151
|
|
152
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
153
|
Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 2014; 63:196-206. [PMID: 23884159 DOI: 10.1097/01.fjc.0000432861.55968.a6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of heart failure (HF) has evolved during the past 30 years with the recognition of neurohormonal activation and the effectiveness of its inhibition in improving the quality of life and survival. Over the past 20 years, there has been a revolution in the investigation of the mitochondrion with the development of new techniques and the finding that mitochondria are connected in networks and undergo constant division (fission) and fusion, even in cardiac myocytes. This has led to new molecular and cellular discoveries in HF, which offer the potential for the development of new molecular-based therapies. Reactive oxygen species are an important cause of mitochondrial and cellular injury in HF, but there are other abnormalities, such as depressed mitochondrial fusion, that may eventually become the targets of at least episodic treatment. The overall need for mitochondrial fission/fusion balance may preclude sustained change in either fission or fusion. In this review, we will discuss the current HF therapy and its impact on the mitochondria. In addition, we will review some of the new drug targets under development. There is potential for effective, novel therapies for HF to arise from new molecular understanding.
Collapse
|
154
|
Abstract
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.
Collapse
Affiliation(s)
- Le Chen
- Molecular & Cellular Cardiology, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA,
| | | | | |
Collapse
|
155
|
Carelli V, Sabatelli M, Carrozzo R, Rizza T, Schimpf S, Wissinger B, Zanna C, Rugolo M, La Morgia C, Caporali L, Carbonelli M, Barboni P, Tonon C, Lodi R, Bertini E. 'Behr syndrome' with OPA1 compound heterozygote mutations. ACTA ACUST UNITED AC 2014; 138:e321. [PMID: 25146916 DOI: 10.1093/brain/awu234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Valerio Carelli
- 1 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Rosalba Carrozzo
- 4 Laboratory of Molecular Medicine, Research Children's Hospital 'Bambino Gesù', Rome, Italy
| | - Teresa Rizza
- 4 Laboratory of Molecular Medicine, Research Children's Hospital 'Bambino Gesù', Rome, Italy
| | - Simone Schimpf
- 5 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Bernd Wissinger
- 5 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Claudia Zanna
- 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy 6 Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Michela Rugolo
- 6 Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- 1 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy 2 Neurology Unit, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Leonardo Caporali
- 1 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | | | - Caterina Tonon
- 8 Functional MR Unit, Policlinico S. Orsola-Malpighi, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- 8 Functional MR Unit, Policlinico S. Orsola-Malpighi, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Enrico Bertini
- 4 Laboratory of Molecular Medicine, Research Children's Hospital 'Bambino Gesù', Rome, Italy
| |
Collapse
|
156
|
Bonifert T, Karle KN, Tonagel F, Batra M, Wilhelm C, Theurer Y, Schoenfeld C, Kluba T, Kamenisch Y, Carelli V, Wolf J, Gonzalez MA, Speziani F, Schüle R, Züchner S, Schöls L, Wissinger B, Synofzik M. Pure and syndromic optic atrophy explained by deep intronic OPA1 mutations and an intralocus modifier. Brain 2014; 137:2164-77. [PMID: 24970096 PMCID: PMC4107747 DOI: 10.1093/brain/awu165] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
The genetic diagnosis in inherited optic neuropathies often remains challenging, and the emergence of complex neurological phenotypes that involve optic neuropathy is puzzling. Here we unravel two novel principles of genetic mechanisms in optic neuropathies: deep intronic OPA1 mutations, which explain the disease in several so far unsolved cases; and an intralocus OPA1 modifier, which explains the emergence of syndromic 'optic atrophy plus' phenotypes in several families. First, we unravelled a deep intronic mutation 364 base pairs 3' of exon 4b in OPA1 by in-depth investigation of a family with severe optic atrophy plus syndrome in which conventional OPA1 diagnostics including gene dosage analyses were normal. The mutation creates a new splice acceptor site resulting in aberrant OPA1 transcripts with retained intronic sequence and subsequent translational frameshift as shown by complementary DNA analysis. In patient fibroblasts we demonstrate nonsense mediated messenger RNA decay, reduced levels of OPA1 protein, and impairment of mitochondrial dynamics. Subsequent site-specific screening of >360 subjects with unexplained inherited optic neuropathy revealed three additional families carrying this deep intronic mutation and a base exchange four nucleotides upstream, respectively, thus confirming the clinical significance of this mutational mechanism. Second, in all severely affected patients of the index family, the deep intronic mutation occurred in compound heterozygous state with an exonic OPA1 missense variant (p.I382M; NM_015560.2). The variant alone did not cause a phenotype, even in homozygous state indicating that this long debated OPA1 variant is not pathogenic per se, but acts as a phenotypic modifier if it encounters in trans with an OPA1 mutation. Subsequent screening of whole exomes from >600 index patients identified a second family with severe optic atrophy plus syndrome due to compound heterozygous p.I382M, thus confirming this mechanism. In summary, we provide genetic and functional evidence that deep intronic mutations in OPA1 can cause optic atrophy and explain disease in a substantial share of families with unsolved inherited optic neuropathies. Moreover, we show that an OPA1 modifier variant explains the emergence of optic atrophy plus phenotypes if combined in trans with another OPA1 mutation. Both mutational mechanisms identified in this study-deep intronic mutations and intragenic modifiers-might represent more generalizable mechanisms that could be found also in a wide range of other neurodegenerative and optic neuropathy diseases.
