151
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
152
|
Huang ZN, Chung HM, Fang SC, Her LS. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects. Int J Biol Sci 2017; 13:1420-1437. [PMID: 29209146 PMCID: PMC5715525 DOI: 10.7150/ijbs.20742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/10/2017] [Indexed: 12/29/2022] Open
Abstract
Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zih-Ning Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Her Min Chung
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lu-Shiun Her
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
153
|
Hyperglycemia exacerbates downregulation of dynamin-like protein 1 in ischemic cerebral injury. Lab Anim Res 2017; 33:202-208. [PMID: 29046694 PMCID: PMC5645597 DOI: 10.5625/lar.2017.33.3.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke is one of the leading causes of adult disability and death. Hyperglycemia is associated with an increased risk of stroke and poor outcomes after brain injury. Dynamin-like protein I (DLP-1) regulates mitochondrial fission and promotes mitochondrial dynamics. Neurodegenerative diseases are associated with mitochondrial dysfunction, and the downregulation of DLP-1 has been previously identified in a stroke animal model. Here, we investigated the changes in DLP-1 protein expression in an animal model of focal cerebral ischemia with induced hyperglycemia. Streptozotocin (40 mg/kg) was intraperitoneally injected into male rats to induce hyperglycemia, and middle cerebral artery occlusion (MCAO) was surgically induced 4 weeks after streptozotocin treatment. Brain tissue was isolated 24 hours after MCAO, and cerebral cortex samples were used for this study. Proteomics revealed a decrease in DLP-1 expression in MCAO animals when compared with controls, and this downregulation was more prominent in MCAO animals with hyperglycemia. Reverse-transcription polymerase chain reaction and Western blot analyses confirmed that DLP-1 was significantly downregulated in MCAO-injured animals with hyperglycemia compared to those without hyperglycemia. The decrease in DLP-1 indicates mitochondrial morphological changes and dysfunction. Together, these results suggest that the severe decrease of DLP-1 seen after brain injury under hyperglycemic conditions may exacerbate the damage to the brain.
Collapse
|
154
|
Arbez N, Ratovitski T, Roby E, Chighladze E, Stewart JC, Ren M, Wang X, Lavery DJ, Ross CA. Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. J Biol Chem 2017; 292:19238-19249. [PMID: 28972180 DOI: 10.1074/jbc.m117.782300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/18/2017] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is caused in large part by a polyglutamine expansion within the huntingtin (Htt) protein. Post-translational modifications (PTMs) control and regulate many protein functions and cellular pathways, and PTMs of mutant Htt are likely important modulators of HD pathogenesis. Alterations of selected numbers of PTMs of Htt fragments have been shown to modulate Htt cellular localization and toxicity. In this study, we systematically introduced site-directed alterations in individual phosphorylation and acetylation sites in full-length Htt constructs. The effects of each of these PTM alteration constructs were tested on cell toxicity using our nuclear condensation assay and on mitochondrial viability by measuring mitochondrial potential and size. Using these functional assays in primary neurons, we identified several PTMs whose alteration can block neuronal toxicity and prevent potential loss and swelling of the mitochondria caused by mutant Htt. These PTMs included previously described sites such as serine 116 and newly found sites such as serine 2652 throughout the protein. We found that these functionally relevant sites are clustered in protease-sensitive domains throughout full-length Htt. These findings advance our understanding of the Htt PTM code and its role in HD pathogenesis. Because PTMs are catalyzed by enzymes, the toxicity-modulating Htt PTMs identified here may be promising therapeutic targets for managing HD.
