151
|
Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc Natl Acad Sci U S A 2017; 114:1305-1310. [PMID: 28115689 DOI: 10.1073/pnas.1621129114] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.
Collapse
|
152
|
High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res 2017; 27:373-385. [PMID: 28106073 DOI: 10.1038/cr.2017.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
The 26S proteasome is an ATP-dependent dynamic 2.5 MDa protease that regulates numerous essential cellular functions through degradation of ubiquitinated substrates. Here we present a near-atomic-resolution cryo-EM map of the S. cerevisiae 26S proteasome in complex with ADP-AlFx. Our biochemical and structural data reveal that the proteasome-ADP-AlFx is in an activated state, displaying a distinct conformational configuration especially in the AAA-ATPase motor region. Noteworthy, this map demonstrates an asymmetric nucleotide binding pattern with four consecutive AAA-ATPase subunits bound with nucleotide. The remaining two subunits, Rpt2 and Rpt6, with empty or only partially occupied nucleotide pocket exhibit pronounced conformational changes in the AAA-ATPase ring, which may represent a collective result of allosteric cooperativity of all the AAA-ATPase subunits responding to ATP hydrolysis. This collective motion of Rpt2 and Rpt6 results in an elevation of their pore loops, which could play an important role in substrate processing of proteasome. Our data also imply that the nucleotide occupancy pattern could be related to the activation status of the complex. Moreover, the HbYX tail insertion may not be sufficient to maintain the gate opening of 20S core particle. Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome.
Collapse
|
153
|
Marshall RS, Gemperline DC, Vierstra RD. Purification of 26S Proteasomes and Their Subcomplexes from Plants. Methods Mol Biol 2017; 1511:301-334. [PMID: 27730621 DOI: 10.1007/978-1-4939-6533-5_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type plants, and another that employs the genetic replacement of individual subunits with epitope-tagged variants combined with affinity purification. In addition to these purification protocols, we describe methods commonly used to analyze the activity and composition of the complex.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA.,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | - David C Gemperline
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, USA. .,Department of Biology, Washington University in St Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
154
|
Rivera-Santiago R, Harper SL, Sriswasdi S, Hembach P, Speicher DW. Full-Length Anion Exchanger 1 Structure and Interactions with Ankyrin-1 Determined by Zero Length Crosslinking of Erythrocyte Membranes. Structure 2016; 25:132-145. [PMID: 27989623 DOI: 10.1016/j.str.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 11/26/2022]
Abstract
Anion exchanger 1 (AE1) is a critical transporter and the primary structural scaffold for large macromolecular complexes responsible for erythrocyte membrane flexibility and integrity. We used zero-length crosslinking and mass spectrometry to probe AE1 structures and interactions in intact erythrocyte membranes. An experimentally verified full-length model of AE1 dimers was developed by combining crosslink-defined distance constraints with homology modeling. Previously unresolved cytoplasmic loops in the AE1 C-terminal domain are packed at the domain-domain interface on the cytoplasmic face of the membrane where they anchor the N-terminal domain's location and prevent it from occluding the ion channel. Crosslinks between AE1 dimers and ankyrin-1 indicate the likely topology for AE1 tetramers and suggest that ankyrin-1 wraps around AE1 tetramers, which may stabilize this oligomer state. This interaction and interactions of AE1 with other major erythrocyte membrane proteins show that protein-protein contacts are often substantially more extensive than previously reported.
Collapse
Affiliation(s)
- Roland Rivera-Santiago
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sandra L Harper
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Peter Hembach
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David W Speicher
- The Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
155
|
Abstract
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems.
