151
|
Tian Y, Schreiber R, Kunzelmann K. Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci 2012; 125:4991-8. [PMID: 22946059 DOI: 10.1242/jcs.109553] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anoctamin 1 (Ano1; TMEM16A) and anoctamin 2 (Ano2; TMEM16B) are novel Cl(-) channels transiently activated by an increase in intracellular Ca(2+). These channels are essential for epithelial Cl(-) secretion, smooth muscle peristalsis and olfactory signal transduction. They are central to inherited diseases and cancer and can act as heat sensors. Surprisingly, another member of this protein family, Ano6, operates as a Ca(2+)-activated phospholipid scramblase, and others were reported as intracellular proteins. It is therefore unclear whether anoctamins constitute a family of Ca(2+)-activated Cl(-) channels, or are proteins with heterogeneous functions. Using whole-cell patch clamping we demonstrate that Ano4-10 are all able to produce transient Ca(2+)-activated Cl(-) currents when expressed in HEK293 cells. Although some anoctamins (Ano1, 2, 4, 6, 7) were found to be well expressed in the plasma membrane, others (Ano8, 9, 10) show rather poor membrane expression and were mostly retained in the cytosol. The transient nature of the Cl(-) currents was demonstrated to be independent of intracellular Ca(2+) levels. We show that inactivation of Ano1 currents occurs in the continuous presence of elevated Ca(2+) concentrations, possibly by calmodulin-dependent kinase. The present results demonstrate that anoctamins are a family of Ca(2+)-activated Cl(-) channels, which also induce permeability for cations. They may operate as Cl(-) channels located in the plasma membrane or in intracellular compartments. These results increase our understanding of the physiological significance of anoctamins and their role in disease.
Collapse
Affiliation(s)
- Yuemin Tian
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
152
|
Marconi C, Brunamonti Binello P, Badiali G, Caci E, Cusano R, Garibaldi J, Pippucci T, Merlini A, Marchetti C, Rhoden KJ, Galietta LJV, Lalatta F, Balbi P, Seri M. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree. Eur J Hum Genet 2012; 21:613-9. [PMID: 23047743 DOI: 10.1038/ejhg.2012.224] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gnathodiaphyseal dysplasia (GDD) is an autosomal dominant syndrome characterized by frequent bone fractures at a young age, bowing of tubular bones and cemento-osseus lesions of the jawbones. Anoctamin 5 (ANO5) belongs to the anoctamin protein family that includes calcium-activated chloride channels. However, recent data together with our own experiments reported here add weight to the hypothesis that ANO5 may not function as calcium-activated chloride channel. By sequencing the entire ANO5 gene coding region and untranslated regions in a large Italian GDD family, we found a novel missense mutation causing the p.Thr513Ile substitution. The mutation segregates with the disease in the family and has never been described in any database as a polymorphism. To date, only two mutations on the same cysteine residue at position 356 of ANO5 amino-acid sequence have been described in GDD families. As ANO5 has also been found to be mutated in two different forms of muscular dystrophy, the finding of this third mutation in GDD adds clues to the role of ANO5 in these disorders.
Collapse
Affiliation(s)
- Caterina Marconi
- Unità di Genetica Medica, Dipartimento di Scienze Ginecologiche, Ostetriche e Pediatriche, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K. Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 2012; 7:e43265. [PMID: 22912841 PMCID: PMC3422276 DOI: 10.1371/journal.pone.0043265] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has the potential for early metastasis and is associated with poor survival. Ano1 (Dog1) is an established and sensitive marker for the diagnosis of gastrointestinal stromal tumors (GIST) and has recently been identified as a Ca2+ activated Cl− channel. Although the ANO1 gene is located on the 11q13 locus, a region which is known to be amplified in different types of human carcinomas, a detailed analysis of Ano1 amplification and expression in HNSCC has not been performed. It is thus still unclear how Ano1 contributes to malignancy in HNSCC. We analyzed genomic amplification of the 11q13 locus and Ano1 together with Ano1-protein expression in a large collection of HNSCC samples. We detected a highly significant correlation between amplification and expression of Ano1 and showed that HNSCC patients with Ano1 protein expression have a poor overall survival. We further analyzed the expression of the Ano1 protein in more than 4′000 human samples from 80 different tumor types and 76 normal tissue types and detected that besides HNSCC and GISTs, Ano1 was rarely expressed in other tumor samples or healthy human tissues. In HNSCC cell lines, expression of Ano1 caused Ca2+ activated Cl− currents, which induced cell motility and cell migration in wound healing and in real time migration assays, respectively. In contrast, knockdown of Ano1 did not affect intracellular Ca2+ signaling and surprisingly did not reduce cell proliferation in BHY cells. Further, expression and activity of Ano1 strongly correlated with the ability of HNSCC cells to regulate their volume. Thus, poor survival in HNSCC patients is correlated with the presence of Ano1. Our results further suggest that Ano1 facilitates regulation of the cell volume and causes cell migration, which both can contribute to metastatic progression in HNSCC.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Calcium-activated chloride channels in the corpus cavernosum: recent developments and future of a key cellular component of the erectile process. Int J Impot Res 2012; 24:211-6. [PMID: 22717765 DOI: 10.1038/ijir.2012.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calcium-activated chloride channels (CaCCs) are one of five families of chloride channels, ubiquitously expressed, and essential for a host of biological actions. CaCCs have key roles in processes as diverse as olfactory transduction and epithelial secretion, and also CaCCs are essential in smooth muscle contraction. The corpus cavernosum is a vascular smooth muscle that must relax to facilitate erections. Parasympathetic activation produces relaxation of the corpus cavernosum through a nitric oxide-dependent pathway, and sympathetic stimulation in both preventing and terminating erections by contracting the corpus cavernosum. Both these pathways affect activity of CaCCs. The past 5 years produced many successes in CaCC research. One key area of success was the identification of the elusive 'molecular candidate' of CaCCs, as the TMEM16A protein (dubbed anoctamin-1) and potentially other members of the anoctamin family of transmembrane proteins. However, enthusiasm has been somewhat tempered because of evidence that this family of proteins may not be responsible for calcium-activated chloride currents in certain epithelial tissues. Several studies identified specific inhibitors of CaCCs as well as specific inhibitors for anoctamin-1. Despite the number of recent achievements in this field there are many details that still need to be elucidated. Of particular value would be more details on the identity of the CaCCs in corpus cavernosum smooth muscle, using new inhibitors to gain insight into the signalling pathway, and the evaluation of whether inhibition of CaCCs provides any specific benefit in different models of ED.