Collapse
Affiliation(s)
- Tobias Bonifert
- 1 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany2 Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany
| | - Kathrin N Karle
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Felix Tonagel
- 5 University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Schleichstrasse 12, 72076 Tübingen, Germany
| | - Marion Batra
- 6 Department of Neuroradiology, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Christian Wilhelm
- 7 CeGaT GmbH, Centre for Genomics and Transcriptomics, Paul-Ehrlich-Str. 17, 72076 Tübingen, Germany
| | - Yvonne Theurer
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Caroline Schoenfeld
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Torsten Kluba
- 8 Department of Orthopaedic Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - York Kamenisch
- 9 Department of Dermatology, University Hospital Tübingen, Röntgenweg 13/1, 72076 Tübingen, Germany
| | - Valerio Carelli
- 10 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy11 Neurology Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Julia Wolf
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Michael A Gonzalez
- 12 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, Miami, FL 33136, USA
| | - Fiorella Speziani
- 12 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, Miami, FL 33136, USA
| | - Rebecca Schüle
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany12 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, Miami, FL 33136, USA
| | - Stephan Züchner
- 12 Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, Miami, FL 33136, USA
| | - Ludger Schöls
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Bernd Wissinger
- 1 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Matthis Synofzik
- 3 Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany4 Centre for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| |
Collapse
|
157
|
Abstract
SIGNIFICANCE Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. RECENT ADVANCES In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. CRITICAL ISSUES The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. FUTURE DIRECTIONS This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Institute of Neurology , Queen Square, London, United Kingdom
| |
Collapse
|
158
|
La Morgia C, Carbonelli M, Barboni P, Sadun AA, Carelli V. Medical management of hereditary optic neuropathies. Front Neurol 2014; 5:141. [PMID: 25132831 PMCID: PMC4117178 DOI: 10.3389/fneur.2014.00141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/16/2014] [Indexed: 01/31/2023] Open
Abstract
Hereditary optic neuropathies are diseases affecting the optic nerve. The most common are mitochondrial hereditary optic neuropathies, i.e., the maternally inherited Leber's hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA). They both share a mitochondrial pathogenesis that leads to the selective loss of retinal ganglion cells and axons, in particular of the papillo-macular bundle. Typically, LHON is characterized by an acute/subacute loss of central vision associated with impairment of color vision and swelling of retinal nerve fibers followed by optic atrophy. DOA, instead, is characterized by a childhood-onset and slowly progressive loss of central vision, worsening over the years, leading to optic atrophy. The diagnostic workup includes neuro-ophthalmologic evaluation and genetic testing of the three most common mitochondrial DNA mutations affecting complex I (11778/ND4, 3460/ND1, and 14484/ND6) for LHON and sequencing of the nuclear gene OPA1 for DOA. Therapeutic strategies are still limited including agents that bypass the complex I defect and exert an antioxidant effect (idebenone). Further strategies are aimed at stimulating compensatory mitochondrial biogenesis. Gene therapy is also a promising avenue that still needs to be validated.
Collapse
Affiliation(s)
- Chiara La Morgia
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria , Bologna , Italy ; Unità di Neurologia, Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna , Bologna , Italy
| | | | - Piero Barboni
- Studio Oculistico d'Azeglio , Bologna , Italy ; Istituto Scientifico San Raffaele , Milan , Italy
| | - Alfredo Arrigo Sadun
- Doheny Eye Institute, University of California Los Angeles , Los Angeles, CA , USA
| | - Valerio Carelli
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria , Bologna , Italy ; Unità di Neurologia, Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna , Bologna , Italy
| |
Collapse
|
159
|
Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O, Martinou JC. Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1. PLoS One 2014; 9:e102738. [PMID: 25036098 PMCID: PMC4103857 DOI: 10.1371/journal.pone.0102738] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Collapse
Affiliation(s)
- Itsasne Bustillo-Zabalbeitia
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Etienne Raemy
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Gorka Basañez
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Oihana Terrones
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | |
Collapse
|
160
|
Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I, Augé G, Cochaud C, Lespinasse F, N'Guyen K, de Septenville A, Brice A, Yu-Wai-Man P, Sesaki H, Pouget J, Paquis-Flucklinger V. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. ACTA ACUST UNITED AC 2014; 137:2329-45. [PMID: 24934289 DOI: 10.1093/brain/awu138] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Samira Ait-El-Mkadem
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Annabelle Chaussenot
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Emmanuelle C Genin
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France
| | - Sandra Lacas-Gervais
- 3 Joint Centre for Applied Electron Microscopy, Nice Sophia-Antipolis University, France
| | - Konstantina Fragaki
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Laetitia Berg-Alonso
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France
| | - Yusuke Kageyama
- 4 Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valérie Serre
- 5 UMR7592 CNRS, Jacques Monod Institute, Paris Diderot University, France
| | - David G Moore
- 6 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Annie Verschueren
- 7 Department of Neurology, Timone Hospital, Marseille Teaching Hospital, France
| | - Cécile Rouzier
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Isabelle Le Ber
- 8 Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France9 National Reference Centre on Rare Dementias, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Gaëlle Augé
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Charlotte Cochaud
- 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| | - Françoise Lespinasse
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France
| | - Karine N'Guyen
- 10 Department of Medical Genetics, Timone Hospital, Marseille Teaching Hospital, France
| | - Anne de Septenville
- 8 Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | - Alexis Brice
- 8 Sorbonne Université, UPMC Univ Paris 06, UM75, Inserm U1127, Cnrs UMR7225, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | - Patrick Yu-Wai-Man
- 6 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Hiromi Sesaki
