression, antisense suppression or for hairpin RNAs-mediated gene silencing. Here, progress and challenges in the deployment of these approaches in the control of CMGs are discussed. Novel functional genomics approaches with potential to overcome some of the drawbacks of the current strategies are also discussed.
Collapse
Affiliation(s)
- Vincent N. Fondong
- Department of Biological Sciences, Delaware State UniversityDover, DE, USA
| |
Collapse
|
178
|
Affiliation(s)
- Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
179
|
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. NATURE PLANTS 2017; 3:17018. [PMID: 28211909 DOI: 10.1038/nplants.2017.18] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 05/20/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cpf1 has emerged as an effective genome editing tool in animals. Here we compare the activity of Cpf1 from Acidaminococcus sp. BV3L6 (As) and Lachnospiraceae bacterium ND2006 (Lb) in plants, using a dual RNA polymerase II promoter expression system. LbCpf1 generated biallelic mutations at nearly 100% efficiency at four independent sites in rice T0 transgenic plants. Moreover, we repurposed AsCpf1 and LbCpf1 for efficient transcriptional repression in Arabidopsis, and demonstrated a more than tenfold reduction in miR159b transcription. Our data suggest promising applications of CRISPR-Cpf1 for editing plant genomes and modulating the plant transcriptome.
Collapse
Affiliation(s)
- Xu Tang
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Levi G Lowder
- Department of Biology, East Carolina University, Greenville, North Carolina 27834, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Daniel F Voytas
- Department of Genetics, Cell Biology &Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiyi Chen
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiurong Ren
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Li
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Elida R Kirkland
- Department of Biology, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|