Collapse
|
155
|
Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Wolf L, Schreiber R. Airway epithelial cells--functional links between CFTR and anoctamin dependent Cl- secretion. Int J Biochem Cell Biol 2012; 44:1897-900. [PMID: 22710346 DOI: 10.1016/j.biocel.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/02/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022]
Abstract
Airways consist of a heterogeneous population of cells, comprising ciliated cells, Clara cells and goblet cells. Electrolyte secretion by the airways is necessary to produce the airway surface liquid that allows for mucociliary clearance of the lungs. Secretion is driven by opening of Cl(-) selective ion channels in the apical membrane of airway epithelial cells, through either receptor mediated increase in intracellular cAMP or cytosolic Ca(2+). Traditionally cAMP-dependent and Ca(2+)-dependent secretory pathways are regarded as independent. However, this concept has been challenged recently. With identification of the Ca(2+) activated Cl(-) channel TMEM16A (anoctamin 1) and with detailed knowledge of the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR), it has become possible to look more closely into this relationship.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Hollenhorst MI, Lips KS, Weitz A, Krasteva G, Kummer W, Fronius M. Evidence for functional atypical nicotinic receptors that activate K+-dependent Cl- secretion in mouse tracheal epithelium. Am J Respir Cell Mol Biol 2012; 46:106-14. [PMID: 21852683 DOI: 10.1165/rcmb.2011-0171oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study focused on the influence of nicotinic acetylcholine receptors (nAChR) on ion transport processes in mouse tracheal epithelium. RT-PCR experiments revealed expression of the α3, α4, α5, α7, α9, α10, β2, and β4 nAChR subunits in mouse tracheal epithelium. In Ussing chamber recordings of mouse tracheae, apically applied nicotine (100 μM) induced a dose-dependent increase of the transepithelial short-circuit current (EC(50): 14.6 μM). The nicotine-induced effect (I(NIC)) was attenuated by mecamylamine (25 μM, apical) and methyllycaconitine (1 μM, apical). The nAChR agonist 1.1-dimethyl-4-phenylpiperatinium iodide (DMPP) (100 μM) revealed apical and basolateral location of the receptors. I(NIC) was not affected by the sodium channel inhibitor amiloride (10 μM, apical) or the cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172 (20 μM, apical) but was reduced by the chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 μM, apical), the Na(+)/K(+)/2Cl(-) cotransporter inhibitor bumetanide (200 μM, basolateral), the potassium channel inhibitor Ba(2+) (5 mM, basolateral), and 4.4'-diisothiocyanatostilbene-2.2'-disulfonate (100 μM, apical), indicating a contribution of Ca(2+)-activated chloride channels and potassium channels. Removal of extracellular Na(+) (apical) or Ca(2+) (apical) did not influence I(NIC) but reduced the DMPP effect. Experiments with the Ca(2+)-ionophore A23187, a mix of 3-isobutyl-1-methylxanthine and forskolin, or the inositol-1,4,5-triphospate (IP(3)) receptor inhibitor 2-aminoethyl-diphenyl-borinate (75 μM, apical) decreased I(NIC), indicating a nicotine-mediated increase of intracellular Ca(2+) and cAMP levels involving the IP(3) signaling pathway. These findings indicate the activity of Ca(2+)-permeable nAChRs and alternative metabotropic pathways by nAChR activation that mediate Cl(-) and K(+) transport in tracheal epithelium.
