151
|
Gabriel BM, Hamilton DL, Tremblay AM, Wackerhage H. The Hippo signal transduction network for exercise physiologists. J Appl Physiol (1985) 2016; 120:1105-17. [PMID: 26940657 DOI: 10.1152/japplphysiol.01076.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports.
Collapse
Affiliation(s)
- Brendan M Gabriel
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, Scotland, UK; The Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, University of Copenhagen, Denmark; and Integrative physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Annie M Tremblay
- Stem Cell Program, Children's Hospital, Boston, Massachusetts; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Henning Wackerhage
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, Scotland, UK; Faculty of Sport and Health Science, Technical University Munich, Germany;
| |
Collapse
|
152
|
Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2016; 163:811-28. [PMID: 26544935 DOI: 10.1016/j.cell.2015.10.044] [Citation(s) in RCA: 1684] [Impact Index Per Article: 187.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/16/2022]
Abstract
Two decades of studies in multiple model organisms have established the Hippo pathway as a key regulator of organ size and tissue homeostasis. By inhibiting YAP and TAZ transcription co-activators, the Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein-coupled receptors, and cellular energy status. Dysregulation of the Hippo pathway exerts a significant impact on cancer development. Further investigation of the functions and regulatory mechanisms of this pathway will help uncovering the mystery of organ size control and identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
153
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
154
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
155
|
Santinon G, Pocaterra A, Dupont S. Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends Cell Biol 2015; 26:289-299. [PMID: 26750334 DOI: 10.1016/j.tcb.2015.11.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
Metabolism is a fundamental cellular function that can be reprogrammed by signaling pathways and oncogenes to meet cellular requirements. An emerging paradigm is that signaling and transcriptional networks can be in turn regulated by metabolism, allowing cells to coordinate their metabolism and behavior in an integrated manner. The activity of the YAP/TAZ transcriptional coactivators, downstream transducers of the Hippo cascade and powerful pro-oncogenic factors, was recently found to be regulated by metabolic pathways, such as aerobic glycolysis and mevalonate synthesis, and by the nutrient-sensing LKB1-AMPK and TSC-mTOR pathways. We discuss here current data linking YAP/TAZ to metabolism and suggest how this coupling might coordinate nutrient availability with genetic programs that sustain tissue growth, neoplastic cell proliferation, and tumor malignancy.
Collapse
Affiliation(s)
- Giulia Santinon
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
156
|
Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2015; 139:317-37. [PMID: 26715604 DOI: 10.1093/brain/awv371] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Afshin Saffari
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany 3 Department of Haematology and Oncology, Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Byrne
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Georg F Hoffmann
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Heinz Jungbluth
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK 5 Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK 6 Department of Basic and Clinical Neuroscience, IoPPN, King's College London, London, UK
| | - Mustafa Sahin
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
157
|
Hansen CG, Ng YLD, Lam WLM, Plouffe SW, Guan KL. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 2015; 25:1299-313. [PMID: 26611634 DOI: 10.1038/cr.2015.140] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023] Open
Abstract
YAP and TAZ are transcriptional co-activators and function as the major effectors of the Hippo tumor suppressor pathway, which controls cell growth, tissue homeostasis, and organ size. Here we show that YAP/TAZ play an essential role in amino acid-induced mTORC1 activation, particularly under nutrient-limiting conditions. Mechanistically, YAP/TAZ act via the TEAD transcription factors to induce expression of the high-affinity leucine transporter LAT1, which is a heterodimeric complex of SLC7A5 and SLC3A2. Deletion of YAP/TAZ abolishes expression of LAT1 and reduces leucine uptake. Re-expression of SLC7A5 in YAP/TAZ knockout cells restores leucine uptake and mTORC1 activation. Moreover, SLC7A5 knockout cells phenocopies YAP/TAZ knockout cells which exhibit defective mTORC1 activation in response to amino acids. We further demonstrate that YAP/TAZ act through SLC7A5 to provide cells with a competitive growth advantage. Our study provides molecular insight into the mechanism of YAP/TAZ target genes in cell growth regulation.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuen Lam Dora Ng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wai-Ling Macrina Lam
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
158
|
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2015; 343:42-53. [PMID: 26524510 DOI: 10.1016/j.yexcr.2015.10.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, via Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
159
|
Ehmer U, Sage J. Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Mol Cancer Res 2015; 14:127-40. [PMID: 26432795 DOI: 10.1158/1541-7786.mcr-15-0305] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. Although the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here, recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell-cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor-suppressive attributes of YAP/TAZ are reviewed, which emphasizes the relevance of the Hippo pathway in cancer.