- 4 Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jean Pouget
- 7 Department of Neurology, Timone Hospital, Marseille Teaching Hospital, France
| | - Véronique Paquis-Flucklinger
- 1 IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, France 2 Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, France
| |
Collapse
|
161
|
Tucci A, Liu YT, Preza E, Pitceathly RDS, Chalasani A, Plagnol V, Land JM, Trabzuni D, Ryten M, on behalf of UKBEC, Jaunmuktane Z, Reilly MM, Brandner S, Hargreaves I, Hardy J, Singleton AB, Abramov AY, Houlden H. Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy. J Neurol Neurosurg Psychiatry 2014; 85:486-92. [PMID: 24198383 PMCID: PMC3995331 DOI: 10.1136/jnnp-2013-306387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Charcot-Marie Tooth disease (CMT) forms a clinically and genetically heterogeneous group of disorders. Although a number of disease genes have been identified for CMT, the gene discovery for some complex form of CMT has lagged behind. The association of neuropathy and optic atrophy (also known as CMT type 6) has been described with autosomaldominant, recessive and X-linked modes of inheritance. Mutations in Mitofusin 2 have been found to cause dominant forms of CMT6. Phosphoribosylpyrophosphate synthetase-I mutations cause X-linked CMT6, but until now, mutations in the recessive forms of disease have never been identified. METHODS We here describe a family with three affected individuals who inherited in an autosomal recessive fashion a childhood onset neuropathy and optic atrophy. Using homozygosity mapping in the family and exome sequencing in two affected individuals we identified a novel protein-truncating mutation in the C12orf65 gene, which encodes for a protein involved in mitochondrial translation. Using a variety of methods we investigated the possibility of mitochondrial impairment in the patients cell lines. RESULTS We described a large consanguineous family with neuropathy and optic atrophy carrying a loss of function mutation in the C12orf65 gene. We report mitochondrial impairment in the patients cell lines, followed by multiple lines of evidence which include decrease of complex V activity and stability (blue native gel assay), decrease in mitochondrial respiration rate and reduction of mitochondrial membrane potential. CONCLUSIONS This work describes a mutation in the C12orf65 gene that causes recessive form of CMT6 and confirms the role of mitochondrial dysfunction in this complex axonal neuropathy.
Collapse
Affiliation(s)
- Arianna Tucci
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Yo-Tsen Liu
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Elisabeth Preza
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Annapurna Chalasani
- Neurometabolic unit, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, England
| | | | - John M Land
- Neurometabolic unit, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, England
| | - Daniah Trabzuni
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mina Ryten
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Iain Hargreaves
- Neurometabolic unit, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, England
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrey Y Abramov
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience and Reta Lila Weston Research Laboratories, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
162
|
Marín-García J, Akhmedov AT, Moe GW. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev 2014; 18:439-56. [PMID: 22707247 DOI: 10.1007/s10741-012-9330-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past decade, mitochondria have emerged as critical integrators of energy production, generation of reactive oxygen species (ROS), multiple cell death, and signaling pathways in the constantly beating heart. Clarification of the molecular mechanisms, underlying mitochondrial ROS generation and ROS-induced cell death pathways, associated with cardiovascular diseases, by itself remains an important aim; more recently, mitochondrial dynamics has emerged as an important active mechanism to maintain normal mitochondria number and morphology, both are necessary to preserve cardiomyocytes integrity. The two opposing processes, division (fission) and fusion, determine the cell type-specific mitochondrial morphology, the intracellular distribution and activity. The tightly controlled balance between fusion and fission is of particular importance in the high energy demanding cells, such as cardiomyocytes, skeletal muscles, and neuronal cells. A shift toward fission will lead to mitochondrial fragmentation, observed in quiescent cells, while a shift toward fusion will result in the formation of large mitochondrial networks, found in metabolically active cardiomyocytes. Defects in mitochondrial dynamics have been associated with various human disorders, including heart failure, ischemia reperfusion injury, diabetes, and aging. Despite significant progress in our understanding of the molecular mechanisms of mitochondrial function in the heart, further focused research is needed to translate this knowledge into the development of new therapies for various ailments.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ 08904, USA.
| | | | | |
Collapse
|
163
|
Yu-Wai-Man P, Votruba M, Moore AT, Chinnery PF. Treatment strategies for inherited optic neuropathies: past, present and future. Eye (Lond) 2014; 28:521-37. [PMID: 24603424 PMCID: PMC4017118 DOI: 10.1038/eye.2014.37] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/22/2014] [Indexed: 12/16/2022] Open
Abstract
Bilateral visual loss secondary to inherited optic neuropathies is an important cause of registrable blindness among children and young adults. The two prototypal disorders seen in clinical practice are Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA). About 90% of LHON cases are due to one of three mitochondrial DNA (mtDNA) point mutations: m.3460G>A, m.11778G>A, and m.14484T>C, which affect critical complex I subunits of the mitochondrial respiratory chain. The majority of patients with DOA harbour pathogenic mutations within OPA1, a nuclear gene that codes for a multifunctional inner mitochondrial membrane protein. Despite their contrasting genetic basis, LHON and DOA share overlapping pathological and clinical features that serve to highlight the striking tissue-specific vulnerability of the retinal ganglion cell (RGC) layer to disturbed mitochondrial function. In addition to severe visual loss secondary to progressive optic nerve degeneration, a subgroup of patients will also develop a more aggressive syndromic phenotype marked by significant neurological deficits. The management of LHON and DOA remains largely supportive, but major advances in our understanding of the mechanisms underpinning RGC loss in these two disorders are paving the way for novel forms of treatment aimed at halting or reversing visual deterioration at different stages of the disease process. In addition to neuroprotective strategies for rescuing RGCs from irreversible cell death, innovative in vitro fertilisation techniques are providing the tantalising prospect of preventing the germline transmission of pathogenic mtDNA mutations, eradicating in so doing the risk of disease in future generations.