Collapse
|
157
|
Affiliation(s)
- Jim Berg
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Huanghe Yang
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
158
|
Yu K, Duran C, Qu Z, Cui YY, Hartzell HC. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ Res 2012; 110:990-9. [PMID: 22394518 DOI: 10.1161/circresaha.112.264440] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Ca2+ -activated Cl channels play pivotal roles in the cardiovascular system. They regulate vascular smooth muscle tone and participate in cardiac action potential repolarization in some species. Ca2+ -activated Cl channels were recently discovered to be encoded by members of the anoctamin (Ano, also called Tmem16) superfamily, but the mechanisms of Ano1 gating by Ca2+ remain enigmatic. OBJECTIVE The objective was to identify regions of Ano1 involved in channel gating by Ca2+. METHODS AND RESULTS The Ca2+ sensitivity of Ano1 was estimated from rates of current activation, and deactivation in excised patches rapidly switched between zero and high Ca2+ on the cytoplasmic side. Mutation of glutamates E702 and E705 dramatically altered Ca2+ sensitivity. E702 and E705 are predicted to be in an extracellular loop, but antigenic epitopes introduced into this loop are not accessible to extracellular antibodies, suggesting this loop is intracellular. Cytoplasmically applied membrane-impermeant sulfhydryl reagents alter the Ca2+ sensitivity of Ano1 E702C and E705C as expected if E702 and E705 are intracellular. Substituted cysteine accessibility mutagenesis of the putative re-entrant loop suggests that E702 and E705 are located adjacent to the Cl conduction pathway. CONCLUSIONS We propose an alternative model of Ano1 topology based on mutagenesis, epitope accessibility, and cysteine-scanning accessibility. These data contradict the popular re-entrant loop model by showing that the putative fourth extracellular loop (ECL 4) is intracellular and may contain a Ca2+ binding site. These studies provide new perspectives on regulation of Ano1 by Ca2+.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
159
|
Catalán MA, Flores CA, González-Begne M, Zhang Y, Sepúlveda FV, Melvin JE. Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 2012; 142:346-54. [PMID: 22079595 PMCID: PMC3267842 DOI: 10.1053/j.gastro.2011.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS The fluid secretion model predicts that intestinal obstruction disorders can be alleviated by promoting epithelial Cl(-) secretion. The adenosine 3',5'-cyclic monophosphate (cAMP)-activated anion channel CFTR mediates Cl(-)-dependent fluid secretion in the intestine. Although the role of the ClC-2 channel has not been determined in the intestine, this voltage-gated Cl(-) channel might compensate for the secretory defects observed in patients with cystic fibrosis and other chronic constipation disorders. We investigated whether mice that lack ClC-2 channels (Clcn2(-/-)) have defects in intestinal ion transport. METHODS Immunolocalization and immunoblot analyses were used to determine the cellular localization and the amount of ClC-2 expressed in mouse early distal colon (EDC) and late distal colon (LDC). Colon sheets from wild-type and Clcn2(-/-) littermates were mounted in Ussing chambers to determine transepithelial bioelectrical parameters and Na(+), K(+), and Cl(-) fluxes. RESULTS Expression of ClC-2 was higher in the basolateral membrane of surface cells in the EDC compared with the LDC, with little expression in crypts. Neither cAMP nor Ca(2+)-induced secretion of Cl(-) was affected in the EDC or LDC of Clcn2(-/-) mice, whereas the amiloride-sensitive short-circuit current was increased approximately 3-fold in Clcn2(-/-) EDC compared with control littermates. Conversely, electroneutral Na(+), K(+), and Cl(-) absorption was dramatically reduced in colons of Clcn2(-/-) mice. CONCLUSIONS Basolateral ClC-2 channels are required for colonic electroneutral absorption of NaCl and KCl. The increase in the amiloride-sensitive short-circuit current in Clcn2(-/-) mice revealed a compensatory mechanism that is activated in the colons of mice that lack the ClC-2 channel.
Collapse
Affiliation(s)
- Marcelo A. Catalán
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892 USA
| | | | - Mireya González-Begne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Yan Zhang
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892 USA
| | | | - James E. Melvin
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 10 Center Drive, Building 10/Room 5N102, Bethesda, MD 20892 USA
| |
Collapse
|
160
|
Briones N, Dinu V. Data mining of high density genomic variant data for prediction of Alzheimer's disease risk. BMC MEDICAL GENETICS 2012; 13:7. [PMID: 22273362 PMCID: PMC3355044 DOI: 10.1186/1471-2350-13-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
Background The discovery of genetic associations is an important factor in the understanding of human illness to derive disease pathways. Identifying multiple interacting genetic mutations associated with disease remains challenging in studying the etiology of complex diseases. And although recently new single nucleotide polymorphisms (SNPs) at genes implicated in immune response, cholesterol/lipid metabolism, and cell membrane processes have been confirmed by genome-wide association studies (GWAS) to be associated with late-onset Alzheimer's disease (LOAD), a percentage of AD heritability continues to be unexplained. We try to find other genetic variants that may influence LOAD risk utilizing data mining methods. Methods Two different approaches were devised to select SNPs associated with LOAD in a publicly available GWAS data set consisting of three cohorts. In both approaches, single-locus analysis (logistic regression) was conducted to filter the data with a less conservative p-value than the Bonferroni threshold; this resulted in a subset of SNPs used next in multi-locus analysis (random forest (RF)). In the second approach, we took into account prior biological knowledge, and performed sample stratification and linkage disequilibrium (LD) in addition to logistic regression analysis to preselect loci to input into the RF classifier construction step. Results The first approach gave 199 SNPs mostly associated with genes in calcium signaling, cell adhesion, endocytosis, immune response, and synaptic function. These SNPs together with APOE and GAB2 SNPs formed a predictive subset for LOAD status with an average error of 9.8% using 10-fold cross validation (CV) in RF modeling. Nineteen variants in LD with ST5, TRPC1, ATG10, ANO3, NDUFA12, and NISCH respectively, genes linked directly or indirectly with neurobiology, were identified with the second approach. These variants were part of a model that included APOE and GAB2 SNPs to predict LOAD risk which produced a 10-fold CV average error of 17.5% in the classification modeling. Conclusions With the two proposed approaches, we identified a large subset of SNPs in genes mostly clustered around specific pathways/functions and a smaller set of SNPs, within or in proximity to five genes not previously reported, that may be relevant for the prediction/understanding of AD.
Collapse
Affiliation(s)
- Natalia Briones
- Computational Biosciences Program, School of Mathematics and Statistical Sciences, Arizona State University, 1711 South Rural Road, Tempe, Arizona 85287-1804, USA
| | | |
Collapse
|
161
|
Sancho M, García-Pascual A, Triguero D. Presence of the Ca2+-activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. Am J Physiol Renal Physiol 2011; 302:F390-400. [PMID: 22114201 DOI: 10.1152/ajprenal.00344.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the cellular distribution of the calcium-activated chloride channel (CaCC), anoctamin 1, in the urethra of mice, rats, and sheep by both immunofluorescence and PCR. We studied its role in urethral contractility by examining the effects of chloride-free medium and of several CaCC inhibitors on noradrenergic and cholinergic excitatory responses, and on nitrergic relaxations in urethral preparations. In all species analyzed, CaCC played a key role in urethral contractions, influencing smooth muscle cells activated by increases in intracellular calcium, probably due to calcium influx but with a minor contribution by IP(3)-mediated calcium release. The participation of CaCC in relaxant responses was negligible. Strong anoctamin 1 immunoreactivity was detected in the smooth muscle cells and urothelia of sheep, rat, and mouse urethra, but not in the interstitial cells of Cajal (ICC) in any of these species. RT-PCR confirmed the expression of anoctamin 1 mRNA in the rat urethra. This anoctamin 1 in urethral smooth muscle probably mediates the activity of chloride in contractile responses in different species, However, the lack of anoctamin 1 in ICCs challenges its proposed role in regulating urethral contractility in a manner similar to that observed in the gut.