Collapse
Affiliation(s)
- Ursula Ehmer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California. Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
160
|
Goodman CA, Dietz JM, Jacobs BL, McNally RM, You JS, Hornberger TA. Yes-Associated Protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Lett 2015; 589:1491-7. [PMID: 25959868 PMCID: PMC4442043 DOI: 10.1016/j.febslet.2015.04.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/28/2022]
Abstract
Mechanically-induced skeletal muscle growth is regulated by mammalian/mechanistic target of rapamycin complex 1 (mTORC1). Yes-Associated Protein (YAP) is a mechanically-sensitive, and growth-related, transcriptional co-activator that can regulate mTORC1. Here we show that, in skeletal muscle, mechanical overload promotes an increase in YAP expression; however, the time course of YAP expression is markedly different from that of mTORC1 activation. We also show that the overexpression of YAP induces hypertrophy via an mTORC1-independent mechanism. Finally, we provide preliminary evidence of possible mediators of YAP-induced hypertrophy (e.g. increased MyoD and c-Myc expression, and decreased Smad2/3 activity and muscle ring finger 1 (MuRF1) expression).
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Jason M Dietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Brittany L Jacobs
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Rachel M McNally
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
161
|
Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25:499-513. [PMID: 26045258 DOI: 10.1016/j.tcb.2015.05.002] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The Hippo pathway is a potent regulator of cellular proliferation, differentiation, and tissue homeostasis. Here we review the regulatory mechanisms of the Hippo pathway and discuss the function of Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ), the prime mediators of the Hippo pathway, in stem cell biology and tissue regeneration. We highlight their activities in both the nucleus and the cytoplasm and discuss their role as a signaling nexus and integrator of several other prominent signaling pathways such as the Wnt, G protein-coupled receptor (GPCR), epidermal growth factor (EGF), bone morphogenetic protein (BMP)/transforming growth factor beta (TGFβ), and Notch pathways.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Toshiro Moroishi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
162
|
Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J. Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. J Biol Chem 2015; 290:19387-401. [PMID: 25998128 DOI: 10.1074/jbc.m115.656587] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) and Hippo signaling pathways are two major signaling cascades that coordinately regulate cell growth and proliferation. Dysregulation of these pathways plays a critical role in gliomagenesis. Recent reports have provided evidence of cross-talk between the mTOR and Hippo pathways; however, a complete description of the signaling relationships between these pathways remains to be elucidated. Utilizing a gene-trapping strategy in a mouse glioma model, we report the identification of AMOTL2 as a candidate substrate for mTORC2. AMOTL2 is phosphorylated at serine 760 by mTORC2. Mutation of AMOTL2 mimicking constitutive Ser(760) phosphorylation blocks its ability to bind and repress YAP leading to increased relative expression of known YAP gene targets. Moreover, overexpression of AMOTL2 or a nonphosphorylatable AMOTL2-S760A mutant inhibited YAP-induced transcription, foci formation, growth, and metastatic properties, whereas overexpression of a phosphomimetic AMOTL2-S760E mutant negated these repressive effects of AMOTL2 in glioblastoma (GBM) cells in vitro. Similar effects on xenograft growth were observed in GBM cells expressing these AMOTL2 Ser(760) mutants. YAP was also shown to be required for Rictor-mediated GBM growth and survival. Finally, an analysis of mTORC2/AMOTL2/YAP activities in primary GBM samples supported the clinical relevance of this signaling cascade, and we propose that pharmacological agents cotargeting these regulatory circuits may hold therapeutic potential.
