151
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
152
|
Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep 2021; 38:2100-2129. [PMID: 34734626 PMCID: PMC8597713 DOI: 10.1039/d1np00032b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/22/2022]
Abstract
Covering: 2016 to 2021With genetic information available for hundreds of thousands of organisms in publicly accessible databases, scientists have an unprecedented opportunity to meticulously survey the diversity and inner workings of life. The natural product research community has harnessed this breadth of sequence information to mine microbes, plants, and animals for biosynthetic enzymes capable of producing bioactive compounds. Several orthogonal genome mining strategies have been developed in recent years to target specific chemical features or biological properties of bioactive molecules using biosynthetic, resistance, or transporter proteins. These "biosynthetic hooks" allow researchers to query for biosynthetic gene clusters with a high probability of encoding previously undiscovered, bioactive compounds. This review highlights recent case studies that feature orthogonal approaches that exploit genomic information to specifically discover bioactive natural products and their gene clusters.
Collapse
Affiliation(s)
- Katherine D Bauman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keelie S Butler
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
153
|
Synthetic Biology Advanced Natural Product Discovery. Metabolites 2021; 11:metabo11110785. [PMID: 34822443 PMCID: PMC8617713 DOI: 10.3390/metabo11110785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.
Collapse
|
154
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
155
|
Li G, Lin P, Wang K, Gu CC, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer 2021; 8:65-80. [PMID: 34750090 DOI: 10.1016/j.trecan.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
Plants and associated microorganisms are essential sources of natural products against human cancer diseases, partly exemplified by plant-derived anticancer drugs such as Taxol (paclitaxel). Natural products provide diverse mechanisms of action and can be used directly or as prodrugs for further anticancer optimization. Despite the success, major bottlenecks can delay anticancer lead discovery and implementation. Recent advances in sequencing and omics-related technology have provided a mine of information for developing new therapeutics from natural products. Artificial intelligence (AI), including machine learning (ML), has offered powerful techniques for extensive data analysis and prediction-making in anticancer leads discovery. This review presents an overview of current AI-guided solutions to discover anticancer lead compounds, focusing on natural products from plants and associated microorganisms.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Ping Lin
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ke Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chen-Chen Gu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Souvik Kusari
- Center for Mass Spectrometry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund 44227, Germany.
| |
Collapse
|
156
|
Biogeography of Bacterial Communities and Specialized Metabolism in Human Aerodigestive Tract Microbiomes. Microbiol Spectr 2021; 9:e0166921. [PMID: 34704787 PMCID: PMC8549736 DOI: 10.1128/spectrum.01669-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aerodigestive tract (ADT) is the primary portal through which pathogens and other invading microbes enter the body. As the direct interface with the environment, we hypothesize that the ADT microbiota possess biosynthetic gene clusters (BGCs) for antibiotics and other specialized metabolites to compete with both endogenous and exogenous microbes. From 1,214 bacterial genomes, representing 136 genera and 387 species that colonize the ADT, we identified 3,895 BGCs. To determine the distribution of BGCs and bacteria in different ADT sites, we aligned 1,424 metagenomes, from nine different ADT sites, onto the predicted BGCs. We show that alpha diversity varies across the ADT and that each site is associated with distinct bacterial communities and BGCs. We identify specific BGC families enriched in the buccal mucosa, external naris, gingiva, and tongue dorsum despite these sites harboring closely related bacteria. We reveal BGC enrichment patterns indicative of the ecology at each site. For instance, aryl polyene and resorcinol BGCs are enriched in the gingiva and tongue, which are colonized by many anaerobes. In addition, we find that streptococci colonizing the tongue and cheek possess different ribosomally synthesized and posttranslationally modified peptide BGCs. Finally, we highlight bacterial genera with BGCs but are underexplored for specialized metabolism and demonstrate the bioactivity of Actinomyces against other bacteria, including human pathogens. Together, our results demonstrate that specialized metabolism in the ADT is extensive and that by exploring these microbiomes further, we will better understand the ecology and biogeography of this system and identify new bioactive natural products. IMPORTANCE Bacteria produce specialized metabolites to compete with other microbes. Though the biological activities of many specialized metabolites have been determined, our understanding of their ecology is limited, particularly within the human microbiome. As the aerodigestive tract (ADT) faces the external environment, bacteria colonizing this tract must compete both among themselves and with invading microbes, including human pathogens. We analyzed the genomes of ADT bacteria to identify biosynthetic gene clusters (BGCs) for specialized metabolites. We found that the majority of ADT BGCs are uncharacterized and the metabolites they encode are unknown. We mapped the distribution of BGCs across the ADT and determined that each site is associated with its own distinct bacterial community and BGCs. By further characterizing these BGCs, we will inform our understanding of ecology and biogeography across the ADT, and we may uncover new specialized metabolites, including antibiotics.
Collapse
|
157
|
Mungan MD, Blin K, Ziemert N. ARTS-DB: a database for antibiotic resistant targets. Nucleic Acids Res 2021; 50:D736-D740. [PMID: 34718689 PMCID: PMC8728217 DOI: 10.1093/nar/gkab940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
As a result of the continuous evolution of drug resistant bacteria, new antibiotics are urgently needed. Encoded by biosynthetic gene clusters (BGCs), antibiotic compounds are mostly produced by bacteria. With the exponential increase in the number of publicly available, sequenced genomes and the advancements of BGC prediction tools, genome mining algorithms have uncovered millions of uncharacterized BGCs for further evaluation. Since compound identification and characterization remain bottlenecks, a major challenge is prioritizing promising BGCs. Recently, researchers adopted self-resistance based strategies allowing them to predict the biological activities of natural products encoded by uncharacterized BGCs. Since 2017, the Antibiotic Resistant Target Seeker (ARTS) facilitated this so-called target-directed genome mining (TDGM) approach for the prioritization of BGCs encoding potentially novel antibiotics. Here, we present the ARTS database, available at https://arts-db.ziemertlab.com/. The ARTS database provides pre-computed ARTS results for >70,000 genomes and metagenome assembled genomes in total. Advanced search queries allow users to rapidly explore the fundamental criteria of TDGM such as BGC proximity, duplication and horizontal gene transfers of essential housekeeping genes. Furthermore, the ARTS database provides results interconnected throughout the bacterial kingdom as well as links to known databases in natural product research.