Collapse
Affiliation(s)
- Maria Sancho
- Dept. of Physiology, Veterinary School, Madrid, Spain
| | | | | |
Collapse
|
162
|
Duran C, Qu Z, Osunkoya AO, Cui Y, Hartzell HC. ANOs 3-7 in the anoctamin/Tmem16 Cl- channel family are intracellular proteins. Am J Physiol Cell Physiol 2011; 302:C482-93. [PMID: 22075693 DOI: 10.1152/ajpcell.00140.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) participate in numerous physiological functions such as neuronal excitability, sensory transduction, and transepithelial fluid transport. Recently, it was shown that heterologously expressed anoctamins ANO1 and ANO2 generate currents that resemble native CaCCs. The anoctamin family (also called Tmem16) consists of 10 members, but it is not known whether all members of the family are CaCCs. Expression of ANOs 3-7 in HEK293 cells did not generate Cl(-) currents activated by intracellular Ca(2+), as determined by whole cell patch clamp electrophysiology. With the use of confocal imaging, only ANO1 and ANO2 traffic to the plasma membrane when expressed heterologously. Furthermore, endogenously expressed ANO7 in the human prostate is predominantly intracellular. We took a chimeric approach to identify regions critical for channel trafficking and function. However, none of the chimeras of ANO1 and ANO5/7 that we made trafficked to the plasma membrane. Our results suggest that intracellular anoctamins may be endoplasmic reticulum proteins, although it remains unknown whether these family members are CaCCs. Determining the role of anoctamin family members in ion transport will be critical to understanding their functions in physiology and disease.
Collapse
Affiliation(s)
- Charity Duran
- Department of Cell Biology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | | | | | | | |
Collapse
|
163
|
Martins JR, Faria D, Kongsuphol P, Reisch B, Schreiber R, Kunzelmann K. Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A 2011; 108:18168-72. [PMID: 22006324 PMCID: PMC3207678 DOI: 10.1073/pnas.1108094108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Outwardly rectifying chloride channels (ORCC, ICOR) of intermediate single-channel conductance of around 50 pS, are ubiquitously expressed, but have remained a mystery since their description more than 25 y ago. These channels have been shown to be activated on membrane excision and depolarization of the membrane voltage and by cAMP in the presence of the cystic fibrosis transmembrane conductance regulator. We show that anoctamin 6 (Ano6), a member of the recently identified family of putative Cl(-) channels, is the crucial component of ORCC single-channel and whole-cell currents in airway epithelial cells and Jurkat T lymphocytes. Cystic fibrosis transmembrane conductance regulator augmented ORCC produced by Ano6 in A549 airway epithelial cells. Ano6 is activated during membrane depolarization or apoptosis of Jurkat T lymphocytes and epithelial cells, and is inhibited by 5-nitro-2-(3-phenylpropylamino) benzoic acid, 4,4'-diisothio-cyanostilbene-2,2'-disulfonic acid, or AO1. Ano6 belongs to the basic equipment of any cell type, including colonic surface epithelial cells. It forms the essential component of ORCC and seems to have a role for cell shrinkage and programmed cell death.
Collapse
Affiliation(s)
- Joana Raquel Martins
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Diana Faria
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Patthara Kongsuphol
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Barbara Reisch
- Abteilung Nephrologie, Klinikum der Universität Regensburg, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany; and
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany; and
| |
Collapse
|
164
|
Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011; 2011:174306. [PMID: 22131798 PMCID: PMC3205707 DOI: 10.1155/2011/174306] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/16/2011] [Indexed: 12/13/2022] Open
Abstract
The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium.
Collapse
|
165
|
Kunzelmann K, Schreiber R, Kmit A, Jantarajit W, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Tian Y. Expression and function of epithelial anoctamins. Exp Physiol 2011; 97:184-92. [PMID: 21908539 DOI: 10.1113/expphysiol.2011.058206] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endogenous Ca(2+)-activated Cl(-) currents (CaCCs) are abundant and present in very different cell types. Very good evidence has been provided that endogenous CaCC is produced by anoctamin 1 (Ano1) and Ano2. Insight into the physiological role of anoctamins has been provided for Ano1, Ano2 and Ano6; however, the physiological role of the other seven members of the anoctamin family remains obscure. Anoctamins 1 and 2 may operate as individual Ca(2+)-sensitive channel proteins or may require accessory subunits for complete function. We find that overexpressed Ano1 has properties resembling all those of endogenous CaCCs, although with some noticeable biophysical and regulatory differences when compared with endogenous channels. Apart from Ano1 and Ano2, expression of Ano6 also produces a Cl(-) conductance. Depending on the cellular background, Ano6 currents may have variable properties. Anoctamins 1 and 6 are frequent in epithelial cells, often coexpressed together with Ano8, Ano9 and Ano10. Most available data on anoctamins were obtained from mouse tissues and from cultured cells, which may not be representative of native human tissues.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Universität Regensburg, Institut für Physiologie, Universitätsstraße 31, Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
O'Driscoll KE, Pipe RA, Britton FC. Increased complexity of Tmem16a/Anoctamin 1 transcript alternative splicing. BMC Mol Biol 2011; 12:35. [PMID: 21824394 PMCID: PMC3170211 DOI: 10.1186/1471-2199-12-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/08/2011] [Indexed: 01/09/2023] Open