Collapse
Affiliation(s)
- Nicholas Artinian
- From the Department of Medicine, David Geffen School of Medicine at UCLA, the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Cheri Cloninger
- the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Brent Holmes
- the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Angelica Benavides-Serrato
- the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Tariq Bashir
- From the Department of Medicine, David Geffen School of Medicine at UCLA, the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343
| | - Joseph Gera
- From the Department of Medicine, David Geffen School of Medicine at UCLA, the Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343 Jonnson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, California 90048 and
| |
Collapse
|
163
|
Lymphangioleiomyomatosis: New Treatment Perspectives. Lung 2015; 193:467-75. [PMID: 25980593 DOI: 10.1007/s00408-015-9742-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare multisystem disease, occurs in women, usually premenopausal, caused by the proliferation of neoplastic smooth muscle-derived cells. Mutations in the tuberous sclerosis complex genes, lead to the activation of mammalian target of rapamycin kinase (mTOR), results in proliferation of LAM cells, its increasing motility, and survival. Polycystic lung destruction, extensive involvement of lymphatic channels, chylothorax, chyloperitoneum, and renal angiomyolipomas can develop in LAM patients. The new, promising treatment strategies have been recently introduced due to discovery of the genetic and molecular mechanisms of LAM. Comprehension of the disease pathogenesis has resulted in the implementation of other therapeutic agents such as mTOR inhibitors, VEGF-D inhibitors, statins, interferon, chloroquine analogs, cyclin-dependent kinase inhibitors, matrix metalloproteinase inhibitors, aromatase inhibitors, and their combinations. The mTOR inhibitors appear to be the most important, and the efficacy of sirolimus in LAM treatment has been proved. The article discussed the new control studies with mTOR inhibitors, doxycycline, simvastatin, and combination of them in LAM patients.
Collapse
|
164
|
Stoiber W, Obermayer A, Steinbacher P, Krautgartner WD. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules 2015; 5:702-23. [PMID: 25946076 PMCID: PMC4496692 DOI: 10.3390/biom5020702] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Extracellular traps (ETs) are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs) has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases. Since the discovery of ET formation (ETosis) a decade ago, evidence has accumulated that most reaction cascades leading to ET release involve ROS. An important new facet was added when it became apparent that ETosis might be directly linked to, or be a variant of, the autophagy cell death pathway. The present review analyzes the evidence to date on the interplay between ROS, autophagy and ETosis, and highlights and discusses several further aspects of the ROS-ET relationship that are incompletely understood. These aspects include the role of NADPH oxidase-derived ROS, the molecular requirements of NADPH oxidase-dependent ETosis, the roles of NADPH oxidase subtypes, extracellular ROS and of ROS from sources other than NADPH oxidase, and the present evidence for ROS-independent ETosis. We conclude that ROS interact with ETosis in a multidimensional manner, with influence on whether ETosis shows beneficial or detrimental effects.
Collapse
Affiliation(s)
- Walter Stoiber
- Biomedical Ultrastructure Research Group, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria.
| | - Astrid Obermayer
- Biomedical Ultrastructure Research Group, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria.
| | - Peter Steinbacher
- Biomedical Ultrastructure Research Group, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria.
| | - Wolf-Dietrich Krautgartner
- Biomedical Ultrastructure Research Group, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg A-5020, Austria.
| |
Collapse
|
165
|
Liang N, Pende M. YAP enters the mTOR pathway to promote tuberous sclerosis complex. Mol Cell Oncol 2015; 2:e998100. [PMID: 27308518 PMCID: PMC4905364 DOI: 10.1080/23723556.2014.998100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/05/2022]
Abstract
Mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 predispose to angiomyolipomas and lymphangioleiomyomatosis in a mTOR-dependent manner. In these mesenchymal lesions, mTOR suppresses macroautophagy-mediated lysosomal degradation of YAP, which is a transcriptional coactivator of Hippo pathway and is required for the tumorigenesis of TSC. Therapeutic applications for TSC and other diseases with dysregulated mTOR activity can be envisaged.