Collapse
Affiliation(s)
- Mehmet Direnç Mungan
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
158
|
Heterocornols from the Sponge-Derived Fungus Pestalotiopsis heterocornis with Anti-Inflammatory Activity. Mar Drugs 2021; 19:md19110585. [PMID: 34822456 PMCID: PMC8620458 DOI: 10.3390/md19110585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
One strain-many compounds (OSMAC) manipulation of the sponge-derived fungus Pestalotiopsis heterocornis XWS03F09 resulted in the production of new secondary metabolites. The chemical study of the fermentation, cultivated on 3% artificial sea salt in the rice media, led to the isolation of twelve compounds, including eight new polyketide derivatives, heterocornols Q–X (1–8), one new ceramide (9), and three known analogues (10–12). The structures and absolute configurations of the new compounds were elucidated by spectroscopic data and calculated ECD analysis. Heterocornols Q (1) and R (2) are novel 6/5/7/5 tetracyclic polyketide derivatives featuring dihydroisobenzofuran and benzo-fused dioxabicyclo [4.2.1] nonane system, which might be derived from the acetyl-CoA by epoxidation, polyene cyclization, and rearrangement to form the core skeleton. Compound 12 showed moderate or weak antimicrobial activities against with MIC values ranging from 25 to 100 μg/mL. Heterocornols T and X (7 and 8) could inhibit the production of LPS-induced NO significantly, comparable to dexamethasone. Further Western blotting analysis showed 7 and 8 markedly suppressed the iNOS protein expression in LPS-induced RAW 264.7 cells in a dose-dependent manner. The result showed that 7 and 8 might serve as potential leads for development of anti-inflammatory activity.
Collapse
|
159
|
Lim J, Chintalapudi V, Gudmundsson HG, Tran M, Bernasconi A, Blanco A, Song L, Challis GL, Anderson EA. Synthesis of the C1-C27 Fragment of Stambomycin D Validates Modular Polyketide Synthase-Based Stereochemical Assignments. Org Lett 2021; 23:7439-7444. [PMID: 34494848 PMCID: PMC8491158 DOI: 10.1021/acs.orglett.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The
stambomycins
are a family of bioactive macrolides isolated
from Streptomyces ambofaciens. Aside from two stereocenters
installed through cytochrome P450 oxidations, their stereochemistry
has been predicted by sequence analysis of the polyketide synthase.
We report a synthesis of the C1–C27 fragment of stambomycin
D, the spectroscopic data of which correlates well with that of the
natural product, further validating predictive sequence analysis as
a powerful tool for stereochemical assignment of complex polyketide
natural products.
Collapse
Affiliation(s)
- Jieyan Lim
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Venkaiah Chintalapudi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Haraldur G Gudmundsson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Minh Tran
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Alice Bernasconi
- Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133 Milano, Italy
| | - Araceli Blanco
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Lijiang Song
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K
| | - Gregory L Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K.,Department of Biochemistry and Molecular Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
160
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
161
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
162
|
Biermann F, Helfrich EJN. Hidden Treasures: Microbial Natural Product Biosynthesis off the Beaten Path. mSystems 2021; 6:e0084621. [PMID: 34463578 DOI: 10.1128/msystems.00846-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbes produce structurally diverse natural products to interact with their environment. Many of the biosynthetic products involved in this "metabolic small talk" have been exploited for the treatment of various diseases. As an alternative to the traditional bioactivity-guided workflow, genome mining has been introduced for targeted natural product discovery based on genome sequence information. In this commentary, we will discuss the evolution of genome mining, as well as its current limitations. The Helfrich laboratory aims to play a leading role in overcoming these limitations with the development of computational strategies to identify noncanonical biosynthetic pathways and to decipher the principles that govern the production of the associated metabolites. We will use these insights to develop algorithms for the prediction of natural product scaffolds. These studies will pave the way toward a more comprehensive understanding of the full biosynthetic repertoire encoded in microbial genomes and provide access to novel metabolites.
Collapse
Affiliation(s)
- Friederike Biermann
- Institute for Molecular Bio Science, Goethe University Frankfurtgrid.7839.5, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurtgrid.7839.5, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| |
Collapse
|
163
|
Park JS, Kim DE, Hong SC, Kim SY, Kwon HC, Hyun CG, Choi J. Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms 2021; 9:microorganisms9091802. [PMID: 34576698 PMCID: PMC8466323 DOI: 10.3390/microorganisms9091802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Streptomyces spp. have been major contributors of novel natural products that are used in many application areas. We found that the nojirimycin (NJ) producer JCM 3382 has antimicrobial activity against Staphylococcus aureus via cellular degradation. Genome analysis revealed 30 biosynthetic gene clusters, including those responsible for producing antibiotics, including an azasugar NJ. In-depth MS/MS analysis confirmed the production of 1-deoxynojirimycin (DNJ) along with NJ. In addition, the production of tambromycins, setomimycin, and linearmycins was verified by spectroscopic analyses, including LC-MS and NMR. The distribution of the clusters of genes coding for antibiotics in 2061 Streptomyces genomes suggested potential producers of tambromycin, setomimycin, and linearmycin. For a DNJ gene cluster, homologs of gabT1 and gutB1 were commonly found; however, yktC1 was identified in only 112 genomes. The presence of several types of clusters suggests that different strains may produce different types of azasugars. Chemical-profile-inspired comparative genome analysis may facilitate a more accurate assessment of the biosynthetic potential to produce secondary metabolites.