Collapse
Affiliation(s)
- P Yu-Wai-Man
- 1] Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK [2] Departments of Neurology and Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK [3] Moorfields Eye Hospital, London, UK [4] NIHR Biomedical Research Centre, UCL Institute of Ophthalmology, University College London, London, UK
| | - M Votruba
- 1] School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK [2] Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK
| | - A T Moore
- 1] Moorfields Eye Hospital, London, UK [2] NIHR Biomedical Research Centre, UCL Institute of Ophthalmology, University College London, London, UK
| | - P F Chinnery
- 1] Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK [2] Departments of Neurology and Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
164
|
Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 2014; 19:357-72. [PMID: 24561263 DOI: 10.1016/j.cmet.2014.01.010] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria fulfill central functions in bioenergetics, metabolism, and apoptosis. They import more than 1,000 different proteins from the cytosol. It had been assumed that the protein import machinery is constitutively active and not subject to detailed regulation. However, recent studies indicate that mitochondrial protein import is regulated at multiple levels connected to cellular metabolism, signaling, stress, and pathogenesis of diseases. Here, we discuss the molecular mechanisms of import regulation and their implications for mitochondrial homeostasis. The protein import activity can function as a sensor of mitochondrial fitness and provides a direct means of regulating biogenesis, composition, and turnover of the organelle.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Trinationales Graduiertenkolleg 1478, Universität Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - René P Zahedi
- Leibniz-Institute for Analytical Sciences-ISAS-e.V., 44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institute for Analytical Sciences-ISAS-e.V., 44139 Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
165
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
166
|
A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics. Cell Signal 2014; 26:1135-46. [PMID: 24444709 DOI: 10.1016/j.cellsig.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.
Collapse
|
167
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
168
|
Parra V, Verdejo HE, Iglewski M, del Campo A, Troncoso R, Jones D, Zhu Y, Kuzmicic J, Pennanen C, Lopez‑Crisosto C, Jaña F, Ferreira J, Noguera E, Chiong M, Bernlohr DA, Klip A, Hill JA, Rothermel BA, Abel ED, Zorzano A, Lavandero S. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway. Diabetes 2014; 63:75-88. [PMID: 24009260 PMCID: PMC3868041 DOI: 10.2337/db13-0340] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/23/2013] [Indexed: 12/12/2022]
Abstract
Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology) and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento Enfermedades Cardiovasculares, Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Myriam Iglewski
- Department of Internal Medicine (Cardiology) and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrea del Campo
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Deborah Jones
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Yi Zhu
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Jovan Kuzmicic
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Lopez‑Crisosto
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fabián Jaña
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota: Twin Cities, Minneapolis, MN
| | - Amira Klip
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology) and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Beverly A. Rothermel
- Department of Internal Medicine (Cardiology) and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Evan Dale Abel
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology) and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
169
|
SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 2013; 34:807-19. [PMID: 24344202 DOI: 10.1128/mcb.01483-13] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1.
Collapse
|
170
|
First cases of dominant optic atrophy in Saudi Arabia: report of two novel OPA1 mutations. J Neuroophthalmol 2013; 33:349-53. [PMID: 24051421 DOI: 10.1097/wno.0b013e31829ffb9a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fifty to 60% of patients with dominant optic atrophy (DOA) have mutations of the OPA1 gene, which encodes dynamin-related GTPase, a protein of the internal mitochondrial membrane. To date, more than 200 OPA1 mutations in the OPA1 gene have been described. However, DOA is genetically heterogeneous with certain families linked to other chromosomal loci, that is, OPA3, OPA4, OPA5, and OPA7. METHODS This study describes a clinical series of 40 patients from Saudi Arabia with a positive DOA phenotype (i.e., decreased visual acuity during the first 2 decades of life, temporal or global optic disc pallor, and absence of other neurological or ophthalmological diseases that could explain the optic neuropathy) who underwent molecular genetic testing for OPA1 (and, in some cases, for OPA3). RESULTS This study describes for the first time 4 OPA1 mutations in DOA patients from Saudi Arabia, including 2 novel OPA1 mutations in 2 different patients. CONCLUSION The question remains whether certain patients in Saudi Arabia with a clearly defined DOA phenotype may be due to mutations in chromosomal loci other than OPA1 and OPA3. It is likely that genetic alterations associated with different loci will be discovered in the future.