Collapse
Affiliation(s)
- Ning Liang
- Institut Necker-Enfants Malades; Paris, France; Inserm, U1151; Paris, France; Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades; Paris, France; Inserm, U1151; Paris, France; Université Paris Descartes; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
166
|
YAP enhances autophagic flux to promote breast cancer cell survival in response to nutrient deprivation. PLoS One 2015; 10:e0120790. [PMID: 25811979 PMCID: PMC4374846 DOI: 10.1371/journal.pone.0120790] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022] Open
Abstract
The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor suppressor pathway, functions as an oncoprotein in a variety of cancers. However, its contribution to breast cancer remains controversial. This study investigated the role of YAP in breast cancer cells under nutrient deprivation (ND). Here, we show that YAP knockdown sensitized MCF7 breast cancer cells to nutrient deprivation-induced apoptosis. Furthermore, in response to ND, YAP increased the autolysosome degradation, thereby enhancing the cellular autophagic flux in breast cancer cells. Of note, autophagy is crucial for YAP to protect MCF7 cells from apoptosis under ND conditions. In addition, the TEA domain (TEAD) family of growth-promoting transcription factors was indispensable for YAP-mediated regulation of autophagy. Collectively, our data reveal a role for YAP in promoting breast cancer cell survival upon ND stress and uncover an unappreciated function of YAP/TEAD in the regulation of autophagy.
Collapse
|
167
|
Dill PE, Liang N, Pende M. New insights into the pathophysiology of the tuberous sclerosis complex: Crosstalk of mTOR- and hippo-YAP pathways in cell growth. Rare Dis 2015; 3:e1016701. [PMID: 26459669 PMCID: PMC4588522 DOI: 10.1080/21675511.2015.1016701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a genetic disease causing uncontrolled growth of hamartomas involving different organ systems. In the last decade, dysregulation of the mTORC1 pathway was shown to be a main driver of tumor growth in TSC. Recently, a new crosstalk was detected between the mTORC1 and the Hippo-YAP pathway, another major cell signaling cascade controlling cell growth and organ size. Elucidating this connection is an important step in understanding the complexity of TSC, enabling new pharmacological targets and therapeutical options.
Collapse
Affiliation(s)
- Patricia E Dill
- Institut Necker-Enfants Malades ; Paris, France ; Inserm ; Paris, France ; Université Paris Descartes; Sorbonne Paris Cité ; Paris, France ; Department of Pediatric Neurology and Developmental Medicine; University Children's Hospital Basel ; University of Basel ; Basel, Switzerland
| | - Ning Liang
- Institut Necker-Enfants Malades ; Paris, France ; Inserm ; Paris, France ; Université Paris Descartes; Sorbonne Paris Cité ; Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades ; Paris, France ; Inserm ; Paris, France ; Université Paris Descartes; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
168
|
Pende M, Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, Gallazzini M, Olson E, Lam HC, Petri Henske E, Dong Z, Apte U, Pallet N, Johnson R, Terzi F, Kwiatkowski D, Scoazec JY, Martignoni G. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of Tuberous Sclerosis Complex. J Biophys Biochem Cytol 2014. [DOI: 10.1083/jcb.2071oia181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
169
|
Wu J, Lu WY, Cui LL. Clinical significance of STAT3 and MAPK phosphorylation, and the protein expression of cyclin D1 in skin squamous cell carcinoma tissues. Mol Med Rep 2012; 12:8129-34. [PMID: 26497194 DOI: 10.3892/mmr.2015.4460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/29/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the significance of the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen‑activated protein kinase (MAPK), and the protein expression of cyclin D1, in skin squamous cell carcinoma (SCC) tissues. SCC specimens from the skin were collected from 30 patients, and normal skin tissues were collected from 10 individuals as a control. Immunohistochemistry was used to assess the protein expression levels of phosphorylated (p‑)STAT3, p‑MAPK and cyclin D1 in the SCC tissues. The levels of p‑STAT3 protein were abnormally increased in SCC (P<0.05); however, no significant differences in the protein expression of p‑MAPK were identified between the normal skin and the SCC specimens. The extent of the upregulation of the expression of p‑STAT3 and cyclin D1 correlated with the depth of tumor invasion (P<0.05). A positive correlation existed between the expression of p‑STAT3 and cyclin D1 in SCC. However, no association between the expression intensity of p‑MAPK and cyclin D1 was identified in SCC. It is postulated that the activation of STAT3 may induce the overexpression of cyclin D1, which results in the persistent proliferation of these tumor cells in SCC.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| | - Wen-Ying Lu
- Department of Pathology, The Sixth People's Hospital of Yancheng City, Yancheng, Jiangsu 224000, P.R. China
| | - Lei-Lei Cui
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|