Collapse
Affiliation(s)
- Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.-S.P.); (D.-E.K.); (S.-C.H.); (H.C.K.)
| | - Da-Eun Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.-S.P.); (D.-E.K.); (S.-C.H.); (H.C.K.)
| | - Sung-Chul Hong
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.-S.P.); (D.-E.K.); (S.-C.H.); (H.C.K.)
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea;
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.-S.P.); (D.-E.K.); (S.-C.H.); (H.C.K.)
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: (C.-G.H.); (J.C.)
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea
- Correspondence: (C.-G.H.); (J.C.)
| |
Collapse
|
164
|
A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proc Natl Acad Sci U S A 2021; 118:2107695118. [PMID: 34389682 PMCID: PMC8379975 DOI: 10.1073/pnas.2107695118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Algae live in association with microbes that interact by a variety of chemical mediators, resulting in mutualistic or antagonistic relationships. Although algae are key contributors to carbon fixation and are fundamental for food webs, we still know little about the underlying molecular mechanisms affecting their fitness. This study investigates the interaction between an antagonistic bacterium and a unicellular alga. It demonstrates multiple roles of a polyyne, protegencin, that is used by the bacteria to attack green algal cells. It is a highly effective toxin that alters a subcellular algal compartment used for vision, bleaches, and lyses the algal cells. These results expand our knowledge of the arsenal of chemical mediators in bacteria and their modes of action in algal communities. Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.
Collapse
|
165
|
Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne Biosynthetic Gene Cluster Diversity. mBio 2021; 12:e0071521. [PMID: 34340549 PMCID: PMC8406139 DOI: 10.1128/mbio.00715-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products that possess alkyne or polyyne moieties have been isolated from a variety of biological sources and possess a broad a range of bioactivities. In bacteria, the basic biosynthesis of polyynes is known, but their biosynthetic gene cluster (BGC) distribution and evolutionary relationship to alkyne biosynthesis have not been addressed. Through comprehensive genomic and phylogenetic analyses, the distribution of alkyne biosynthesis gene cassettes throughout bacteria was explored, revealing evidence of multiple horizontal gene transfer events. After investigation of the evolutionary connection between alkyne and polyyne biosynthesis, a monophyletic clade was identified that possessed a conserved seven-gene cassette for polyyne biosynthesis that built upon the conserved three-gene cassette for alkyne biosynthesis. Further diversity mapping of the conserved polyyne gene cassette revealed a phylogenetic subclade for an uncharacterized polyyne BGC present in several Pseudomonas species, designated pgn. Pathway mutagenesis and high-resolution analytical chemistry showed the Pseudomonas protegenspgn BGC directed the biosynthesis of a novel polyyne, protegencin. Exploration of the biosynthetic logic behind polyyne production, through BGC mutagenesis and analytical chemistry, highlighted the essentiality of a triad of desaturase proteins and a thioesterase in both the P. protegenspgn and Trinickia caryophylli (formerly Burkholderia caryophylli) caryoynencin pathways. We have unified and expanded knowledge of polyyne diversity and uniquely demonstrated that alkyne and polyyne biosynthetic gene clusters are evolutionarily related and widely distributed within bacteria. The systematic mapping of conserved biosynthetic genes across the available bacterial genomic diversity proved to be a fruitful method for discovering new natural products and better understanding polyyne biosynthesis.
Collapse
|
166
|
Kim LJ, Ohashi M, Zhang Z, Tan D, Asay M, Cascio D, Rodriguez JA, Tang Y, Nelson HM. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat Chem Biol 2021; 17:872-877. [PMID: 34312563 DOI: 10.1038/s41589-021-00834-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
More than 60% of pharmaceuticals are related to natural products (NPs), chemicals produced by living organisms. Despite this, the rate of NP discovery has slowed over the past few decades. In many cases the rate-limiting step in NP discovery is structural characterization. Here we report the use of microcrystal electron diffraction (MicroED), an emerging cryogenic electron microscopy (CryoEM) method, in combination with genome mining to accelerate NP discovery and structural elucidation. As proof of principle we rapidly determine the structure of a new 2-pyridone NP, Py-469, and revise the structure of fischerin, an NP isolated more than 25 years ago, with potent cytotoxicity but hitherto ambiguous structural assignment. This study serves as a powerful demonstration of the synergy of MicroED and synthetic biology in NP discovery, technologies that when taken together will ultimately accelerate the rate at which new drugs are discovered.
Collapse
Affiliation(s)
- Lee Joon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhuan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dan Tan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Asay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - José A Rodriguez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
167
|
Beck C, Blin K, Gren T, Jiang X, Mohite OS, Palazzotto E, Tong Y, Charusanti P, Weber T. Metabolic Engineering of Filamentous Actinomycetes. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
168
|
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29-W35. [PMID: 33978755 PMCID: PMC8262755 DOI: 10.1093/nar/gkab335] [Citation(s) in RCA: 1569] [Impact Index Per Article: 392.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Many microorganisms produce natural products that form the basis of antimicrobials, antivirals, and other drugs. Genome mining is routinely used to complement screening-based workflows to discover novel natural products. Since 2011, the "antibiotics and secondary metabolite analysis shell—antiSMASH" (https://antismash.secondarymetabolites.org/) has supported researchers in their microbial genome mining tasks, both as a free-to-use web server and as a standalone tool under an OSI-approved open-source license. It is currently the most widely used tool for detecting and characterising biosynthetic gene clusters (BGCs) in bacteria and fungi. Here, we present the updated version 6 of antiSMASH. antiSMASH 6 increases the number of supported cluster types from 58 to 71, displays the modular structure of multi-modular BGCs, adds a new BGC comparison algorithm, allows for the integration of results from other prediction tools, and more effectively detects tailoring enzymes in RiPP clusters.