Abstract
Background TMEM16A (Anoctamin 1; ANO1) is an eight transmembrane protein that functions as a calcium-activated chloride channel. TMEM16A in human exhibits alternatively spliced exons (6b, 13 and 15), which confer important roles in the regulation of channel function. Mouse Tmem16a is reported to consist of 25 exons that code for a 956 amino acid protein. In this study our aim was to provide details of mouse Tmem16a genomic structure and to investigate if Tmem16a transcript undergoes alternative splicing to generate channel diversity. Results We identified Tmem16a transcript variants consisting of alternative exons 6b, 10, 13, 14, 15 and 18. Our findings indicate that many of these exons are expressed in various combinations and that these splicing events are mostly conserved between mouse and human. In addition, we confirmed the expression of these exon variants in other mouse tissues. Additional splicing events were identified including a novel conserved exon 13b, tandem splice sites of exon 1 and 21 and two intron retention events. Conclusion Our results suggest that Tmem16a gene is significantly more complex than previously described. The complexity is especially evident in the region spanning exons 6 through 16 where a number of the alternative splicing events are thought to affect calcium sensitivity, voltage dependence and the kinetics of activation and deactivation of this calcium-activated chloride channel. The identification of multiple Tmem16a splice variants suggests that alternative splicing is an exquisite mechanism that operates to diversify TMEM16A channel function in both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kate E O'Driscoll
- Department of Physiology and Cell Biology, 1664 North Virginia Street, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | |
Collapse
|
167
|
Kongsuphol P, Schreiber R, Kraidith K, Kunzelmann K. CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca²⁺-activated Cl⁻ conductance. Pflugers Arch 2011; 462:479-87. [PMID: 21647592 DOI: 10.1007/s00424-011-0983-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/21/2011] [Accepted: 05/25/2011] [Indexed: 02/06/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) produces a cyclic adenosine monophosphate (cAMP)-dependent Cl⁻ conductance of distinct properties that is essential for electrolyte secretion in human epithelial tissues. However, the functional consequences of CFTR expression are multifaceted, encompassing much more than simply supplying a cellular cAMP-regulated Cl⁻ conductance. When we expressed CFTR in Xenopus oocytes, we found that extracellular acidic pH activates a Ca²⁺-dependent outwardly rectifying Cl⁻ conductance that does not reflect CFTR activity. The proton-activated Cl⁻ conductance showed biophysical and pharmacological features of a Ca²⁺-dependent Cl⁻ conductance, most likely mediated by Xenopus TMEM16A. In contrast to the effects of extracellular acidification, intracellular acidification did not activate an endogenous Cl⁻ conductance. Proton/CFTR-mediated activation of human TMEM16A was also detected in HEK293 cells. The gating mutant G551D-CFTR conferred proton sensitivity, while deltaF508-CFTR enabled proton activation of TMEM16A only in Xenopus oocytes, which, unlike HEK293 cells, allow deltaF508-CFTR to be trafficked to the cell membrane. Activation of TMEM16A by lysophosphatidic acid was enhanced in the presence of CFTR but was additive with activation by extracellular protons. Because expression of CFTR-E1474X did not confer proton sensitivity, we propose that CFTR translocates a proton receptor to the plasma membrane via its PDZ-binding domain.
Collapse
|
168
|
Bergmann F, Andrulis M, Hartwig W, Penzel R, Gaida MM, Herpel E, Schirmacher P, Mechtersheimer G. Discovered on gastrointestinal stromal tumor 1 (DOG1) is expressed in pancreatic centroacinar cells and in solid-pseudopapillary neoplasms—novel evidence for a histogenetic relationship. Hum Pathol 2011; 42:817-23. [PMID: 21295818 DOI: 10.1016/j.humpath.2010.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
|
169
|
Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin 2011; 32:685-92. [PMID: 21642943 DOI: 10.1038/aps.2011.48] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca(2+)-activated Cl(-) channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8), has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia, and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family.
Collapse
|
170
|
Anoctamins. Pflugers Arch 2011; 462:195-208. [DOI: 10.1007/s00424-011-0975-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/14/2023]
|
171
|
McConnell RE, Benesh AE, Mao S, Tabb DL, Tyska MJ. Proteomic analysis of the enterocyte brush border. Am J Physiol Gastrointest Liver Physiol 2011; 300:G914-26. [PMID: 21330445 PMCID: PMC3094140 DOI: 10.1152/ajpgi.00005.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The brush border domain at the apex of intestinal epithelial cells is the primary site of nutrient absorption in the intestinal tract and the primary surface of interaction with microbes that reside in the lumen. Because the brush border is positioned at such a critical physiological interface, we set out to create a comprehensive list of the proteins that reside in this domain using shotgun mass spectrometry. The resulting proteome contains 646 proteins with diverse functions. In addition to the expected collection of nutrient processing and transport components, we also identified molecules expected to function in the regulation of actin dynamics, membrane bending, and extracellular adhesion. These results provide a foundation for future studies aimed at defining the molecular mechanisms underpinning brush border assembly and function.