Collapse
Affiliation(s)
- Nicolas Arbez
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences,
| | - Tamara Ratovitski
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Elaine Roby
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ekaterine Chighladze
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Jacqueline C Stewart
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Mark Ren
- the Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, and
| | - Xiaofang Wang
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Daniel J Lavery
- the CHDI Foundation/CHDI Management Inc., Princeton, New Jersey 08540
| | - Christopher A Ross
- From the Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, .,the Department of Neurology and Program in Cellular and Molecular Medicine, and.,the Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
155
|
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2017; 25:5148-5166. [PMID: 27677309 DOI: 10.1093/hmg/ddw330] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of our study was to understand the protective effects of reduced expression of dynamin-related protein (Drp1) against amyloid beta (Aβ) induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD) progression and pathogenesis. Our recent molecular and biochemical studies revealed that impaired mitochondrial dynamics-increased mitochondrial fragmentation and decreased fusion-in neurons from autopsy brains of AD patients and from transgenic AD mice and neurons expressing Aβ, suggesting that Aβ causes mitochondrial fragmentation in AD. Further, our recent co-immunoprecipitation and immunostaining analysis revealed that the mitochondrial fission protein Drp1 interacted with Aβ, and this interaction increased as AD progressed. Based on these findings, we hypothesize that a partial deficiency of Drp1 inhibits Drp1-Aβ interactions and protects Aβ-induced mitochondrial and synaptic toxicities, and maintains mitochondrial dynamics and neuronal function in AD neurons. We crossed Drp1+/- mice with APP transgenic mice (Tg2576 line) and created double mutant (APPXDrp1+/-) mice. Using real-time RT-PCR and immunoblotting analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics, mitochondrial biogenesis and synapses from 6-month-old Drp1+/-, APP, APPXDrp1+/- and wild-type (WT) mice. Using biochemical methods, we also studied mitochondrial function and measured soluble Aβ in brain tissues from all lines of mice in our study. Decreased mRNA expressions and protein levels of Drp1 and Fis1 (fission) and CypD (matrix) genes, and increased levels of Mfn1, Mfn2 and Opa1 (fusion), Nrf1, Nrf2, PGC1α, TFAM (biogenesis) and synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin (synaptic) were found in 6-month-old APPXDrp1+/- mice relative to APP mice. Mitochondrial functional assays revealed that mitochondrial dysfunction is reduced in APPXDrp1+/- mice relative to APP mice, suggesting that reduced Drp1enhances mitochondrial function in AD neurons. Sandwich ELISA assay revealed that soluble Aβ levels were significantly reduced in APPXDrp1+/- mice relative to APP mice, indicating that reduced Drp1 decreases soluble Aβ production in AD progression. These findings suggest that a partial reduction of Drp1 reduces Aβ production, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in APP mice. These findings may have implications for the development of Drp1 based therapeutics for AD patients.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department.,Pharmacology & Neuroscience Department.,Neurology Department.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
156
|
Abstract
Huntington's disease (HD) as an inherited neurodegenerative disorder leads to neuronal loss in striatum. Progressive motor dysfunction, cognitive decline, and psychiatric disturbance are the main clinical symptoms of the HD. This disease is caused by expansion of the CAG repeats in exon 1 of the huntingtin which encodes Huntingtin protein (Htt). Various cellular and molecular events play role in the pathology of HD. Mitochondria as important organelles play crucial roles in the most of neurodegenerative disorders like HD. Critical roles of the mitochondria in neurons are ATP generation, Ca2+ buffering, ROS generation, and antioxidant activity. Neurons as high-demand energy cells closely related to function, maintenance, and dynamic of mitochondria. In the most neurological disorders, mitochondrial activities and dynamic are disrupted which associate with high ROS level, low ATP generation, and apoptosis. Accumulation of mutant huntingtin (mHtt) during this disease may evoke mitochondrial dysfunction. Here, we review recent findings to support this hypothesis that mHtt could cause mitochondrial defects. In addition, by focusing normal huntingtin functions in neurons, we purpose mitochondria and Huntingtin association in normal condition. Moreover, mHtt affects various cellular signaling which ends up to mitochondrial biogenesis. So, it could be a potential candidate to decline ATP level in HD. We conclude how mitochondrial biogenesis plays a central role in the neuronal survival and activity and how mHtt affects mitochondrial trafficking, maintenance, integrity, function, dynamics, and hemostasis and makes neurons vulnerable to degeneration in HD.