Collapse
Affiliation(s)
- Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Shaw
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands.,Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
169
|
Vuong P, Lim DJ, Murphy DV, Wise MJ, Whiteley AS, Kaur P. Developing Bioprospecting Strategies for Bioplastics Through the Large-Scale Mining of Microbial Genomes. Front Microbiol 2021; 12:697309. [PMID: 34322108 PMCID: PMC8312272 DOI: 10.3389/fmicb.2021.697309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
The accumulation of petroleum-based plastic waste has become a major issue for the environment. A sustainable and biodegradable solution can be found in Polyhydroxyalkanoates (PHAs), a microbially produced biopolymer. An analysis of the global phylogenetic and ecological distribution of potential PHA producing bacteria and archaea was carried out by mining a global genome repository for PHA synthase (PhaC), a key enzyme involved in PHA biosynthesis. Bacteria from the phylum Actinobacteria were found to contain the PhaC Class II genotype which produces medium-chain length PHAs, a physiology until now only found within a few Pseudomonas species. Further, several PhaC genotypes were discovered within Thaumarchaeota, an archaeal phylum with poly-extremophiles and the ability to efficiently use CO2 as a carbon source, a significant ecological group which have thus far been little studied for PHA production. Bacterial and archaeal PhaC genotypes were also observed in high salinity and alkalinity conditions, as well as high-temperature geothermal ecosystems. These genome mining efforts uncovered previously unknown candidate taxa for biopolymer production, as well as microbes from environmental niches with properties that could potentially improve PHA production. This in silico study provides valuable insights into unique PHA producing candidates, supporting future bioprospecting efforts toward better targeted and relevant taxa to further enhance the diversity of exploitable PHA production systems.
Collapse
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Daniel J. Lim
- Department of Physics and Astronomy, Curtin University, Perth, WA, Australia
| | - Daniel V. Murphy
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Michael J. Wise
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
- Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
170
|
Park HS, Nah HJ, Kang SH, Choi SS, Kim ES. Screening and Isolation of a Novel Polyene-Producing Streptomyces Strain Inhibiting Phytopathogenic Fungi in the Soil Environment. Front Bioeng Biotechnol 2021; 9:692340. [PMID: 34322478 PMCID: PMC8312574 DOI: 10.3389/fbioe.2021.692340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial-based eco-friendly biological substances are needed to protect crops from phytopathogenic fungi and replace toxic chemical fungicides that cause serious environmental issues. This study screened for soil antifungal Streptomyces strains, which produce rich, diverse, and valuable bioactive metabolites in the soil environment. Bioassay-based antifungal screening of approximately 2,400 Streptomyces strains led to the isolation of 149 strains as tentative antifungal producers. One Streptomyces strain showing the most potent antifungal activities against Candida albicans and Fusarium oxysporum was identified as a putative anti-phytopathogenic soil isolate that is highly homologous to Streptomyces rubrisoli (named S. rubrisoli Inha 501). An in vitro antifungal assay, pot-test, and field-test against various phytopathogenic fungi confirmed that S. rubrisoli Inha 501 is a potential novel phytopathogenic fungicide producer to protect various crops in the soil environment. Whole-genome sequencing of S. rubrisoli Inha 501 and an anti-SMASH genome mining approach revealed an approximately 150-kb polyene biosynthetic gene cluster (BGC) in the chromosome. The target compound isolation and its BGC analysis confirmed that the giant linear polyene compound exhibiting the anti-phytopathogenic activity in S. rubrisoli Inha 501 was highly homologous to the previously reported compound, neotetrafibricin A. These results suggest that a bioassay-based screening of a novel antifungal Streptomyces strain followed by its genome mining for target compound BGC characterization would be an efficient approach to isolating a novel candidate phytopathogenic fungicide that can protect crops in the soil environment.
Collapse
Affiliation(s)
- Heung-Soon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Hee-Ju Nah
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Seung-Hoon Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea.,Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
171
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
172
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
173
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
174
|
Chanson A, Moreau CS, Duplais C. Assessing Biosynthetic Gene Cluster Diversity of Specialized Metabolites in the Conserved Gut Symbionts of Herbivorous Turtle Ants. Front Microbiol 2021; 12:678100. [PMID: 34267736 PMCID: PMC8277422 DOI: 10.3389/fmicb.2021.678100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Cephalotes are herbivorous ants (>115 species) feeding on low-nitrogen food sources, and they rely on gut symbionts to supplement their diet by recycling nitrogen food waste into amino acids. These conserved gut symbionts, which encompass five bacterial orders, have been studied previously for their primary nitrogen metabolism; however, little is known about their ability to biosynthesize specialized metabolites which can play a role in bacterial interactions between communities living in close proximity in the gut. To evaluate the biosynthetic potential of their gut symbionts, we mine 14 cultured isolate genomes and gut metagenomes across 17 Cephalotes species to explore the biodiversity of biosynthetic gene clusters (BGCs) producing specialized metabolites. The diversity of BGCs across Cephalotes phylogeny was analyzed using sequence similarity networking and BGC phylogenetic reconstruction. Our results reveal that the conserved gut symbionts involved in the nutritional symbiosis possess 80% of all the 233 BGCs retrieved in this work. Furthermore, the phylogenetic analysis of BGCs reveals different patterns of distribution, suggesting different mechanisms of conservation. A siderophore BGC shows high similarity in a single symbiont across different ant host species, whereas a BGC encoding the production of non-ribosomal peptides (NRPs) found different symbionts within a single host species. Additionally, BGCs were abundant in four of the five bacterial orders of conserved symbionts co-occurring in the hindgut. However, one major symbiont localized alone in the midgut lack BGCs. Because the spatial isolation prevents direct interaction with other symbionts, this result supports the idea that BGCs are maintained in bacteria living in close proximity but are dispensable for an alone-living symbiont. These findings together pave the way for studying the mechanisms of BGC conservation and evolution in gut bacterial genomes associated with Cephalotes. This work also provides a genetic background for further study, aiming to characterize bacterial specialized metabolites and to understand their functional role in multipartite mutualisms between conserved gut symbionts and Cephalotes turtle ants.