Collapse
|
171
|
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013; 155:160-71. [PMID: 24055366 PMCID: PMC3790458 DOI: 10.1016/j.cell.2013.08.032] [Citation(s) in RCA: 953] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/25/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function. Dissociation of cristae remodeling from OMM permeabilization Cristae shape determines assembly of respiratory chain supercomplexes Efficiency of mitochondrial respiration and cellular growth depends on cristae shape
Collapse
Affiliation(s)
- Sara Cogliati
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Qiu X, Cao L, Yang X, Zhao X, Liu X, Han Y, Xue Y, Jiang H, Chi Z. Role of mitochondrial fission in neuronal injury in pilocarpine-induced epileptic rats. Neuroscience 2013; 245:157-65. [DOI: 10.1016/j.neuroscience.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
|
173
|
Maresca A, la Morgia C, Caporali L, Valentino ML, Carelli V. The optic nerve: a "mito-window" on mitochondrial neurodegeneration. Mol Cell Neurosci 2013; 55:62-76. [PMID: 22960139 PMCID: PMC3629569 DOI: 10.1016/j.mcn.2012.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023] Open
Abstract
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Carelli
- Corresponding author at: IRCCS Institute of Neurological Sciences of Bologna, Department of Neurological Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy. Fax: + 39 051 2092751.
| |
Collapse
|
174
|
TMEM126A is a mitochondrial located mRNA (MLR) protein of the mitochondrial inner membrane. Biochim Biophys Acta Gen Subj 2013; 1830:3719-33. [DOI: 10.1016/j.bbagen.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
|
175
|
Sarzi E, Angebault C, Seveno M, Gueguen N, Chaix B, Bielicki G, Boddaert N, Mausset-Bonnefont AL, Cazevieille C, Rigau V, Renou JP, Wang J, Delettre C, Brabet P, Puel JL, Hamel CP, Reynier P, Lenaers G. The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. ACTA ACUST UNITED AC 2013; 135:3599-613. [PMID: 23250881 DOI: 10.1093/brain/aws303] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Emmanuelle Sarzi
- Institut des Neurosciences de Montpellier, INSERM U1051, Université Montpellier I et II CHU St Eloi, 80, rue Auguste Fliche, 34091 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Leruez S, Milea D, Defoort-Dhellemmes S, Colin E, Crochet M, Procaccio V, Ferré M, Lamblin J, Drouin V, Vincent-Delorme C, Lenaers G, Hamel C, Blanchet C, Juul G, Larsen M, Verny C, Reynier P, Amati-Bonneau P, Bonneau D. Sensorineural hearing loss in OPA1-linked disorders. Brain 2013; 136:e236. [DOI: 10.1093/brain/aws340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
177
|
|
178
|
Barboni P, Valentino ML, La Morgia C, Carbonelli M, Savini G, De Negri A, Simonelli F, Sadun F, Caporali L, Maresca A, Liguori R, Baruzzi A, Zeviani M, Carelli V. Idebenone treatment in patients with OPA1-mutant dominant optic atrophy. Brain 2013; 136:e231. [PMID: 23388408 DOI: 10.1093/brain/aws280] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
|
179
|
Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol 2013; 304:R393-406. [PMID: 23364527 DOI: 10.1152/ajpregu.00584.2012] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
180
|
Belenguer P, Pellegrini L. The dynamin GTPase OPA1: More than mitochondria? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:176-83. [DOI: 10.1016/j.bbamcr.2012.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 12/24/2022]
|
181
|
Macchi M, El Fissi N, Tufi R, Bentobji M, Liévens JC, Martins LM, Royet J, Rival T. The Drosophila inner-membrane protein PMI controls crista biogenesis and mitochondrial diameter. J Cell Sci 2012; 126:814-24. [PMID: 23264743 DOI: 10.1242/jcs.115675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cristae are mitochondrial inner-membrane structures that concentrate respiratory chain complexes and hence regulate ATP production. Mechanisms controlling crista morphogenesis are poorly understood and few crista determinants have been identified. Among them are the Mitofilins that are required to establish crista junctions and ATP-synthase subunits that bend the membrane at the tips of the cristae. We report here the phenotypic consequences associated with the in vivo inactivation of the inner-membrane protein Pantagruelian Mitochondrion I (PMI) both at the scale of the whole organism, and at the level of mitochondrial ultrastructure and function. We show that flies in which PMI is genetically inactivated experience synaptic defects and have a reduced life span. Electron microscopy analysis of the inner-membrane morphology demonstrates that loss of PMI function increases the average length of mitochondrial cristae in embryonic cells. This phenotype is exacerbated in adult neurons in which cristae form a dense tangle of elongated membranes. Conversely, we show that PMI overexpression is sufficient to reduce crista length in vivo. Finally, these crista defects are associated with impaired respiratory chain activity and increases in the level of reactive oxygen species. Since PMI and its human orthologue TMEM11 are regulators of mitochondrial morphology, our data suggest that, by controlling crista length, PMI influences mitochondrial diameter and tubular shape.
Collapse
Affiliation(s)
- Marc Macchi
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille-Luminy, UMR 7288, F-13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 2012; 1494:28-43. [PMID: 23220553 DOI: 10.1016/j.brainres.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Josie J Gray
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Chen L, Liu T, Tran A, Lu X, Tomilov AA, Davies V, Cortopassi G, Chiamvimonvat N, Bers DM, Votruba M, Knowlton AA. OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J Am Heart Assoc 2012; 1:e003012. [PMID: 23316298 PMCID: PMC3541627 DOI: 10.1161/jaha.112.003012] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure. METHODS AND RESULTS We investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mutation. The homozygous mutation is embryonic lethal. Heterozygous OPA(+/-) mice exhibit reduced mtDNA copy number and decreased expression of nuclear antioxidant genes at 3 to 4 months. Although initial cardiac function was normal, at 12 months the OPA1(+/-) mouse hearts had decreased fractional shortening, cardiac output, and myocyte contraction. This coincided with the onset of blindness. In addition to small fragmented mitochondria, aged OPA1(+/-) mice had impaired cardiac mitochondrial function compared with wild-type littermates. CONCLUSIONS OPA1 mutation leads to deficiency in antioxidant transcripts, increased reactive oxygen species, mitochondrial dysfunction, and late-onset cardiomyopathy.