Collapse
|
156
|
Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: Self-Assembly of Enzyme and Substrate Pieces of Glycerol-3-Phosphate Dehydrogenase into a Robust Catalyst of Hydride Transfer. J Am Chem Soc 2016; 138:15251-15259. [PMID: 27792325 PMCID: PMC5291162 DOI: 10.1021/jacs.6b09936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The stabilization of the transition
state for hlGPDH-catalyzed reduction of DHAP due
to the action of the phosphodianion
of DHAP and the cationic side chain of R269 is between 12.4 and 17
kcal/mol. The R269A mutation of glycerol-3-phosphate dehydrogenase
(hlGPDH) results in a 9.1 kcal/mol destabilization
of the transition state for enzyme-catalyzed reduction of dihydroxyacetone
phosphate (DHAP) by NADH, and there is a 6.7 kcal/mol stabilization of this transition state by 1.0 M guanidine cation (Gua+) [J. Am. Chem. Soc.2015, 137, 5312–5315]. The R269A mutant shows no detectable
activity toward reduction of glycolaldehyde (GA), or activation of
this reaction by 30 mM HPO32–. We report
the unprecedented self-assembly of R269A hlGPDH,
dianions (X2– = FPO32–, HPO32–, or SO42–), Gua+ and GA into a functioning catalyst of the reduction
of GA, and fourth-order reaction rate constants kcat/KGAKXKGua. The linear logarithmic correlation
(slope = 1.0) between values of kcat/KGAKX for dianion
activation of wildtype hlGPDH-catalyzed reduction
of GA and kcat/KGAKXKGua shows that the electrostatic interaction between exogenous dianions
and the side chain of R269 is not significantly perturbed by cutting hlGPDH into R269A and Gua+ pieces. The advantage
for connection of hlGPDH (R269A mutant + Gua+) and substrate pieces (GA + HPi) pieces, (ΔGS‡)HPi+E+Gua = 5.6 kcal/mol, is nearly equal to the sum
of the advantage to connection of the substrate pieces, (ΔGS‡)GA+HPi = 3.3 kcal/mol, for wildtype hlGPDH-catalyzed reaction of GA + HPi, and for connection
of the enzyme pieces, (ΔGS‡)E+Gua = 2.4
kcal/mol, for Gua+ activation of the R269A hlGPDH-catalyzed reaction of DHAP.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| |
Collapse
|
157
|
Natisvili T, Yandim C, Silva R, Emanuelli G, Krueger F, Nageshwaran S, Festenstein R. Transcriptional Activation of Pericentromeric Satellite Repeats and Disruption of Centromeric Clustering upon Proteasome Inhibition. PLoS One 2016; 11:e0165873. [PMID: 27806100 PMCID: PMC5091837 DOI: 10.1371/journal.pone.0165873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres.
Collapse
Affiliation(s)
- Theona Natisvili
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Cihangir Yandim
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Raquel Silva
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Giulia Emanuelli
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
| | - Sathiji Nageshwaran
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine, Division of Brain Sciences and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
158
|
Abstract
The proteasome is the major engine of protein degradation in all eukaryotic cells. At the heart of this machine is a heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitylated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. Using cryoelectron microscopy, we determined a near-atomic-resolution structure of the 2.5-MDa human proteasome in its ground state, as well as subnanometer-resolution structures of the holoenzyme in three alternative conformational states. The substrate-unfolding AAA-ATPase channel is narrowed by 10 inward-facing pore loops arranged into two helices that run in parallel with each other, one hydrophobic in character and the other highly charged. The gate of the core particle was unexpectedly found closed in the ground state and open in only one of the alternative states. Coordinated, stepwise conformational changes of the regulatory particle couple ATP hydrolysis to substrate translocation and regulate gating of the core particle, leading to processive degradation.
Collapse
|
159
|
Meister C, Gulko MK, Köhler AM, Braus GH. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Curr Genet 2016; 62:129-36. [PMID: 26497135 DOI: 10.1007/s00294-015-0525-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/29/2023]
Abstract
The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.
Collapse
|
160
|
Wu S, Tan D, Woolford JL, Dong MQ, Gao N. Atomic modeling of the ITS2 ribosome assembly subcomplex from cryo-EM together with mass spectrometry-identified protein-protein crosslinks. Protein Sci 2016; 26:103-112. [PMID: 27643814 DOI: 10.1002/pro.3045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
The assembly of ribosomal subunits starts in the nucleus, initiated by co-transcriptional folding of nascent ribosomal RNA (rRNA) transcripts and binding of ribosomal proteins and assembly factors. The internal transcribed spacer 2 (ITS2) is a precursor sequence to be processed from the intermediate 27S rRNA in the nucleoplasm; its removal is required for nuclear export of pre-60S particles. The proper processing of the ITS2 depends on multiple associated assembly factors and RNases. However, none of the structures of the known ITS2-binding factors is available. Here, we describe the modeling of the ITS2 subcomplex, including five assembly factors Cic1, Nop7, Nop15, Nop53, and Rlp7, using a combination of cryo-electron microscopy and cross-linking of proteins coupled with mass spectrometry approaches. The resulting atomic models provide structural insights into their function in ribosome assembly, and establish a framework for further dissection of their molecular roles in ITS2 processing.
