151
|
Kumar N, Marchesini S, Howe T, Edwards L, Brennan B, Pollard AJ. Nanoscale characterization of plasma functionalized graphitic flakes using tip-enhanced Raman spectroscopy. J Chem Phys 2020; 153:184708. [PMID: 33187417 DOI: 10.1063/5.0024370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chemical functionalization of graphene nanomaterials allows for the enhancement of their properties for novel functional applications. However, a better understanding of the functionalization process by determining the amount and location of functional groups within individual graphene nanoplatelets remains challenging. In this work, we demonstrate the capability of tip-enhanced Raman spectroscopy (TERS) to investigate the degree and spatial variability of the appearance of disorder in graphitic nanomaterials on the nanoscale with three different levels of nitrogen functionalization. TERS results are in excellent agreement with those of confocal Raman spectroscopy and chemical analysis, determined using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, of the functionalized materials. This work paves the way for a better understanding of the functionalization of graphene and graphitic nanomaterials at the nano-scale, micro-scale, and macro-scale and the relationship between the techniques and how they relate to the changes in material properties of industrial importance.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Sofia Marchesini
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Thomas Howe
- Haydale Limited, Clos Fferws, Parc Hendre, Ammanford SA18 3BL, United Kingdom
| | - Lee Edwards
- Haydale Limited, Clos Fferws, Parc Hendre, Ammanford SA18 3BL, United Kingdom
| | - Barry Brennan
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Andrew J Pollard
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
152
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
153
|
Contreras F, Ermolenkov A, Kurouski D. Infrared analysis of hair dyeing and bleaching history. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3741-3747. [PMID: 32729856 DOI: 10.1039/d0ay01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Forensic examination of hair is commonly performed to trace its origin and make a connection between a suspect and a crime scene. Such examination is based on subjective microscopic analysis of hair. During the last decade, several spectroscopic approaches have been proposed to make forensic analysis of hair more robust and reliable. Surface-enhanced Raman and attenuated total internal reflection infrared spectroscopies allowed for detection and identification of dyes directly on hair and even differentiation between commercial brands of those colorants. However, these is a question that remains unanswered: can artificial dyes be detected on bleached hair or bleaching can be used to fully erase information about hair coloring? In this study, we report experimental results that provide a clear answer to this question. We show that infrared analysis can be used to differentiate between undyed bleached hair and hair that was colored with both permanent and semi-permanent dyes prior to bleaching. We also show that IR analysis can be used to distinguish between undyed unbleached and undyed bleached hair. We demonstrate that in combination with multivariate statistical analysis, IR analysis can be used to distinguish with 96-100% accuracy between those hair classes.
Collapse
Affiliation(s)
- Fernando Contreras
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
154
|
Dou T, Li Z, Zhang J, Evilevitch A, Kurouski D. Nanoscale Structural Characterization of Individual Viral Particles Using Atomic Force Microscopy Infrared Spectroscopy (AFM-IR) and Tip-Enhanced Raman Spectroscopy (TERS). Anal Chem 2020; 92:11297-11304. [PMID: 32683857 DOI: 10.1021/acs.analchem.0c01971] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Viruses are infections species that infect a large spectrum of living systems. Although displaying a wide variety of shapes and sizes, they are all composed of nucleic acid encapsulated into a protein capsid. After virions enter the host cell, they replicate to produce multiple copies of themselves. They then lyse the host, releasing virions to infect new cells. The high proliferation rate of viruses is the underlying cause of their fast transmission among living species. Although many viruses are harmless, some of them are responsible for severe diseases such as AIDS, viral hepatitis, and flu. Traditionally, electron microscopy is used to identify and characterize viruses. This approach is time- and labor-consuming, which is problematic upon pandemic proliferation of previously unknown viruses, such as H1N1 and COVID-19. Herein, we demonstrate a novel diagnosis approach for label-free identification and structural characterization of individual viruses that is based on a combination of nanoscale Raman and infrared spectroscopy. Using atomic force microscopy-infrared (AFM-IR) spectroscopy, we were able to probe structural organization of the virions of Herpes Simplex Type 1 viruses and bacteriophage MS2. We also showed that tip-enhanced Raman spectroscopy (TERS) could be used to reveal protein secondary structure and amino acid composition of the virus surface. Our results show that AFM-IR and TERS provide different but complementary information about the structure of complex biological specimens. This structural information can be used for fast and reliable identification of viruses. This nanoscale bimodal imaging approach can be also used to investigate the origin of viral polymorphism and study mechanisms of virion assembly.