Collapse
Affiliation(s)
- Anaïs Chanson
- Université de Guyane, UMR 8172 EcoFoG, AgroParisTech, CNRS, Cirad, INRAE, Université des Antilles, Kourou, France
| | - Corrie S. Moreau
- Department of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Christophe Duplais
- CNRS, UMR 8172 EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| |
Collapse
|
175
|
Jiang L, Zhu G, Han J, Hou C, Zhang X, Wang Z, Yuan W, Lv K, Cong Z, Wang X, Chen X, Karthik L, Yang H, Wang X, Tan G, Liu G, Zhao L, Xia X, Liu X, Gao S, Ma L, Liu M, Ren B, Dai H, Quinn RJ, Hsiang T, Zhang J, Zhang L, Liu X. Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Appl Microbiol Biotechnol 2021; 105:5407-5417. [PMID: 34155529 DOI: 10.1007/s00253-021-11192-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 μM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products. KEY POINTS: • Genome mining of the first BFTS BGC harboring a glycosyltransferase. • Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids. • Biosynthetic pathway of isolated sesterterpenoids was proposed.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianying Han
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Chengjian Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangyin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liya Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | | | - Shushan Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mei Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huanqin Dai
- The State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
176
|
Genome mining Streptomyces sp. KCTC 0041BP as a producer of dihydrochalcomycin. Appl Microbiol Biotechnol 2021; 105:5023-5037. [PMID: 34136924 DOI: 10.1007/s00253-021-11393-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Streptomyces sp. KCTC 0041BP, which was isolated from a soil sample in Cheolwon, Republic of Korea, is a dihydrochalcomycin producer. In this study, we obtained the genome of S. sp. KCTC 0041BP with 7.54 Mb genome size. antiSMASH and the dbCAN2 meta server predicted that the genome would contain 26 secondary metabolite biosynthetic gene clusters (BGCs) and 285 carbohydrate-active enzymes. Besides dihydrochalcomycin, 21 compounds were successfully identified from S. sp. KCTC 0041BP, and among them, the structure of 8 compounds were proven by high-resolution electrospray ionization mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR). The identification of chalcomycin analogs led to a better understanding of the biosynthetic pathway of dihydrochalcomycin/chalcomycin. From the analysis of cluster 2 and solvent selection, linearmycins were determined. Linearmycins showed antibacterial activity with both Gram-positive and Gram-negative bacteria and antifungal activity. One strain many compounds (OSMAC) strategy was applied to activate the salicylic acid production in this strain. A salicylic acid biosynthetic pathway was also predicted, but not by antiSMASH. These results showed that this strain can produce many useful compounds and potentially produce novel compounds with most secondary BGCs yet to be experimentally identified.
Collapse
|
177
|
Ishikawa F, Konno S, Uchida C, Suzuki T, Takashima K, Dohmae N, Kakeya H, Tanabe G. Chemoproteomics profiling of surfactin-producing nonribosomal peptide synthetases in living bacterial cells. Cell Chem Biol 2021; 29:145-156.e8. [PMID: 34133952 DOI: 10.1016/j.chembiol.2021.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
Much of our current knowledge on nonribosomal peptide synthetases (NRPSs) is based on studies in which the full NRPS system or each protein domain is expressed in heterologous hosts. Consequently, methods to detect the endogenous activity of NRPSs, under natural cellular conditions, are needed for the study of NRPS cell biology. Here, we describe the in vivo activity-based protein profiling (ABPP) for endogenous NRPSs and its applications to the study of their activities in bacteria. Remarkably, in vitro and in vivo ABPP in the context of the surfactin producer Bacillus subtilis enabled the visualization, tracking, and imaging of an endogenous SrfAB-NRPS with remarkable selectivity and sensitivity. Furthermore, in vivo, ABPP allowed the discovery of the degradation processes of the endogenous SrfAB-NRPS in the context of its native producer bacteria. Overall, this study deepens our understanding of the properties of NRPSs that cannot be addressed by conventional methods.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Sho Konno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Chiharu Uchida
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsuki Takashima
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
178
|
Luo J, Yang D, Hindra, Adhikari A, Dong LB, Ye F, Yan X, Rader C, Shen B. Discovery of ammosesters by mining the Streptomyces uncialis DCA2648 genome revealing new insight into ammosamide biosynthesis. J Ind Microbiol Biotechnol 2021; 48:6185047. [PMID: 33982054 PMCID: PMC8210675 DOI: 10.1093/jimb/kuab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
The ammosamides (AMMs) are a family of pyrroloquinoline alkaloids that exhibits a wide variety of bioactivities. A biosynthetic gene cluster (BGC) that is highly homologous in both gene content and genetic organization to the amm BGC was identified by mining the Streptomyces uncialis DCA2648 genome, leading to the discovery of a sub-family of new AMM congeners, named ammosesters (AMEs). The AMEs feature a C-4a methyl ester, differing from the C-4a amide functional group characteristic to AMMs, and exhibit modest cytotoxicity against a broad spectrum of human cancer cell lines, expanding the structure-activity relationship for the pyrroloquinoline family of natural products. Comparative analysis of the ame and amm BGCs supports the use of a scaffold peptide as an emerging paradigm for the biosynthesis of the pyrroloquinoline family of natural products. AME and AMM biosynthesis diverges from a common intermediate by evolving the pathway-specific Ame24 O-methyltransferase and Amm20 amide synthetase, respectively. These findings will surely inspire future efforts to mimic Nature's combinatorial biosynthetic strategies for natural product structural diversity.