Collapse
Affiliation(s)
- Shan Wu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
161
|
Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun 2016; 7:12960. [PMID: 27698474 PMCID: PMC5059453 DOI: 10.1038/ncomms12960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin receptors decode ubiquitin signals into many cellular responses. Ubiquitin receptors also undergo coupled monoubiquitylation, and rapid deubiquitylation has hampered the characterization of the ubiquitylated state. Using bacteria that express a ubiquitylation apparatus, we purified and determined the crystal structure of the proteasomal ubiquitin-receptor Rpn10 in its ubiquitylated state. The structure shows a novel ubiquitin-binding patch that directs K84 ubiquitylation. Superimposition of ubiquitylated-Rpn10 onto electron-microscopy models of proteasomes indicates that the Rpn10-conjugated ubiquitin clashes with Rpn9, suggesting that ubiquitylation might be involved in releasing Rpn10 from the proteasome. Indeed, ubiquitylation on immobilized proteasomes dissociates the modified Rpn10 from the complex, while unmodified Rpn10 mainly remains associated. In vivo experiments indicate that contrary to wild type, Rpn10-K84R is stably associated with the proteasomal subunit Rpn9. Similarly Rpn10, but not ubiquitylated-Rpn10, binds Rpn9 in vitro. Thus we suggest that ubiquitylation functions to dissociate modified ubiquitin receptors from their targets, a function that promotes cyclic activity of ubiquitin receptors. Ubiquitin (Ub) receptors are responsible for the recognition of ubiquitylated proteins. Here the authors describe the crystal structure of the ubiquitylated form of the Ub-receptor Rpn10, which suggest that ubiquitylation of Rpn10 promotes its dissociation from the proteasome.
Collapse
|
162
|
Vandermarliere E, Stes E, Gevaert K, Martens L. Resolution of protein structure by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:653-665. [PMID: 25536908 DOI: 10.1002/mas.21450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Typically, mass spectrometry is used to identify the peptides present in a complex peptide mixture and subsequently the precursor proteins. As such, mass spectrometry focuses mainly on the primary structure, the (modified) amino acid sequence of peptides and proteins. In contrast, the three-dimensional structure of a protein is typically determined with protein X-ray crystallography or NMR. Despite the close relationship between these two aspects of protein studies (sequence and structure), mass spectrometry and structure determination are not frequently combined. Nevertheless, this combination of approaches, dubbed conformational proteomics, can offer insight into the function, working mechanism, and conformational status of a protein. In this review, we will discuss the developments at the intersection of mass spectrometry-based proteomics and protein structure determination and start from a brief overview of the classic approaches to identify protein structure along with their advantages and disadvantages. We will subsequently discuss the ability of mass spectrometry to overcome some of the hurdles of these classic methods. Finally, we will provide an outlook on the interplay of mass spectrometry and protein structure determination, and highlight several recent experiments in which mass spectrometry was successfully used to either aid or complement structure elucidation. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:653-665, 2016.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, B- 9000, Ghent, Belgium.
| |
Collapse
|
163
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
164
|
Yılmaz Ş, Drepper F, Hulstaert N, Černič M, Gevaert K, Economou A, Warscheid B, Martens L, Vandermarliere E. Xilmass: A New Approach toward the Identification of Cross-Linked Peptides. Anal Chem 2016; 88:9949-9957. [PMID: 27642655 DOI: 10.1021/acs.analchem.6b01585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.
Collapse
Affiliation(s)
- Şule Yılmaz
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , 79104 Freiburg, Germany
| | - Niels Hulstaert
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Maša Černič
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , Jamova Cesta 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana , 1000 Ljubljana, Slovenia
| | - Kris Gevaert
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven , Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology-FoRTH and Department of Biology, University of Crete , Iraklio, 71100 Crete, Greece
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg , 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , 79104 Freiburg, Germany
| | - Lennart Martens
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Medical Biotechnology Center, VIB , 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , 9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , 9000 Ghent, Belgium
| |
Collapse
|
165
|
Beck M, Baumeister W. Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? Trends Cell Biol 2016; 26:825-837. [PMID: 27671779 DOI: 10.1016/j.tcb.2016.08.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Traditionally, macromolecular structure determination is performed ex situ, that is, with purified materials. But, there are strong incentives to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography (cryo-ET) has emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent work on several macromolecular assemblies, demonstrating the power of in situ studies. We also highlight technical challenges and discuss ways to meet them.
Collapse
Affiliation(s)
- Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried (Planegg), Germany.
| |
Collapse
|
166
|
Mayor T, Sharon M, Glickman MH. Tuning the proteasome to brighten the end of the journey. Am J Physiol Cell Physiol 2016; 311:C793-C804. [PMID: 27605452 DOI: 10.1152/ajpcell.00198.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Collapse
Affiliation(s)
- Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada;
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; and
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
167
|
Bonomi M, Camilloni C, Vendruscolo M. Metadynamic metainference: Enhanced sampling of the metainference ensemble using metadynamics. Sci Rep 2016; 6:31232. [PMID: 27561930 PMCID: PMC4999896 DOI: 10.1038/srep31232] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023] Open
Abstract
Accurate and precise structural ensembles of proteins and macromolecular complexes can be obtained with metainference, a recently proposed Bayesian inference method that integrates experimental information with prior knowledge and deals with all sources of errors in the data as well as with sample heterogeneity. The study of complex macromolecular systems, however, requires an extensive conformational sampling, which represents a separate challenge. To address such challenge and to exhaustively and efficiently generate structural ensembles we combine metainference with metadynamics and illustrate its application to the calculation of the free energy landscape of the alanine dipeptide.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
168
|
Wehmer M, Sakata E. Recent advances in the structural biology of the 26S proteasome. Int J Biochem Cell Biol 2016; 79:437-442. [PMID: 27498189 DOI: 10.1016/j.biocel.2016.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
There is growing appreciation for the fundamental role of structural dynamics in the function of macromolecules. In particular, the 26S proteasome, responsible for selective protein degradation in an ATP dependent manner, exhibits dynamic conformational changes that enable substrate processing. Recent cryo-electron microscopy (cryo-EM) work has revealed the conformational dynamics of the 26S proteasome and established the function of the different conformational states. Technological advances such as direct electron detectors and image processing algorithms allowed resolving the structure of the proteasome at atomic resolution. Here we will review those studies and discuss their contribution to our understanding of proteasome function.