Collapse
Affiliation(s)
- Le Chen
- Department of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Disorders of the optic nerve in mitochondrial cytopathies: new ideas on pathogenesis and therapeutic targets. Curr Neurol Neurosci Rep 2012; 12:308-17. [PMID: 22392506 PMCID: PMC3342502 DOI: 10.1007/s11910-012-0260-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial cytopathies are a heterogeneous group of human disorders triggered by disturbed mitochondrial function. This can be due to primary mitochondrial DNA mutations or nuclear defects affecting key components of the mitochondrial machinery. Optic neuropathy is a frequent disease manifestation and the degree of visual failure can be profound, with a severe impact on the patient’s quality of life. This review focuses on the major mitochondrial disorders exhibiting optic nerve involvement, either as the defining clinical feature or as an additional component of a more extensive phenotype. Over the past decade, significant progress has been achieved in our basic understanding of Leber hereditary optic neuropathy and autosomal-dominant optic atrophy—the two classical paradigms for these mitochondrial optic neuropathies. There are currently limited treatments for these blinding ocular disorders and, ultimately, the aim is to translate these major advances into tangible benefits for patients and their families.
Collapse
|
185
|
Abstract
Mitochondria have been widely studied for their critical role in cellular metabolism, energy production, and cell death. New developments in research on mitochondria derived from studies in yeast have led to the discovery of entirely new mitochondrial processes that have implications for mitochondrial function in heart failure. Recent studies have identified that maintaining normal mitochondrial morphology and function depends on the dynamic balance of mitochondrial fusion and fission (division). Mitochondrial fusion and fission are constant ongoing processes, which are essential for the maintenance of normal mitochondrial function. Studies in heart failure have been limited but suggest a possible reduction in mitochondrial fusion. As mitochondrial fusion and fission have important links to apoptosis, a key mechanism of loss of cardiac myocytes in heart failure, there are many implications for both heart failure research and treatment.
Collapse
Affiliation(s)
- Le Chen
- Molecular and Cellular Cardiology Division, Department of Mediicine, University of California, Davis, CA, USA
| | | |
Collapse
|
186
|
Agier V, Oliviero P, Lainé J, L'Hermitte-Stead C, Girard S, Fillaut S, Jardel C, Bouillaud F, Bulteau AL, Lombès A. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1570-80. [PMID: 22800932 DOI: 10.1016/j.bbadis.2012.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/16/2022]
Abstract
Deleterious consequences of heterozygous OPA1 mutations responsible for autosomal dominant optic atrophy remain a matter of debate. Primary skin fibroblasts derived from patients have shown diverse mitochondrial alterations that were however difficult to resolve in a unifying scheme. To address the potential use of these cells as disease model, we undertook parallel and quantitative analyses of the diverse reported alterations in four fibroblast lines harboring different OPA1 mutations, nonsense or missense, in the guanosine triphosphatase or the C-terminal coiled-coil domains. We tackled several factors potentially underlying discordant reports and showed that fibroblasts with heterozygous OPA1 mutations present with several mitochondrial alterations. These included defective mitochondrial fusion during pharmacological challenge with the protonophore carbonyl cyanide m-chlorophenyl hydrazone, significant mitochondrial elongation with decreased OPA1 and DRP1 proteins, and abnormal mitochondrial fragmentation during glycolysis shortage or exogenous oxidative stress. Respiratory complex IV activity and subunits steady-state were decreased without alteration of the mitochondrial deoxyribonucleic acid size, amount or transcription. Physical link between OPA1 protein and oxidative phosphorylation was shown by reciprocal immunoprecipitation. Altered cristae structure coexisted with normal response to pro-apoptotic stimuli and expression of Bax or Bcl2 proteins. Skin fibroblasts with heterozygous OPA1 mutations thus share significant mitochondrial remodeling, and may therefore be useful for analyzing disease pathophysiology. Identifying whether the observed alterations are also present in ganglion retinal cells, and which of them underlies their degeneration process remains however an essential goal for therapeutic strategy.
Collapse
Affiliation(s)
- Virginie Agier
- Centre de Recherche de l'Institut du Cerveau et de la Moëlle, Inserm UMRS 975, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, Reynier P, Milea D. Dominant optic atrophy. Orphanet J Rare Dis 2012; 7:46. [PMID: 22776096 PMCID: PMC3526509 DOI: 10.1186/1750-1172-7-46] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Definition of the disease Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer, but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients). Prognosis Visual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual loss may be more severe over time. Management To date, there is no preventative or curative treatment in DOA; severely visually impaired patients may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial metabolism. Gene and pharmacological therapies for DOA are currently under investigation.
Collapse
Affiliation(s)
- Guy Lenaers
- Institut des Neurosciences de Montpellier, U1051 de l'INSERM, Université de Montpellier I et II, BP 74103, F-34091 Montpellier cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int J Cell Biol 2012; 2012:729290. [PMID: 22792111 PMCID: PMC3391904 DOI: 10.1155/2012/729290] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are key organelles in the cell, hosting essential functions, from biosynthetic and metabolic pathways, to oxidative phosphorylation and ATP production, from calcium buffering to red-ox homeostasis and apoptotic signalling pathways. Mitochondria are also dynamic organelles, continuously fusing and dividing, and their localization, size and trafficking are finely regulated. Moreover, in recent decades, alterations in mitochondrial function and dynamics have been implicated in an increasing number of diseases. In this review, we focus on the relationship clarified hitherto between mitochondrial dynamics and cancer, neurodegenerative and neuroinflammatory diseases.