Collapse
Affiliation(s)
| | | | - Suli Mao
- Departments of 1Cell and Developmental Biology and
| | - David L. Tabb
- 2Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
172
|
Kanjhan R, Bellingham MC. Penetratin peptide potentiates endogenous calcium-activated chloride currents in Xenopus oocytes. J Membr Biol 2011; 241:21-9. [PMID: 21442407 DOI: 10.1007/s00232-011-9359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/16/2011] [Indexed: 01/17/2023]
Abstract
Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 μM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50=3.2 μM). Penetratin-potentiated currents reversed at -18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50=5.9 μM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl- channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia,
| | | |
Collapse
|
173
|
Donowitz M, Singh S, Singh P, Chakraborty M, Chen Y, Murtazina R, Gucek M, Cole RN, Zachos NC, Salahuddin FF, Kovbasnjuk O, Broere N, Smalley-Freed WG, Reynolds AB, Hubbard AL, Seidler U, Weinman E, de Jonge HR, Hogema BM, Li X. Alterations in the proteome of the NHERF2 knockout mouse jejunal brush border membrane vesicles. Physiol Genomics 2011; 43:674-84. [PMID: 21427361 DOI: 10.1152/physiolgenomics.00258.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify additional potential functions for the multi-PDZ domain containing protein Na+/H+ exchanger regulatory factor 2 (NHERF2), which is present in the apical domain of intestinal epithelial cells, proteomic studies of mouse jejunal villus epithelial cell brush border membrane vesicles compared wild-type to homozygous NHERF2 knockout FVB mice by a two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS)-iTRAQ approach. Jejunal architecture appeared normal in NHERF2 null in terms of villus length and crypt depth, Paneth cell number, and microvillus structure by electron microscopy. There was also no change in proliferative activity based on BrdU labeling. Four brush border membrane vesicles (BBMV) preparations from wild-type mouse jejunum were compared with four preparations from NHERF2 knockout mice. LC-MS/MS identified 450 proteins in both matched wild-type and NHERF2 null BBMV; 13 proteins were changed in two or more separate BBMV preparations (9 increased and 4 decreased in NHERF2 null mice), while an additional 92 proteins were changed in a single BBMV preparation (68 increased and 24 decreased in NHERF2 null mice). These proteins were categorized as 1) transport proteins (one increased and two decreased in NHERF2 null); 2) signaling molecules (2 increased in NHERF2 null); 3) cytoskeleton/junctional proteins (4 upregulated and 1 downregulated in NHERF2 null); and 4) metabolic proteins/intrinsic BB proteins) (2 upregulated and 1 downregulated in NHERF2 null). Immunoblotting of BBMV was used to validate or extend the findings, demonstrating increase in BBMV of NHERF2 null of MCT1, coronin 3, and ezrin. The proteome of the NHERF2 null mouse small intestinal BB demonstrates up- and downregulation of multiple transport proteins, signaling molecules, cytoskeletal proteins, tight junctional and adherens junction proteins, and proteins involved in metabolism, suggesting involvement of NHERF2 in multiple apical regulatory processes and interactions with luminal contents.
Collapse
Affiliation(s)
- M Donowitz
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Ousingsawat J, Mirza M, Tian Y, Roussa E, Schreiber R, Cook DI, Kunzelmann K. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch 2011; 461:579-89. [PMID: 21399895 DOI: 10.1007/s00424-011-0947-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 01/05/2023]
Abstract
Rotavirus infection is the most frequent cause for severe diarrhea in infants, killing more than 600,000 every year. The nonstructural protein NSP4 acts as a rotavirus enterotoxin, inducing secretory diarrhea without any structural organ damage. Electrolyte transport was assessed in the colonic epithelium from pups and adult mice using Ussing chamber recordings. Western blots and immunocytochemistry was performed in intestinal tissues from wild-type and TMEM16A knockout mice. Ion channel currents were recorded using patch clamp techniques. We show that the synthetic NSP4(114-135) peptide uses multiple pro-secretory pathways to induce diarrhea, by activating the recently identified Ca2+ -activated Cl- channel TMEM16A, and by inhibiting Na+ absorption by the epithelial Na+ channel ENaC and the Na+ /glucose cotransporter SGLT1. Activation of secretion and inhibition of Na+ absorption by NSP4(114-135), respectively, could be potently suppressed by wheat germ agglutinin which probably competes with NSP4(114-135) for binding to an unknown glycolipid receptor. The present paper gives a clue as to mechanisms of rotavirus-induced diarrhea and suggests wheat germ agglutinin as a simple and effective therapy.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
175
|
Kunzelmann K, Kongsuphol P, Chootip K, Toledo C, Martins JR, Almaca J, Tian Y, Witzgall R, Ousingsawat J, Schreiber R. Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biol Chem 2011; 392:125-34. [DOI: 10.1515/bc.2011.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca2+-activated Cl- currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca2+-activated Cl- channel as well as a regulator of Ca2+ signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl- channels by controlling intracellular Ca2+ levels. Best1 interacts with important Ca2+-signaling proteins such as STIM1 and can interact directly with other Ca2+-activated Cl- channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca2+-activated Cl- channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca2+-dependent Cl- channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca2+-activated Cl- currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.
Collapse
|
176
|
Rodan AR, Cheng CJ, Huang CL. Recent advances in distal tubular potassium handling. Am J Physiol Renal Physiol 2011; 300:F821-7. [PMID: 21270092 DOI: 10.1152/ajprenal.00742.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that sodium reabsorption and aldosterone play important roles in potassium secretion by the aldosterone-sensitive distal nephron. Sodium- and aldosterone-independent mechanisms also exist. This review focuses on some recent studies that provide novel insights into the sodium- and aldosterone-independent potassium secretion by the aldosterone-sensitive distal nephron. In addition, we discuss a study reporting on the regulation of the mammalian potassium kidney channel ROMK by intracellular and extracellular magnesium, which may be important in the pathogenesis of persistent hypokalemia in patients with concomitant potassium and magnesium deficiency. We also discuss outstanding questions and propose working models for future investigation.