Collapse
Affiliation(s)
- Marc Wehmer
- Department of Molecular Structural Biology, Max Planck institute of Biochemistry, 82152, Martinsried, Germany
| | - Eri Sakata
- Department of Molecular Structural Biology, Max Planck institute of Biochemistry, 82152, Martinsried, Germany.
| |
Collapse
|
169
|
Leitner A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 2016; 7:4792-4803. [PMID: 30155128 PMCID: PMC6016523 DOI: 10.1039/c5sc04196a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
The biological function of proteins is heavily influenced by their structures and their organization into assemblies such as protein complexes and regulatory networks. Mass spectrometry (MS) has been a key enabling technology for high-throughput and comprehensive protein identification and quantification on a proteome-wide scale. Besides these essential contributions, MS can also be used to study higher-order structures of biomacromolecules in a variety of ways. In one approach, intact proteins or protein complexes may be directly probed in the mass spectrometer. Alternatively, various forms of solution-phase chemistry are used to introduce modifications in intact proteins and localizing these modifications by MS analysis at the peptide level is used to derive structural information. Here, I will put a spotlight on the central role of chemistry in such mass spectrometry-based methods that bridge proteomics and structural biology, with a particular emphasis on chemical cross-linking of protein complexes.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology , Institute of Molecular Systems Biology , ETH Zurich , Auguste-Piccard-Hof 1 , 8093 Zurich , Switzerland .
| |
Collapse
|
170
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
171
|
Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 2016; 23:778-85. [PMID: 27428775 DOI: 10.1038/nsmb.3273] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory particle (RP). The C-terminal residues of Rpt3 and Rpt5 subunits in the RP can be seen inserted into surface pockets formed between adjacent α subunits in the CP. Each of the six Rpt subunits contains a bound nucleotide, and the central gate of the CP α-ring is closed despite RP association. The six pore 1 loops in the Rpt ring are arranged similarly to a spiral staircase along the axial channel of substrate transport, which is constricted by the pore 2 loops. We also determined the cryo-EM structure of the human proteasome bound to the deubiquitinating enzyme USP14 at 4.35-Å resolution. Together, our structures provide a framework for mechanistic understanding of eukaryotic proteasome function.
Collapse
Affiliation(s)
- Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bai Luan
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Wu
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
172
|
Chen X, Randles L, Shi K, Tarasov SG, Aihara H, Walters KJ. Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 Reveal Distinct Binding Mechanisms between Substrate Receptors and Shuttle Factors of the Proteasome. Structure 2016; 24:1257-1270. [PMID: 27396824 DOI: 10.1016/j.str.2016.05.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
Abstract
Three receptors (Rpn1/S2/PSMD2, Rpn10/S5a, Rpn13/Adrm1) in the proteasome bind substrates by interacting with conjugated ubiquitin chains and/or shuttle factors (Rad23/HR23, Dsk2/PLIC/ubiquilin, Ddi1) that carry ubiquitinated substrates to proteasomes. We solved the structure of two such receptors with their preferred shuttle factor, namely hRpn13(Pru):hPLIC2(UBL) and scRpn1 T1:scRad23(UBL). We find that ubiquitin folds in Rad23 and Dsk2 are fine-tuned by residue substitutions to achieve high affinity for Rpn1 and Rpn13, respectively. A single substitution in hPLIC2 yields enhanced interactions with the Rpn13 ubiquitin contact surface and sterically blocks hRpn13 binding to its preferred ubiquitin chain type, K48-linked chains. Rpn1 T1 binds two ubiquitins in tandem and we find that Rad23 binds exclusively to the higher-affinity Helix28/Helix30 site. Rad23 contacts at Helix28/Helix30 are optimized compared to ubiquitin by multiple conservative amino acid substitutions. Thus, shuttle factors deliver substrates to proteasomes through fine-tuned ubiquitin-like surfaces.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Leah Randles
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
173
|
LaCava J, Fernandez-Martinez J, Hakhverdyan Z, Rout MP. Protein Complex Purification by Affinity Capture. Cold Spring Harb Protoc 2016; 2016:2016/7/pdb.top077545. [PMID: 27371601 DOI: 10.1101/pdb.top077545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture.