Collapse
|
189
|
Bess AS, Crocker TL, Ryde IT, Meyer JN. Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Res 2012; 40:7916-31. [PMID: 22718972 PMCID: PMC3439916 DOI: 10.1093/nar/gks532] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.
Collapse
Affiliation(s)
- Amanda S Bess
- Duke University, Nicholas School of Environment, Integrated Toxicology and Environmental Health Program, LSRC, PO Box 90328, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
190
|
Hedskog L, Zhang S, Ankarcrona M. Strategic role for mitochondria in Alzheimer's disease and cancer. Antioxid Redox Signal 2012; 16:1476-91. [PMID: 21902456 DOI: 10.1089/ars.2011.4259] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Detailed knowledge about cell death and cell survival mechanisms and how these pathways are impaired in neurodegenerative disorders and cancer forms the basis for future drug development for these diseases that affect millions of people around the world. RECENT ADVANCES In neurodegenerative disorders such as Alzheimer's disease (AD), cell death pathways are inappropriately activated, resulting in neuronal cell death. In contrast, cancer cells develop resistance to apoptosis by regulating anti-apoptotic proteins signaling via mitochondria. Mounting evidence shows that mitochondrial function is central in both cancer and AD. Cancer cells typically shut down oxidative phosphorylation (OXPHOS) in mitochondria and switch to glycolysis for ATP production, making them resistant to hypoxia. In AD, for example, amyloid-β peptide (Aβ) and reactive oxygen species impair mitochondrial function. Neurons therefore also switch to glycolysis to maintain ATP production and to produce molecules involved in antioxidant metabolism in an attempt to survive. CRITICAL ISSUES One critical difference between cancer cells and neurons is that cancer cells can survive without OXPHOS, while neurons are dependent on OXPHOS for long-term survival. FUTURE DIRECTIONS This review will focus on these abnormalities of mitochondrial function shared in AD and cancer and discuss the potential mechanisms underlying links that may be key steps in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Louise Hedskog
- Department of Neurobiology, Care Sciences and Society (NVS), KI-Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
191
|
Mitochondrial dysfunction in glaucoma: Understanding genetic influences. Mitochondrion 2012; 12:202-12. [DOI: 10.1016/j.mito.2011.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/11/2011] [Indexed: 12/27/2022]
|
192
|
Karbowski M, Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 2012; 123:157-71. [PMID: 22143516 DOI: 10.1007/s00401-011-0921-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Maintaining the functional integrity of mitochondria is pivotal for cellular survival. It appears that neuronal homeostasis depends on high-fidelity mitochondria, in particular. Consequently, mitochondrial dysfunction is a fundamental problem associated with a significant number of neurological diseases, including Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and various peripheral neuropathies, as well as the normal aging process. To ensure optimal mitochondrial function, diverse, evolutionarily conserved mitochondrial quality control mechanisms are in place, including the scavenging of toxic reactive oxygen species (ROS) and degradation of damaged mitochondrial proteins, but also turnover of whole organelles. In this review we will discuss various mitochondria-associated conditions, focusing on the role of protein turnover in mitochondrial maintenance with special emphasis on neurodegenerative disorders.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
193
|
Natarajan SK, Becker DF. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. ACTA ACUST UNITED AC 2012; 2012:11-27. [PMID: 22593641 DOI: 10.2147/chc.s4955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
| | | |
Collapse
|
194
|
Abstract
Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Collapse
|
195
|
Rouzier C, Bannwarth S, Chaussenot A, Chevrollier A, Verschueren A, Bonello-Palot N, Fragaki K, Cano A, Pouget J, Pellissier JF, Procaccio V, Chabrol B, Paquis-Flucklinger V. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain 2011; 135:23-34. [PMID: 22189565 DOI: 10.1093/brain/awr323] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MFN2 and OPA1 genes encode two dynamin-like GTPase proteins involved in the fusion of the mitochondrial membrane. They have been associated with Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy, respectively. We report a large family with optic atrophy beginning in early childhood, associated with axonal neuropathy and mitochondrial myopathy in adult life. The clinical presentation looks like the autosomal dominant optic atrophy 'plus' phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation (c.629A>T, p.D210V). Multiple mitochondrial DNA deletions were found in skeletal muscle and this observation makes MFN2 a novel gene associated with 'mitochondrial DNA breakage' syndrome. Contrary to previous studies in patients with Charcot-Marie-Tooth disease type 2A, fibroblasts carrying the MFN2 mutation present with a respiratory chain deficiency, a fragmentation of the mitochondrial network and a significant reduction of MFN2 protein expression. Furthermore, we show for the first time that impaired mitochondrial fusion is responsible for a deficiency to repair stress-induced mitochondrial DNA damage. It is likely that defect in mitochondrial DNA repair is due to variability in repair protein content across the mitochondrial population and is at least partially responsible for mitochondrial DNA instability.