Collapse
Affiliation(s)
| | | | | | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Fei Ye
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Correspondence should be addressed to: Ben Shen. Phone: +1-561-228-2456. Fax: +1-561-228-2472. E-mail:
| |
Collapse
|
179
|
Genome mining for the presence of putative cellulose synthesis operon in multiple Proteus vulgaris strains and its characterization using computational methods. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
180
|
Li L, Maclntyre LW, Brady SF. Refactoring biosynthetic gene clusters for heterologous production of microbial natural products. Curr Opin Biotechnol 2021; 69:145-152. [PMID: 33476936 PMCID: PMC8238852 DOI: 10.1016/j.copbio.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Microbial natural products (NPs) are of paramount importance in human medicine, animal health and plant crop protection. Large-scale microbial genome and metagenomic mining has revealed tremendous biosynthetic potential to produce new NPs. However a majority of NP biosynthetic gene clusters (BGCs) are functionally inaccessible under standard laboratory conditions. BGC refactoring and heterologous expression provide a promising synthetic biology approach to NP discovery, yield optimization and combinatorial biosynthesis studies. In this review, we summarize the recent advances pertaining to the heterologous production of bacterial and fungal NPs, with an emphasis on next-generation transcriptional regulatory modules, novel BGC refactoring techniques and optimized heterologous hosts.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Logan W Maclntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
181
|
Holomycin, an Antibiotic Secondary Metabolite, Is Required for Biofilm Formation by the Native Producer Photobacterium galatheae S2753. Appl Environ Microbiol 2021; 87:AEM.00169-21. [PMID: 33771780 DOI: 10.1128/aem.00169-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 01/24/2023] Open
Abstract
While the effects of antibiotics on microorganisms are widely studied, it remains less well understood how antibiotics affect the physiology of the native producing organisms. Here, using a marine bacterium, Photobacterium galatheae S2753, that produces the antibiotic holomycin, we generated a holomycin-deficient strain by in-frame deletion of hlmE, the core gene responsible for holomycin production. Mass spectrometry analysis of cell extracts confirmed that the ΔhlmE strain did not produce holomycin and that the mutant was devoid of antibacterial activity. Biofilm formation of the ΔhlmE strain was significantly reduced compared to that of wild-type S2753 and was restored in an hlmE complementary mutant. Consistent with this, exogenous holomycin, but not its dimethylated and less antibacterial derivative, S,S'-dimethyl holomycin, restored the biofilm formation of the ΔhlmE strain. Furthermore, zinc starvation was found to be essential for both holomycin production and biofilm formation of S2753, although the molecular mechanism remains elusive. Collectively, these data suggest that holomycin promotes biofilm formation of S2753 via its ene-disulfide group. Lastly, the addition of holomycin at subinhibitory concentrations also enhanced the biofilms of four other Vibrionaceae strains. P. galatheae likely gains an ecological advantage from producing holomycin as both an antibiotic and a biofilm stimulator, which facilitates nutrition acquisition and protects P. galatheae from environmental stresses. Studying the function of antibiotic compounds in the native producer will shed light on their roles in nature and could point to novel bioprospecting strategies.IMPORTANCE Despite the societal impact of antibiotics, their ecological functions remain elusive and have mostly been studied by exposing nonproducing bacteria to subinhibitory concentrations. Here, we studied the effects of the antibiotic holomycin on its native producer, Photobacterium galatheae S2753, a Vibrionaceae bacterium. Holomycin provides a distinct advantage to S2753 both as an antibiotic and by enhancing biofilm formation in the producer. Vibrionaceae species successfully thrive in global marine ecosystems, where they play critical ecological roles as free-living, symbiotic, or pathogenic bacteria. Genome mining has demonstrated that many have the potential to produce several bioactive compounds, including P. galatheae To unravel the contribution of the microbial metabolites to the development of marine microbial ecosystems, better insight into the function of these compounds in the producing organisms is needed. Our finding provides a model to pursue this and highlights the ecological importance of antibiotics to the fitness of the producing organisms.
Collapse
|
182
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
183
|
An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc Natl Acad Sci U S A 2021; 118:2020230118. [PMID: 33941694 DOI: 10.1073/pnas.2020230118] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fungi are prolific producers of natural products, compounds which have had a large societal impact as pharmaceuticals, mycotoxins, and agrochemicals. Despite the availability of over 1,000 fungal genomes and several decades of compound discovery efforts from fungi, the biosynthetic gene clusters (BGCs) encoded by these genomes and the associated chemical space have yet to be analyzed systematically. Here, we provide detailed annotation and analyses of fungal biosynthetic and chemical space to enable genome mining and discovery of fungal natural products. Using 1,037 genomes from species across the fungal kingdom (e.g., Ascomycota, Basidiomycota, and non-Dikarya taxa), 36,399 predicted BGCs were organized into a network of 12,067 gene cluster families (GCFs). Anchoring these GCFs with reference BGCs enabled automated annotation of 2,026 BGCs with predicted metabolite scaffolds. We performed parallel analyses of the chemical repertoire of fungi, organizing 15,213 fungal compounds into 2,945 molecular families (MFs). The taxonomic landscape of fungal GCFs is largely species specific, though select families such as the equisetin GCF are present across vast phylogenetic distances with parallel diversifications in the GCF and MF. We compare these fungal datasets with a set of 5,453 bacterial genomes and their BGCs and 9,382 bacterial compounds, revealing dramatic differences between bacterial and fungal biosynthetic logic and chemical space. These genomics and cheminformatics analyses reveal the large extent to which fungal and bacterial sources represent distinct compound reservoirs. With a >10-fold increase in the number of interpreted strains and annotated BGCs, this work better regularizes the biosynthetic potential of fungi for rational compound discovery.