Collapse
Affiliation(s)
- John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | | | - Zhanna Hakhverdyan
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| |
Collapse
|
174
|
Abstract
Protein degradation in eukaryotic cells is performed by the Ubiquitin-Proteasome System (UPS). The 26S proteasome holocomplex consists of a core particle (CP) that proteolytically degrades polyubiquitylated proteins, and a regulatory particle (RP) containing the AAA-ATPase module. This module controls access to the proteolytic chamber inside the CP and is surrounded by non-ATPase subunits (Rpns) that recognize substrates and deubiquitylate them before unfolding and degradation. The architecture of the 26S holocomplex is highly conserved between yeast and humans. The structure of the human 26S holocomplex described here reveals previously unidentified features of the AAA-ATPase heterohexamer. One subunit, Rpt6, has ADP bound, whereas the other five have ATP in their binding pockets. Rpt6 is structurally distinct from the other five Rpt subunits, most notably in its pore loop region. For Rpns, the map reveals two main, previously undetected, features: the C terminus of Rpn3 protrudes into the mouth of the ATPase ring; and Rpn1 and Rpn2, the largest proteasome subunits, are linked by an extended connection. The structural features of the 26S proteasome observed in this study are likely to be important for coordinating the proteasomal subunits during substrate processing.
Collapse
|
175
|
Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep 2016; 6:27873. [PMID: 27302526 PMCID: PMC4908598 DOI: 10.1038/srep27873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations.
Collapse
|
176
|
Chait BT, Cadene M, Olinares PD, Rout MP, Shi Y. Revealing Higher Order Protein Structure Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:952-65. [PMID: 27080007 PMCID: PMC5125627 DOI: 10.1007/s13361-016-1385-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 05/24/2023]
Abstract
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA.
| | - Martine Cadene
- CBM, CNRS UPR4301, Rue Charles Sadron, CS 80054, 45071, Orleans Cedex 2, France
| | - Paul Dominic Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
177
|
Faini M, Stengel F, Aebersold R. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:966-974. [PMID: 27056566 PMCID: PMC4867889 DOI: 10.1007/s13361-016-1382-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Florian Stengel
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zürich, Switzerland.
- Faculty of Science, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
178
|
Lyupina YV, Zatsepina OG, Serebryakova MV, Erokhov PA, Abaturova SB, Kravchuk OI, Orlova OV, Beljelarskaya SN, Lavrov AI, Sokolova OS, Mikhailov VS. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:738-746. [DOI: 10.1016/j.bbapap.2016.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023]
|
179
|
Raynes R, Pomatto LCD, Davies KJA. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 2016; 50:41-55. [PMID: 27155164 DOI: 10.1016/j.mam.2016.05.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators.
Collapse
Affiliation(s)
- Rachel Raynes
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
180
|
McGreevy R, Teo I, Singharoy A, Schulten K. Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. Methods 2016; 100:50-60. [PMID: 26804562 PMCID: PMC4848153 DOI: 10.1016/j.ymeth.2016.01.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 02/02/2023] Open
Abstract
Molecular Dynamics Flexible Fitting (MDFF) is an established technique for fitting all-atom structures of molecules into corresponding cryo-electron microscopy (cryo-EM) densities. The practical application of MDFF is simple but requires a user to be aware of and take measures against a variety of possible challenges presented by each individual case. Some of these challenges arise from the complexity of a molecular structure or the limited quality of available structural models and densities to be interpreted, while others stem from the intricacies of MDFF itself. The current article serves as an overview of the strategies that have been developed since MDFF's inception to overcome common challenges and successfully perform MDFF simulations.
Collapse
Affiliation(s)
- Ryan McGreevy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Ivan Teo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhishek Singharoy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
181
|
Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nat Methods 2016; 13:515-20. [PMID: 27111507 DOI: 10.1038/nmeth.3838] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/19/2016] [Indexed: 11/08/2022]
Abstract
Crosslinking mass spectrometry is increasingly used for structural characterization of multisubunit protein complexes. Chemical crosslinking captures conformational heterogeneity, which typically results in conflicting crosslinks that cannot be satisfied in a single model, making detailed modeling a challenging task. Here we introduce an automated modeling method dedicated to large protein assemblies ('XL-MOD' software is available at http://aria.pasteur.fr/supplementary-data/x-links) that (i) uses a form of spatial restraints that realistically reflects the distribution of experimentally observed crosslinked distances; (ii) automatically deals with ambiguous and/or conflicting crosslinks and identifies alternative conformations within a Bayesian framework; and (iii) allows subunit structures to be flexible during conformational sampling. We demonstrate our method by testing it on known structures and available crosslinking data. We also crosslinked and modeled the 17-subunit yeast RNA polymerase III at atomic resolution; the resulting model agrees remarkably well with recently published cryoelectron microscopy structures and provides additional insights into the polymerase structure.