Collapse
Affiliation(s)
- Cécile Rouzier
- Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, 06200, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:642038. [PMID: 22203837 PMCID: PMC3235780 DOI: 10.1155/2012/642038] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/08/2011] [Indexed: 12/25/2022]
Abstract
Muscle mitochondrial metabolism is a tightly controlled process that involves the coordination of signaling pathways and factors from both the nuclear and mitochondrial genomes. Perhaps the most important pathway regulating metabolism in muscle is mitochondrial biogenesis. In response to physiological stimuli such as exercise, retrograde signaling pathways are activated that allow crosstalk between the nucleus and mitochondria, upregulating hundreds of genes and leading to higher mitochondrial content and increased oxidation of substrates. With type 2 diabetes, these processes can become dysregulated and the ability of the cell to respond to nutrient and energy fluctuations is diminished. This, coupled with reduced mitochondrial content and altered mitochondrial morphology, has been directly linked to the pathogenesis of this disease. In this paper, we will discuss our current understanding of mitochondrial dysregulation in skeletal muscle as it relates to type 2 diabetes, placing particular emphasis on the pathways of mitochondrial biogenesis and mitochondrial dynamics, and the therapeutic value of exercise and other interventions.
Collapse
|
197
|
Kobashigawa S, Suzuki K, Yamashita S. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun 2011; 414:795-800. [DOI: 10.1016/j.bbrc.2011.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
|
198
|
Van Bergen NJ, Crowston JG, Kearns LS, Staffieri SE, Hewitt AW, Cohn AC, Mackey DA, Trounce IA. Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy. PLoS One 2011; 6:e21347. [PMID: 21731710 PMCID: PMC3120866 DOI: 10.1371/journal.pone.0021347] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/27/2011] [Indexed: 02/01/2023] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lisa S. Kearns
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Alex W. Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Amy C. Cohn
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - David A. Mackey
- University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Perth, Western Australia, Australia
| | - Ian A. Trounce
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
199
|
Abstract
Apoptosis-inducing factor (AIF) is a flavin adenine dinucleotide-containing, NADH-dependent oxidoreductase residing in the mitochondrial intermembrane space whose specific enzymatic activity remains unknown. Upon an apoptotic insult, AIF undergoes proteolysis and translocates to the nucleus, where it triggers chromatin condensation and large-scale DNA degradation in a caspase-independent manner. Besides playing a key role in execution of caspase-independent cell death, AIF has emerged as a protein critical for cell survival. Analysis of in vivo phenotypes associated with AIF deficiency and defects, and identification of its mitochondrial, cytoplasmic, and nuclear partners revealed the complexity and multilevel regulation of AIF-mediated signal transduction and suggested an important role of AIF in the maintenance of mitochondrial morphology and energy metabolism. The redox activity of AIF is essential for optimal oxidative phosphorylation. Additionally, the protein is proposed to regulate the respiratory chain indirectly, through assembly and/or stabilization of complexes I and III. This review discusses accumulated data with respect to the AIF structure and outlines evidence that supports the prevalent mechanistic view on the apoptogenic actions of the flavoprotein, as well as the emerging concept of AIF as a redox sensor capable of linking NAD(H)-dependent metabolic pathways to apoptosis.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California-Irvine, CA 92697-3900, USA.
| |
Collapse
|
200
|
Carelli V, Schimpf S, Fuhrmann N, Valentino ML, Zanna C, Iommarini L, Papke M, Schaich S, Tippmann S, Baumann B, Barboni P, Longanesi L, Rugolo M, Ghelli A, Alavi MV, Youle RJ, Bucchi L, Carroccia R, Giannoccaro MP, Tonon C, Lodi R, Cenacchi G, Montagna P, Liguori R, Wissinger B. A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16. Hum Mol Genet 2011; 20:1893-905. [PMID: 21349918 DOI: 10.1093/hmg/ddr071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dominant optic atrophy (DOA) is genetically heterogeneous and pathogenic mutations have been identified in the OPA1 and OPA3 genes, both encoding for mitochondrial proteins. We characterized clinical and laboratory features in a large OPA1-negative family with complicated DOA. Search for mitochondrial dysfunction was performed by studying muscle biopsies, fibroblasts, platelets and magnetic resonance (MR) spectroscopy. Genetic investigations included mitochondrial DNA (mtDNA) analysis, linkage analysis, copy number variation (CNV) analysis and candidate gene screening. Optic neuropathy was undistinguishable from that in OPA1-DOA and frequently associated with late-onset sensorineural hearing loss, increases of central conduction times at somato-sensory evoked potentials and various cardiac abnormalities. Serum lactic acid after exercise, platelet respiratory complex activities, adenosine triphosphate (ATP) content in fibroblasts and muscle phosphorus MR spectroscopy all failed to reveal a mitochondrial dysfunction. However, muscle biopsies and their mtDNA analysis showed increased mitochondrial biogenesis. Furthermore, patient's fibroblasts grown in the galactose medium were unable to increase ATP content compared with controls, and exhibited abnormally high rate of fusion activity. Genome-wide linkage revealed a locus on chromosome 16q21-q22 with a maximum two-point LOD score of 8.84 for the marker D16S752 and a non-recombinant interval of ∼ 6.96 cM. Genomic screening of 45 genes in this interval including several likely candidate genes (CALB2, CYB5B, TK2, DHODH, PLEKHG4) revealed no mutation. Moreover, we excluded the presence of CNVs using array-based comparative genome hybridization. The identification of a new OPA locus (OPA8) in this pedigree demonstrates further genetic heterogeneity in DOA, and our results indicate that the pathogenesis may still involve mitochondria.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Neurological Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|