Collapse
Affiliation(s)
- Aylin R Rodan
- Division of Nephrology, Department of Medicine, UT, USA
| | | | | |
Collapse
|
177
|
Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K. CFTR and TMEM16A are Separate but Functionally Related Cl - Channels. Cell Physiol Biochem 2011; 28:715-24. [DOI: 10.1159/000335765] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 11/19/2022] Open
|
178
|
He Q, Halm ST, Zhang J, Halm DR. Activation of the basolateral membrane Cl- conductance essential for electrogenic K+ secretion suppresses electrogenic Cl- secretion. Exp Physiol 2010; 96:305-16. [PMID: 21169331 DOI: 10.1113/expphysiol.2010.055038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adrenaline activates transient Cl(-) secretion and sustained K(+) secretion across isolated distal colonic mucosa of guinea-pigs. The Ca(2+)-activated Cl(-) channel inhibitor CaCCinh-A01 (30 μm) significantly reduced electrogenic K(+) secretion, detected as short-circuit current (I(sc)). This inhibition supported the cell model for K(+) secretion in which basolateral membrane Cl(-) channels provide an exit pathway for Cl(-) entering the cell via Na(+)-K(+)-2Cl(-) cotransporters. CaCCinh-A01 inhibited both I(sc) and transepithelial conductance in a concentration-dependent manner (IC(50) = 6.3 μm). Another Cl(-) channel inhibitor, GlyH-101, also reduced sustained adrenaline-activated I(sc) (IC(50) = 9.4 μm). Adrenaline activated whole-cell Cl(-) current in isolated intact colonic crypts, confirmed by ion substitution. This adrenaline-activated whole-cell Cl(-) current was also inhibited by CaCCinh-A01 or GlyH-101. In contrast to K(+) secretion, CaCCinh-A01 augmented the electrogenic Cl(-) secretion activated by adrenaline as well as that activated by prostaglandin E(2). Synergistic Cl(-) secretion activated by cholinergic/prostaglandin E(2) stimulation was insensitive to CaCCinh-A01. Colonic expression of the Ca(2+)-activated Cl(-) channel protein Tmem16A was supported by RT-PCR detection of Tmem16A mRNA, by immunoblot with a Tmem16A antibody, and by detection of immunofluorescence in lateral membranes of epithelial cells. Alternative splices of Tmem16A were detected for exons that are involved in channel activation. Inhibition of K(+) secretion and augmentation of Cl(-) secretion by CaCCinh-A01 support a common colonic cell model for these two ion secretory processes, such that activation of basolateral membrane Cl(-) channels contributes to the production of electrogenic K(+) secretion and limits the rate of Cl(-) secretion. Maximal physiological Cl(-) secretion occurs only for synergistic activation mechanisms that close these basolateral membrane Cl(-) channels.
Collapse
Affiliation(s)
- Quanhua He
- Department of Neuroscience, Cell Biology & Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
179
|
Vermeer S, Hoischen A, Meijer RPP, Gilissen C, Neveling K, Wieskamp N, de Brouwer A, Koenig M, Anheim M, Assoum M, Drouot N, Todorovic S, Milic-Rasic V, Lochmüller H, Stevanin G, Goizet C, David A, Durr A, Brice A, Kremer B, van de Warrenburg BPC, Schijvenaars MMVAP, Heister A, Kwint M, Arts P, van der Wijst J, Veltman J, Kamsteeg EJ, Scheffer H, Knoers N. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet 2010; 87:813-9. [PMID: 21092923 DOI: 10.1016/j.ajhg.2010.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 12/22/2022] Open
Abstract
Autosomal-recessive cerebellar ataxias comprise a clinically and genetically heterogeneous group of neurodegenerative disorders. In contrast to their dominant counterparts, unraveling the molecular background of these ataxias has proven to be more complicated and the currently known mutations provide incomplete coverage for genotyping of patients. By combining SNP array-based linkage analysis and targeted resequencing of relevant sequences in the linkage interval with the use of next-generation sequencing technology, we identified a mutation in a gene and have shown its association with autosomal-recessive cerebellar ataxia. In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture. Prioritization of all detected sequence variants led to four candidate genes, one of which contained a variant with a high base pair conservation score (phyloP score: 5.26). This variant was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10 (ANO10). The analysis of ANO10 by Sanger sequencing revealed three additional mutations: a homozygous mutation (c.1150_1151del [p.Leu384fs]) in a Serbian family and a compound-heterozygous splice-site mutation (c.1476+1G>T) and a frameshift mutation (c.1604del [p.Leu535X]) in a French family. This illustrates the power of using initial homozygosity mapping with next-generation sequencing technology to identify genes involved in autosomal-recessive diseases. Moreover, identifying a putative calcium-dependent chloride channel involved in cerebellar ataxia adds another pathway to the list of pathophysiological mechanisms that may cause cerebellar ataxia.