Collapse
|
182
|
Yu C, Yang Y, Wang X, Guan S, Fang L, Liu F, Walters KJ, Kaiser P, Huang L. Characterization of Dynamic UbR-Proteasome Subcomplexes by In vivo Cross-linking (X) Assisted Bimolecular Tandem Affinity Purification (XBAP) and Label-free Quantitation. Mol Cell Proteomics 2016; 15:2279-92. [PMID: 27114451 DOI: 10.1074/mcp.m116.058271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are protein degradation machines that exist in cells as heterogeneous and dynamic populations. A group of proteins function as ubiquitin receptors (UbRs) that can recognize and deliver ubiquitinated substrates to proteasome complexes for degradation. Defining composition of proteasome complexes engaged with UbRs is critical to understand proteasome function. However, because of the dynamic nature of UbR interactions with the proteasome, it remains technically challenging to capture and isolate UbR-proteasome subcomplexes using conventional purification strategies. As a result, distinguishing the molecular differences among these subcomplexes remains elusive. We have developed a novel affinity purification strategy, in vivo cross-linking (X) assisted bimolecular tandem affinity purification strategy (XBAP), to effectively isolate dynamic UbR-proteasome subcomplexes and define their subunit compositions using label-free quantitative mass spectrometry. In this work, we have analyzed seven distinctive UbR-proteasome complexes and found that all of them contain the same type of the 26S holocomplex. However, selected UbRs interact with a group of proteasome interacting proteins that may link each UbR to specific cellular pathways. The compositional similarities and differences among the seven UbR-proteasome subcomplexes have provided new insights on functional entities of proteasomal degradation machineries. The strategy described here represents a general and useful proteomic tool for isolating and studying dynamic and heterogeneous protein subcomplexes in cells that have not been fully characterized.
Collapse
Affiliation(s)
- Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Yingying Yang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Shenheng Guan
- §Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Lei Fang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697
| | - Fen Liu
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Kylie J Walters
- ¶Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Peter Kaiser
- ‖Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, California 92697;
| |
Collapse
|
183
|
Paci A, Liu PXH, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 2016; 291:11761-75. [PMID: 27053109 DOI: 10.1074/jbc.m115.702043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.
Collapse
Affiliation(s)
- Alexandr Paci
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Peter X H Liu
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Lingjie Zhang
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Rongmin Zhao
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
184
|
Ding YH, Fan SB, Li S, Feng BY, Gao N, Ye K, He SM, Dong MQ. Increasing the Depth of Mass-Spectrometry-Based Structural Analysis of Protein Complexes through the Use of Multiple Cross-Linkers. Anal Chem 2016; 88:4461-9. [DOI: 10.1021/acs.analchem.6b00281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yue-He Ding
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng-Bo Fan
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Shuang Li
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Bo-Ya Feng
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- Ministry
of Education Protein Science Laboratory, Center for Structural Biology,
School of Life Sciences, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Si-Min He
- Key
Lab of Intelligent Information Processing of Chinese Academy of Sciences
(CAS), Institute of Computing Technology of CAS, University of CAS, Beijing 100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Graduate Program
in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
185
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
186
|
Computational Refinement and Validation Protocol for Proteins with Large Variable Regions Applied to Model HIV Env Spike in CD4 and 17b Bound State. Structure 2016; 23:1138-49. [PMID: 26039348 DOI: 10.1016/j.str.2015.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
Abstract
Envelope glycoprotein gp120 of HIV-1 possesses several variable regions; their precise structure has been difficult to establish. We report a new model of gp120, in complex with antibodies CD4 and 17b, complete with its variable regions. The model was produced by a computational protocol that uses cryo-electron microscopy (EM) maps, atomic-resolution structures of the core, and information on binding interactions. Our model has excellent fit with EMD: 5020, is stereochemically and energetically favorable, and has the expected binding interfaces. Comparison of the ternary arrangement of the loops in this model with those bound to PGT122 and PGV04 suggested a possible motion of the V1V2 away from the CCR5 binding site and toward CD4. Our study also revealed that the CD4-bound state of the V1V2 loop is not optimal for gp120 bound with several neutralizing antibodies.
Collapse
|
187
|
Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci U S A 2016; 113:2642-7. [PMID: 26929360 DOI: 10.1073/pnas.1601561113] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
Collapse
|
188
|
de Vries SJ, Chauvot de Beauchêne I, Schindler CEM, Zacharias M. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. Biophys J 2016; 110:785-97. [PMID: 26846888 DOI: 10.1016/j.bpj.2015.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.