Collapse
|
184
|
Sukmarini L. Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules 2021; 26:molecules26092542. [PMID: 33925414 PMCID: PMC8123854 DOI: 10.3390/molecules26092542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911, West Java, Indonesia
| |
Collapse
|
185
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
186
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Department of Biology Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| |
Collapse
|
187
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues*. Angew Chem Int Ed Engl 2021; 60:10064-10072. [PMID: 33599093 PMCID: PMC8252387 DOI: 10.1002/anie.202015105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/16/2022]
Abstract
In recent years, extensive sequencing and annotation of bacterial genomes has revealed an unexpectedly large number of secondary metabolite biosynthetic gene clusters whose products are yet to be discovered. For example, cyanobacterial genomes contain a variety of gene clusters that likely incorporate fatty acid derived moieties, but for most cases we lack the knowledge and tools to effectively predict or detect the encoded natural products. Here, we exploit the apparent absence of a functional β-oxidation pathway in cyanobacteria to achieve efficient stable-isotope-labeling of their fatty acid derived lipidome. We show that supplementation of cyanobacterial cultures with deuterated fatty acids can be used to easily detect natural product signatures in individual strains. The utility of this strategy is demonstrated in two cultured cyanobacteria by uncovering analogues of the multidrug-resistance reverting hapalosin, and novel, cytotoxic, lactylate-nocuolin A hybrids-the nocuolactylates.
Collapse
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and BiochemistryFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Department of BiologyFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| |
Collapse
|
188
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
189
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
190
|
Baltz RH. Genome mining for drug discovery: cyclic lipopeptides related to daptomycin. J Ind Microbiol Biotechnol 2021; 48:6178872. [PMID: 33739403 PMCID: PMC9113097 DOI: 10.1093/jimb/kuab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
The cyclic lipopeptide antibiotics structurally related to daptomycin were first reported in the 1950s. Several have common lipopeptide initiation, elongation, and termination mechanisms. Initiation requires the use of a fatty acyl-AMP ligase (FAAL), a free-standing acyl carrier protein (ACP), and a specialized condensation (CIII) domain on the first NRPS elongation module to couple the long chain fatty acid to the first amino acid. Termination is carried out by a dimodular NRPS that contains a terminal thioesterase (Te) domain (CAT-CATTe). Lipopeptide BGCs also encode ABC transporters, apparently for export and resistance. The use of this mechanism of initiation, elongation, and termination, coupled with molecular target-agnostic resistance, has provided a unique basis for robust natural and experimental combinatorial biosynthesis to generate a large variety of structurally related compounds, some with altered or different antibacterial mechanisms of action. The FAAL, ACP, and dimodular NRPS genes were used as molecular beacons to identify phylogenetically related BGCs by BLASTp analysis of finished and draft genome sequences. These and other molecular beacons have identified: (i) known, but previously unsequenced lipopeptide BGCs in draft genomes; (ii) a new daptomycin family BGC in a draft genome of Streptomyces sedi; and (iii) novel lipopeptide BGCs in the finished genome of Streptomyces ambofaciens and the draft genome of Streptomyces zhaozhouensis.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA
| |
Collapse
|
191
|
Purdy TN, Kim MC, Cullum R, Fenical W, Moore BS. Discovery and Biosynthesis of Tetrachlorizine Reveals Enzymatic Benzylic Dehydrogenation via an ortho-Quinone Methide. J Am Chem Soc 2021; 143:3682-3686. [PMID: 33656337 DOI: 10.1021/jacs.0c12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ortho-quinone methides (o-QMs) are reactive intermediates in biosynthesis that give rise to a variety of intra- and intermolecular cyclization/addition products in bacteria, fungi, and plants. Herein, we report a new metabolic deviation of an o-QM intermediate in a benzylic dehydrogenation reaction that links the newly described marine bacterial natural products dihydrotetrachlorizine and tetrachlorizine. We discovered these novel dichloropyrrole-containing compounds from actinomycete strain AJS-327 that unexpectedly harbors in its genome a biosynthetic gene cluster (BGC) of striking similarity to that of chlorizidine, another marine alkaloid bearing a different carbon skeleton. Heterologous expression of the homologous flavin-dependent oxidoreductase enzymes Tcz9 and Clz9 revealed their native functions in tetrachlorizine and chlorizidine biosynthesis, respectively, supporting divergent oxidative dehydrogenation and pyrrolizine-forming reactions. Swapping these berberine bridge enzyme-like oxidoreductases, we produced cyclized and dehydrogenated analogs of tetrachlorizine and chlorizidine, including a dearomatized chlorizidine analog that stabilizes an o-QM via conjugation with a 3H-pyrrolizine ring.
