151
|
Degrune F, Theodorakopoulos N, Colinet G, Hiel MP, Bodson B, Taminiau B, Daube G, Vandenbol M, Hartmann M. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes. Front Microbiol 2017; 8:1127. [PMID: 28674527 PMCID: PMC5474472 DOI: 10.3389/fmicb.2017.01127] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022] Open
Abstract
Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas taxa featuring more oligotrophic lifestyles were more abundant under reduced tillage. Our study found that, under the specific edaphic and climatic context of central Belgium, different tillage regimes created different ecological niches that select for different microbial lifestyles with potential consequences for the ecosystem services provided to the plants and their environment.
Collapse
Affiliation(s)
- Florine Degrune
- Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
- TERRA-AgricultureIsLife, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Nicolas Theodorakopoulos
- Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Gilles Colinet
- Exchanges Ecosystems – Atmosphere, Department of BIOSE, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Marie-Pierre Hiel
- Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
- Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Bernard Bodson
- Crop Sciences, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | | | - Georges Daube
- Food Microbiology, University of LiègeLiège, Belgium
| | - Micheline Vandenbol
- Microbiology and Genomics, Department of AGROBIOCHEM, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Martin Hartmann
- Forest Soils and Biogeochemistry, Research Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| |
Collapse
|
152
|
Xu J, Wei Y, Jia H, Xiao L, Gong D. A new perspective on studying burial environment before archaeological excavation: analyzing bacterial community distribution by high-throughput sequencing. Sci Rep 2017; 7:41691. [PMID: 28169321 PMCID: PMC5294632 DOI: 10.1038/srep41691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/23/2016] [Indexed: 02/01/2023] Open
Abstract
Burial conditions play a crucial role in archaeological heritage preservation. Especially, the microorganisms were considered as the leading causes which incurred degradation and vanishment of historic materials. In this article, we analyzed bacterial diversity and community structure from M1 of Wangshanqiao using 16 S rRNA gene amplicon sequencing. The results indicated that microbial communities in burial conditions were diverse among four different samples. The samples from the robber hole varied most obviously in community structure both in Alpha and Beta diversity. In addition, the dominant phylum in different samples were Proteobacteria, Actinobacteria and Bacteroidetes, respectively. Moreover, the study implied that historical materials preservation conditions had connections with bacterial community distribution. At the genus level, Acinetobacter might possess high ability in degrading organic culture heritage in burial conditions, while Bacteroides were associated closely with favorable preservation conditions. This method contributes to fetch information which would never recover after excavation, and it will help to explore microbial degradation on precious organic culture heritage and further our understanding of archaeological burial environment. The study also indicates that robbery has a serious negative impact on burial remains.
Collapse
Affiliation(s)
- Jinjin Xu
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, 230026 China
| | - Yanfei Wei
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, 230026 China.,Jingzhou Preservation Centre of Cultural Relics, Jingzhou, 434020 China
| | | | - Lin Xiao
- Chengdu Institute of Cultural Relics and Archaeology, Chengdu, 610000 China
| | - Decai Gong
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
153
|
Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier E, Rigling A, Frey B. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 2017; 26:1190-1206. [DOI: 10.1111/mec.13995] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Martin Hartmann
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Richard D. Bardgett
- School of Earth and Environmental Sciences; Michael Smith Building; The University of Manchester; M13 9PT Manchester UK
| | - Beat Stierli
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Claude Herzog
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
- Swiss Federal Institute of Technology ETH; 8092 Zürich Switzerland
| | - Xiamei Chen
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Andreas Zingg
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | | | - Andreas Rigling
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Beat Frey
- Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| |
Collapse
|
154
|
Elster J, Margesin R, Wagner D, Häggblom M. Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiol Ecol 2016; 93:fiw221. [DOI: 10.1093/femsec/fiw221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|