Collapse
Affiliation(s)
- Sjoerd J de Vries
- Physik-Department T38, Technische Universität München, Garching, Germany.
| | | | - Christina E M Schindler
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| |
Collapse
|
189
|
Kuang X, Dhroso A, Han JG, Shyu CR, Korkin D. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:bav114. [PMID: 26827237 PMCID: PMC4733329 DOI: 10.1093/database/bav114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022]
Abstract
Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network, binary interaction and interaction interface. Database URL: http://dommino.org.
Collapse
Affiliation(s)
- Xingyan Kuang
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jing Ginger Han
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Chi-Ren Shyu
- Informatics Institute, University of Missouri, Columbia, MO, USA, Department of Electrical and Computer Engineering, Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA,
| |
Collapse
|
190
|
Śledź P, Baumeister W. Structure-Driven Developments of 26S Proteasome Inhibitors. Annu Rev Pharmacol Toxicol 2016; 56:191-209. [DOI: 10.1146/annurev-pharmtox-010814-124727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paweł Śledź
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
191
|
Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends Biochem Sci 2016; 41:20-32. [DOI: 10.1016/j.tibs.2015.10.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/18/2015] [Accepted: 10/29/2015] [Indexed: 01/30/2023]
|
192
|
Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. BIOPHYSICS REPORTS 2015; 1:127-138. [PMID: 27340691 PMCID: PMC4871902 DOI: 10.1007/s41048-015-0015-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022] Open
Abstract
Graphical Abstract ![]()
Abstract Chemical cross-linking coupled with mass spectrometry (CXMS) identifies protein residues that are close in space, and has been increasingly used for modeling the structures of protein complexes. Here we show that a single structure is usually sufficient to account for the intermolecular cross-links identified for a stable complex with sub-µmol/L binding affinity. In contrast, we show that the distance between two cross-linked residues in the different subunits of a transient or fleeting complex may exceed the maximum length of the cross-linker used, and the cross-links cannot be fully accounted for with a unique complex structure. We further show that the seemingly incompatible cross-links identified with high confidence arise from alternative modes of protein-protein interactions. By converting the intermolecular cross-links to ambiguous distance restraints, we established a rigid-body simulated annealing refinement protocol to seek the minimum set of conformers collectively satisfying the CXMS data. Hence we demonstrate that CXMS allows the depiction of the ensemble structures of protein complexes and elucidates the interaction dynamics for transient and fleeting complexes. Electronic supplementary material The online version of this article (doi:10.1007/s41048-015-0015-y) contains supplementary material, which is available to authorized users.
Collapse
|
193
|
Hall Z, Schmidt C, Politis A. Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry. J Biol Chem 2015; 291:4626-37. [PMID: 26655720 PMCID: PMC4813486 DOI: 10.1074/jbc.m115.691063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 12/14/2022] Open
Abstract
β2-Microglobulin (β2m), a key component of the major histocompatibility class I complex, can aggregate into fibrils with severe clinical consequences. As such, investigating the structural aspects of the formation of oligomeric intermediates of β2m and their subsequent progression toward fibrillar aggregates is of great importance. However, β2m aggregates are challenging targets in structural biology, primarily due to their inherent transient and heterogeneous nature. Here we study the oligomeric distributions and structures of the early intermediates of amyloidogenic β2m and its truncated variant ΔN6-β2m. We established compact oligomers for both variants by integrating advanced mass spectrometric techniques with available electron microscopy maps and atomic level structures from NMR spectroscopy and x-ray crystallography. Our results revealed a stepwise assembly mechanism by monomer addition and domain swapping for the oligomeric species of ΔN6-β2m. The observed structural similarity and common oligomerization pathway between the two variants is likely to enable ΔN6-β2m to cross-seed β2m fibrillation and allow the formation of mixed fibrils. We further determined the key subunit interactions in ΔN6-β2m tetramer, revealing the importance of a domain-swapped hinge region for formation of higher order oligomers. Overall, we deliver new mechanistic insights into β2m aggregation, paving the way for future studies on the mechanisms and cause of amyloid fibrillation.