Collapse
|
192
|
Sagita R, Quax WJ, Haslinger K. Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Front Bioeng Biotechnol 2021; 9:649906. [PMID: 33791289 PMCID: PMC8005728 DOI: 10.3389/fbioe.2021.649906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bioprospecting of secondary metabolites from endophytic fungi received great attention in the 1990s and 2000s, when the controversy around taxol production from Taxus spp. endophytes was at its height. Since then, hundreds of reports have described the isolation and characterization of putative secondary metabolites from endophytic fungi. However, only very few studies also report the genetic basis for these phenotypic observations. With low sequencing cost and fast sample turnaround, genetics- and genomics-based approaches have risen to become comprehensive approaches to study natural products from a wide-range of organisms, especially to elucidate underlying biosynthetic pathways. However, in the field of fungal endophyte biology, elucidation of biosynthetic pathways is still a major challenge. As a relatively poorly investigated group of microorganisms, even in the light of recent efforts to sequence more fungal genomes, such as the 1000 Fungal Genomes Project at the Joint Genome Institute (JGI), the basis for bioprospecting of enzymes and pathways from endophytic fungi is still rather slim. In this review we want to discuss the current approaches and tools used to associate phenotype and genotype to elucidate biosynthetic pathways of secondary metabolites in endophytic fungi through the lens of bioprospecting. This review will point out the reported successes and shortcomings, and discuss future directions in sampling, and genetics and genomics of endophytic fungi. Identifying responsible biosynthetic genes for the numerous secondary metabolites isolated from endophytic fungi opens the opportunity to explore the genetic potential of producer strains to discover novel secondary metabolites and enhance secondary metabolite production by metabolic engineering resulting in novel and more affordable medicines and food additives.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Groningen Institute of Pharmacy, Chemical and Pharmaceutical Biology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
193
|
Crüsemann M. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Mar Drugs 2021; 19:142. [PMID: 33807702 PMCID: PMC7998270 DOI: 10.3390/md19030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial natural products possess potent bioactivities and high structural diversity and are typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent advances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of genomic and mass spectral data that is increasingly used for signature-based or correlation-based mass spectrometry genome mining approaches that enable rapid linking of metabolomic and genomic information to accelerate and rationalize natural product discovery. In this mini-review, these approaches are presented, and discovery examples provided. Finally, future opportunities and challenges for paired omics-based natural products discovery workflows are discussed.
Collapse
Affiliation(s)
- Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
194
|
Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Nat Prod Rep 2021; 38:1775-1793. [PMID: 33650608 DOI: 10.1039/d0np00069h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to July 2020Fungal metabolites with diverse and novel scaffolds can be assembled from well-known biosynthetic precursors through various mechanisms. Recent examples of novel alkaloids (e.g., cytochalasans and diketopiperazine derivatives), terpenes (e.g., sesterterpenes and diterpenes) and polyketides produced by fungi are presented through case studies. We show that large-scale culture is a complementary and practical method for genome mining and OSMAC approaches to discover natural products of unprecedented skeletal classes from fungi. We also summarize the discovery strategies and challenges for characterizing these compounds.
Collapse
Affiliation(s)
- Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
195
|
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20:200-216. [PMID: 33510482 PMCID: PMC7841765 DOI: 10.1038/s41573-020-00114-z] [Citation(s) in RCA: 2324] [Impact Index Per Article: 581.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments - including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances - are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche, Florence, Italy.
| |
Collapse
|
196
|
Yadav S, Kapley A. Antibiotic resistance: Global health crisis and metagenomics. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00604. [PMID: 33732632 PMCID: PMC7937537 DOI: 10.1016/j.btre.2021.e00604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
Antibiotic resistance is a global problem which affects human health. The imprudent use of antibiotics (medicine, agriculture, aquaculture, and food industry) has resulted in the broader dissemination of resistance. Urban wastewater & sewage treatment plants act as the hotspot for the widespread of antimicrobial resistance. Natural environment also plays an important role in the dissemination of resistance. Mapping of antibiotic resistance genes (ARGS) in environment is essential for mitigating antimicrobial resistance (AMR) widespread. Therefore, the review article emphasizes on the application of metagenomics for the surveillance of antimicrobial resistance. Metagenomics is the next generation tool which is being used for cataloging the resistome of diverse environments. We summarize the different metagenomic tools that can be used for mining of ARGs and acquired AMR present in the metagenomic data. Also, we recommend application of targeted sequencing/ capture platform for mapping of resistome with higher specificity and selectivity.
Collapse
Affiliation(s)
- Shailendra Yadav
- Director’s Research Cell, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Atya Kapley
- Director’s Research Cell, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| |
Collapse
|
197
|
Danelius E, Halaby S, van der Donk WA, Gonen T. MicroED in natural product and small molecule research. Nat Prod Rep 2021; 38:423-431. [PMID: 32939523 PMCID: PMC7965795 DOI: 10.1039/d0np00035c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: 2013 to 2020The electron cryo-microscopy (cryo-EM) method Microcrystal Electron Diffraction (MicroED) allows the collection of high-resolution structural data from vanishingly small crystals that appear like amorphous powders or very fine needles. Since its debut in 2013, data collection and analysis schemes have been fine-tuned, and there are currently close to 100 structures determined by MicroED. Although originally developed to study proteins, MicroED is also very powerful for smaller systems, with some recent and very promising examples from the field of natural products. Herein, we review what has been achieved so far and provide examples of natural product structures, as well as demonstrate the expected future impact of MicroED to the field of natural product and small molecule research.
Collapse
Affiliation(s)
- Emma Danelius
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E Young Drive South, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
198
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
199
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
200
|
Soldatou S, Eldjárn GH, Ramsay A, van der Hooft JJJ, Hughes AH, Rogers S, Duncan KR. Comparative Metabologenomics Analysis of Polar Actinomycetes. Mar Drugs 2021; 19:103. [PMID: 33578887 PMCID: PMC7916644 DOI: 10.3390/md19020103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | | | - Andrew Ramsay
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | | | - Alison H. Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| |
Collapse
|