Collapse
Affiliation(s)
- Sascha Vermeer
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010; 468:834-8. [PMID: 21107324 DOI: 10.1038/nature09583] [Citation(s) in RCA: 725] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/13/2010] [Indexed: 01/28/2023]
Abstract
In all animal cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. This asymmetrical phospholipid distribution is disrupted in various biological systems. For example, when blood platelets are activated, they expose phosphatidylserine (PtdSer) to trigger the clotting system. The PtdSer exposure is believed to be mediated by Ca(2+)-dependent phospholipid scramblases that transport phospholipids bidirectionally, but its molecular mechanism is still unknown. Here we show that TMEM16F (transmembrane protein 16F) is an essential component for the Ca(2+)-dependent exposure of PtdSer on the cell surface. When a mouse B-cell line, Ba/F3, was treated with a Ca(2+) ionophore under low-Ca(2+) conditions, it reversibly exposed PtdSer. Using this property, we established a Ba/F3 subline that strongly exposed PtdSer by repetitive fluorescence-activated cell sorting. A complementary DNA library was constructed from the subline, and a cDNA that caused Ba/F3 to expose PtdSer spontaneously was identified by expression cloning. The cDNA encoded a constitutively active mutant of TMEM16F, a protein with eight transmembrane segments. Wild-type TMEM16F was localized on the plasma membrane and conferred Ca(2+)-dependent scrambling of phospholipids. A patient with Scott syndrome, which results from a defect in phospholipid scrambling activity, was found to carry a mutation at a splice-acceptor site of the gene encoding TMEM16F, causing the premature termination of the protein.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
181
|
Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K. Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 2010; 25:1058-68. [PMID: 21115851 DOI: 10.1096/fj.10-166884] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
TMEM16A (anoctamin 1, Ano1), a member of a family of 10 homologous proteins, has been shown to form an essential component of Ca(2+)-activated Cl(-) channels. TMEM16A-null mice exhibit severe defects in epithelial transport along with tracheomalacia and death within 1 mo after birth. Despite its outstanding physiological significance, the mechanisms for activation of TMEM16A remain obscure. TMEM16A is activated on increase in intracellular Ca(2+), but it is unclear whether Ca(2+) binds directly to the channel or whether additional components are required. We demonstrate that TMEM16A is strictly membrane localized and requires cytoskeletal interactions to be fully activated. Despite the need for cytosolic ATP for full activation, phosphorylation by protein kinases is not required. In contrast, the Ca(2+) binding protein calmodulin appears indispensable and interacts physically with TMEM16A. Openers of small- and intermediate-conductance Ca(2+)-activated potassium channels known to interact with calmodulin, such as 1-EBIO, DCEBIO, or riluzole, also activated TMEM16A. These results reinforce the use of these compounds for activation of electrolyte secretion in diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Yuemin Tian
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
182
|
Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 2010; 286:2365-74. [PMID: 21084298 DOI: 10.1074/jbc.m110.175109] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TMEM16A (ANO1) functions as a calcium-activated chloride channel (CaCC). We developed pharmacological tools to investigate the contribution of TMEM16A to CaCC conductance in human airway and intestinal epithelial cells. A screen of ∼110,000 compounds revealed four novel chemical classes of small molecule TMEM16A inhibitors that fully blocked TMEM16A chloride current with an IC(50) < 10 μM, without interfering with calcium signaling. Following structure-activity analysis, the most potent inhibitor, an aminophenylthiazole (T16A(inh)-A01), had an IC(50) of ∼1 μM. Two distinct types of inhibitors were identified. Some compounds, such as tannic acid and the arylaminothiophene CaCC(inh)-A01, fully inhibited CaCC current in human bronchial and intestinal cells. Other compounds, including T16A(inh)-A01 and digallic acid, inhibited total CaCC current in these cells poorly, but blocked mainly an initial, agonist-stimulated transient chloride current. TMEM16A RNAi knockdown also inhibited mainly the transient chloride current. In contrast to the airway and intestinal cells, all TMEM16A inhibitors fully blocked CaCC current in salivary gland cells. We conclude that TMEM16A carries nearly all CaCC current in salivary gland epithelium, but is a minor contributor to total CaCC current in airway and intestinal epithelia. The small molecule inhibitors identified here permit pharmacological dissection of TMEM16A/CaCC function and are potential development candidates for drug therapy of hypertension, pain, diarrhea, and excessive mucus production.
Collapse
Affiliation(s)
- Wan Namkung
- Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
183
|
Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R. Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. J Biol Chem 2010; 286:1381-8. [PMID: 21056985 DOI: 10.1074/jbc.m110.174847] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Anoctamin (Ano)/TMEM16A family have recently been identified as essential subunits of the Ca(2+)-activated chloride channel (CaCC). For example, Ano1 is highly expressed in multiple tissues including airway epithelia, where it acts as an apical conduit for transepithelial Cl(-) secretion and helps regulate lung liquid homeostasis and mucus clearance. However, little is known about the oligomerization of this protein in the plasma membrane. Thus, utilizing mCherry- and eGFP-tagged Ano1 constructs, we conducted biochemical and Förster resonance energy transfer (FRET)-based experiments to determine the quaternary structure of Ano1. FRET and co-immunoprecipitation studies revealed that tagged Ano1 subunits directly associated before they reached the plasma membrane. This association was not altered by changes in cytosolic Ca(2+), suggesting that this is a fixed interaction. To determine the oligomeric structure of Ano1, we performed chemical cross-linking, non-denaturing PAGE, and electromobility shift assays, which revealed that Ano1 exists as a dimer. These data are the first to probe the quaternary structure of Ano1. Understanding the oligomeric nature of Ano1 is an essential step in the development of therapeutic drugs that could be useful in the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- John T Sheridan
- Department of Cell and Molecular Physiology, University of North Carolina, North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
184
|
Milenkovic VM, Brockmann M, Stöhr H, Weber BH, Strauss O. Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evol Biol 2010; 10:319. [PMID: 20964844 PMCID: PMC2974728 DOI: 10.1186/1471-2148-10-319] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/21/2010] [Indexed: 11/25/2022] Open
Abstract
Background The anoctamin family of transmembrane proteins are found in all eukaryotes and consists of 10 members in vertebrates. Ano1 and ano2 were observed to have Ca2+ activated Cl- channel activity. Recent findings however have revealed that ano6, and ano7 can also produce chloride currents, although with different properties. In contrast, ano9 and ano10 suppress baseline Cl- conductance when co-expressed with ano1 thus suggesting that different anoctamins can interfere with each other. In order to elucidate intrinsic functional diversity, and underlying evolutionary mechanism among anoctamins, we performed comprehensive bioinformatics analysis of anoctamin gene family. Results Our results show that anoctamin protein paralogs evolved from several gene duplication events followed by functional divergence of vertebrate anoctamins. Most of the amino acid replacements responsible for the functional divergence were fixed by adaptive evolution and this seem to be a common pattern in anoctamin gene family evolution. Strong purifying selection and the loss of many gene duplication products indicate rigid structure-function relationships among anoctamins. Conclusions Our study suggests that anoctamins have evolved by series of duplication events, and that they are constrained by purifying selection. In addition we identified a number of protein domains, and amino acid residues which contribute to predicted functional divergence. Hopefully, this work will facilitate future functional characterization of the anoctamin membrane protein family.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Experimental Ophthalmology, Regensburg University Medical Center, Regensburg, Germany.
| | | | | | | | | |
Collapse
|