Collapse
|
157
|
Abstract
Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized by a progressive degeneration of nerve cells eventually leading to dementia. While these diseases affect different neuronal populations and present distinct clinical features, they share in common several features and signaling pathways. In particular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly described and might be correlated with AMP-activated protein kinase (AMPK) deregulation. AMPK is a master energy sensor which was reported to be overactivated in the brain of patients affected by these neurodegenerative disorders. While the exact role played by AMPK in these diseases remains to be clearly established, several studies reported the implication of AMPK in various signaling pathways that are involved in these diseases' progression. In this chapter, we review the current literature regarding the involvement of AMPK in the development of these diseases and discuss the common pathways involved.
Collapse
|
158
|
Li MX, Mu DZ. [Mitophagy and nervous system disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:724-729. [PMID: 28606244 PMCID: PMC7390300 DOI: 10.7499/j.issn.1008-8830.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Mitophagy is a process during which the cell selectively removes the mitochondria via the mechanism of autophagy. It is crucial to the functional completeness of the whole mitochondrial network and determines cell survival and death. On the one hand, the damaged mitochondria releases pro-apoptotic factors which induce cell apoptosis; on the other hand, the damaged mitochondria eliminates itself via autophagy, which helps to maintain cell viability. Mitophagy is of vital importance for the development and function of the nervous system. Neural cells rely on autophagy to control protein quality and eliminate the damaged mitochondria, and under normal circumstances, mitophagy can protect the neural cells. Mutations in genes related to mitophagy may cause the development and progression of neurodegenerative diseases. An understanding of the role of mitophagy in nervous system diseases may provide new theoretical bases for clinical treatment. This article reviews the research advances in the relationship between mitophagy and different types of nervous system diseases.
Collapse
Affiliation(s)
- Ming-Xi Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education/Key Laboratory of Development and Related Diseases of Women and Children, Chengdu 610041, China.
| | | |
Collapse
|
159
|
Thornton C. AMPK: keeping the (power)house in order? Neuronal Signal 2017; 1:NS20160020. [PMID: 32714577 PMCID: PMC7373243 DOI: 10.1042/ns20160020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/23/2022] Open
Abstract
Metabolically energetic organs, such as the brain, require a reliable source of ATP, the majority of which is provided by oxidative phosphorylation in the mitochondrial matrix. Maintaining mitochondrial integrity is therefore of paramount importance in highly specialized cells such as neurons. Beyond acting as cellular 'power stations' and initiators of apoptosis, neuronal mitochondria are highly mobile, transported to pre- and post-synaptic sites for rapid, localized ATP production, serve to buffer physiological and pathological calcium and contribute to dendritic arborization. Given such roles, it is perhaps unsurprising that recent studies implicate AMP-activated protein kinase (AMPK), a cellular energy-sensitive metabolic regulator, in triggering mitochondrial fission, potentially balancing mitochondrial dynamics, biogenesis and mitophagy.
Collapse
Affiliation(s)
- Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas’ Hospital, London SE1 7EH, U.K
| |
Collapse
|
160
|
Abstract
Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca2+ buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and Drosophila larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.