Collapse
Affiliation(s)
- Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Center for Phage Technology, Texas A&M University, College Station, Texas 77843, United States
| | - Alex Evilevitch
- Department of Experimental Medical Science, Virus Biophysics Group, BMC Biomedical Center, Lund University, Lund, SE-221 00S, Sweden
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
155
|
Abstract
Single-molecule-level measurements are bringing about a revolution in our understanding of chemical and biochemical processes. Conventional measurements are performed on large ensembles of molecules. Such ensemble-averaged measurements mask molecular-level dynamics and static and dynamic fluctuations in reactivity, which are vital to a holistic understanding of chemical reactions. Watching reactions on the single-molecule level provides access to this otherwise hidden information. Sub-diffraction-limited spatial resolution fluorescence imaging methods, which have been successful in the field of biophysics, have been applied to study chemical processes on single-nanoparticle and single-molecule levels, bringing us new mechanistic insights into physiochemical processes. However, the scope of chemical processes that can be studied using fluorescence imaging is considerably limited; the chemical reaction has to be designed such that it involves fluorophores or fluorogenic probes. In this article, we review optical imaging modalities alternative to fluorescence imaging, which expand greatly the range of chemical processes that can be probed with nanoscale or even single-molecule resolution. First, we show that the luminosity, wavelength, and intermittency of solid-state photoluminescence (PL) can be used to probe chemical transformations on the single-nanoparticle-level. Next, we highlight case studies where localized surface plasmon resonance (LSPR) scattering is used for tracking solid-state, interfacial, and near-field-driven chemical reactions occurring in individual nanoscale locations. Third, we explore the utility of surface- and tip-enhanced Raman scattering to monitor individual bond-dissociation and bond-formation events occurring locally in chemical reactions on surfaces. Each example has yielded some new understanding about molecular mechanisms or location-to-location heterogeneity in chemical activity. The review finishes with new and complementary tools that are expected to further enhance the scope of knowledge attainable through nanometer-scale resolution chemical imaging.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dinumol Devasia
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Materials Research Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
156
|
Olson NE, Xiao Y, Lei Z, Ault AP. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles. Anal Chem 2020; 92:9932-9939. [PMID: 32519841 DOI: 10.1021/acs.analchem.0c01495] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physicochemical analysis of individual atmospheric aerosols at the most abundant sizes in the atmosphere (<1 μm) is analytically challenging, as hundreds to thousands of species are often present in femtoliter volumes. Vibrational spectroscopies, such as infrared (IR) and Raman, have great potential for probing functional groups in single particles at ambient pressure and temperature. However, the diffraction limit of IR radiation limits traditional IR microscopy to particles > ∼10 μm, which have less relevance to aerosol health and climate impacts. Optical photothermal infrared (O-PTIR) spectroscopy is a contactless method that circumvents diffraction limitations by using changes in the scattering intensity of a continuous wave visible laser (532 nm) to detect the photothermal expansion when a vibrational mode is excited by a tunable IR laser (QCL: 800-1800 cm-1 or OPO: 2600-3600 cm-1). Herein, we simultaneously collect O-PTIR spectra with Raman spectra at a single point for individual particles with aerodynamic diameters <400 nm (prior to impaction and spreading) at ambient temperature and pressure, by also collecting the inelastically scattered visible photons for Raman spectra. O-PTIR and Raman spectra were collected for submicrometer particles with different substrates, particle chemical compositions, and morphologies (i.e., core-shell), as well as IR mapping with submicron spatial resolution. Initial O-PTIR analysis of ambient atmospheric particles identified both inorganic and organic modes in individual sub- and supermicrometer particles. The simultaneous IR and Raman microscopy with submicrometer spatial resolution described herein has considerable potential both in atmospheric chemistry and numerous others fields (e.g., materials and biological research).
Collapse
Affiliation(s)
- Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|