Collapse
Affiliation(s)
- Zoe Hall
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Carla Schmidt
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
194
|
Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat Commun 2015; 6:10053. [PMID: 26632597 PMCID: PMC4686759 DOI: 10.1038/ncomms10053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022] Open
Abstract
The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by which Nedd8 Gln40 deamidation affects CRL functions remains unclear. We apply a new quantitative cross-linking mass spectrometry approach to characterize three different types of full-length human Cul1–Rbx1 complexes and uncover major Nedd8-induced structural rearrangements of the CRL1 catalytic core. More importantly, we find that those changes are not induced by Nedd8(Q40E) conjugation, indicating that the subtle change of a single Nedd8 amino acid is sufficient to revert the structure of the CRL catalytic core back to its unmodified form. Our results provide new insights into how neddylation regulates the conformation and activity of CRLs. Cullin-RING ubiquitin ligases (CRLs) require neddylation of their cullin scaffolds for full activity. Here the authors use a quantitative cross-linking mass spectrometry approach to characterize three different full-length human Cul1-Rbx1 complexes to shed light on how neddylation regulates the activity of CRLs.
Collapse
|
195
|
Liu F, Heck AJR. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol 2015; 35:100-8. [DOI: 10.1016/j.sbi.2015.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 01/28/2023]
|
196
|
Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci 2015; 41:77-93. [PMID: 26643069 DOI: 10.1016/j.tibs.2015.10.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
The proteasome has emerged as an intricate machine that has dynamic mechanisms to regulate the timing of its activity, its selection of substrates, and its processivity. The 19-subunit regulatory particle (RP) recognizes ubiquitinated proteins, removes ubiquitin, and injects the target protein into the proteolytic chamber of the core particle (CP) via a narrow channel. Translocation into the CP requires substrate unfolding, which is achieved through mechanical force applied by a hexameric ATPase ring of the RP. Recent cryoelectron microscopy (cryoEM) studies have defined distinct conformational states of the RP, providing illustrative snapshots of what appear to be progressive steps of substrate engagement. Here, we bring together this new information with molecular analyses to describe the principles of proteasome activity and regulation.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
197
|
Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat Commun 2015; 5:3072. [PMID: 24407213 DOI: 10.1038/ncomms4072] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/06/2013] [Indexed: 12/17/2022] Open
Abstract
In mammalian cells, proteins are typically translocated across the endoplasmic reticulum (ER) membrane in a co-translational mode by the ER protein translocon, comprising the protein-conducting channel Sec61 and additional complexes involved in nascent chain processing and translocation. As an integral component of the translocon, the oligosaccharyl-transferase complex (OST) catalyses co-translational N-glycosylation, one of the most common protein modifications in eukaryotic cells. Here we use cryoelectron tomography, cryoelectron microscopy single-particle analysis and small interfering RNA-mediated gene silencing to determine the overall structure, oligomeric state and position of OST in the native ER protein translocon of mammalian cells in unprecedented detail. The observed positioning of OST in close proximity to Sec61 provides a basis for understanding how protein translocation into the ER and glycosylation of nascent proteins are structurally coupled. The overall spatial organization of the native translocon, as determined here, serves as a reliable framework for further hypothesis-driven studies.
Collapse
Affiliation(s)
- Stefan Pfeffer
- 1] Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany [2]
| | - Johanna Dudek
- 1] Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany [2]
| | - Marko Gogala
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, D-81377 Munich, Germany
| | - Stefan Schorr
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Johannes Linxweiler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Thomas Becker
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, D-81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, D-81377 Munich, Germany
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
198
|
Zelter A, Bonomi M, Kim JO, Umbreit NT, Hoopmann MR, Johnson R, Riffle M, Jaschob D, MacCoss MJ, Moritz RL, Davis TN. The molecular architecture of the Dam1 kinetochore complex is defined by cross-linking based structural modelling. Nat Commun 2015; 6:8673. [PMID: 26560693 PMCID: PMC4660060 DOI: 10.1038/ncomms9673] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022] Open
Abstract
Accurate segregation of chromosomes during cell division is essential. The Dam1 complex binds kinetochores to microtubules and its oligomerization is required to form strong attachments. It is a key target of Aurora B kinase, which destabilizes erroneous attachments allowing subsequent correction. Understanding the roles and regulation of the Dam1 complex requires structural information. Here we apply cross-linking/mass spectrometry and structural modelling to determine the molecular architecture of the Dam1 complex. We find microtubule attachment is accompanied by substantial conformational changes, with direct binding mediated by the carboxy termini of Dam1p and Duo1p. Aurora B phosphorylation of Dam1p C terminus weakens direct interaction with the microtubule. Furthermore, the Dam1p amino terminus forms an interaction interface between Dam1 complexes, which is also disrupted by phosphorylation. Our results demonstrate that Aurora B inhibits both direct interaction with the microtubule and oligomerization of the Dam1 complex to drive error correction during mitosis.
Collapse
Affiliation(s)
- Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Jae Ook Kim
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Daniel Jaschob
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
199
|
Kukacka Z, Rosulek M, Strohalm M, Kavan D, Novak P. Mapping protein structural changes by quantitative cross-linking. Methods 2015; 89:112-20. [DOI: 10.1016/j.ymeth.2015.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022] Open
|
200
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|