Collapse
|
161
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
162
|
Cherubini M, Ginés S. Mitochondrial fragmentation in neuronal degeneration: Toward an understanding of HD striatal susceptibility. Biochem Biophys Res Commun 2017; 483:1063-1068. [DOI: 10.1016/j.bbrc.2016.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 12/31/2022]
|
163
|
Singh M, Jadhav HR, Bhatt T. Dynamin Functions and Ligands: Classical Mechanisms Behind. Mol Pharmacol 2017; 91:123-134. [PMID: 27879341 DOI: 10.1124/mol.116.105064] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Dynamin is a GTPase that plays a vital role in clathrin-dependent endocytosis and other vesicular trafficking processes by acting as a pair of molecular scissors for newly formed vesicles originating from the plasma membrane. Dynamins and related proteins are important components for the cleavage of clathrin-coated vesicles, phagosomes, and mitochondria. These proteins help in organelle division, viral resistance, and mitochondrial fusion/fission. Dysfunction and mutations in dynamin have been implicated in the pathophysiology of various disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Charcot-Marie-Tooth disease, heart failure, schizophrenia, epilepsy, cancer, dominant optic atrophy, osteoporosis, and Down's syndrome. This review is an attempt to illustrate the dynamin-related mechanisms involved in the above-mentioned disorders and to help medicinal chemists to design novel dynamin ligands, which could be useful in the treatment of dynamin-related disorders.
Collapse
Affiliation(s)
- Mahaveer Singh
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India
| |
Collapse
|
164
|
Liot G, Valette J, Pépin J, Flament J, Brouillet E. Energy defects in Huntington's disease: Why “in vivo” evidence matters. Biochem Biophys Res Commun 2017; 483:1084-1095. [DOI: 10.1016/j.bbrc.2016.09.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023]
|
165
|
SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis. Mol Cell Biol 2017; 37:MCB.00254-16. [PMID: 27799292 DOI: 10.1128/mcb.00254-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury.
Collapse
|
166
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
167
|
Chen CH, Joshi AU, Mochly-Rosen D. The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration. ACTA NEUROLOGICA TAIWANICA 2016; 25(4):111-123. [PMID: 28382610 PMCID: PMC10618051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load' that has been linked to the pathology of neurodegenerative diseases. In particular, the α, β-unsaturated aldehydes derived from lipid peroxidation, 4-hydroxynonenal (4-HNE), DOPAL (MAO product of dopamine), malondialdehyde, acrolein and acetaldehyde, all readily form chemical adductions with proteins, DNA and lipids, thus causing neurotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH 2) is a major aldehyde metabolizing enzyme that protects against deleterious aldehyde buildup in brain, a tissue that has a particularly high mitochondrial content. In this review, we highlight the deleterious effects of increased aldehydic load in the neuropathology of ischemic stroke, Alzheimer's disease and Parkinson's disease. We also discuss evidence for the association between ALDH2 deficiency, a common East Asianspecific mutation, and these neuropathologies. A novel class of small molecule aldehyde dehydrogenase activators (Aldas), represented by Alda-1, reduces neuronal cell death in models of ischemic stroke, Alzheimer's disease and Parkinson's disease. Together, these data suggest that reducing aldeydic load by enhancing the activity of aldehyde dehydrogenases, such as ALDH2, represents as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Amit U. Joshi
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
168
|
Arun S, Liu L, Donmez G. Mitochondrial Biology and Neurological Diseases. Curr Neuropharmacol 2016; 14:143-54. [PMID: 26903445 PMCID: PMC4825945 DOI: 10.2174/1570159x13666150703154541] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 07/02/2015] [Indexed: 01/02/2023] Open
Abstract
Mitochondria are extremely active organelles that perform a variety of roles in the cell including energy production, regulation of calcium homeostasis, apoptosis, and population maintenance through fission and fusion. Mitochondrial dysfunction in the form of oxidative stress and mutations can contribute to the pathogenesis of various neurodegenerative diseases such as Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s diseases (HD). Abnormalities of Complex I function in the electron transport chain have been implicated in some neurodegenerative diseases, inhibiting ATP production and generating reactive oxygen species that can cause major damage to mitochondria Mutations in both nuclear and mitochondrial DNA can contribute to neurodegenerative disease, although the pathogenesis of these conditions tends to focus on nuclear mutations. In PD, nuclear genome mutations in the PINK1 and parkin genes have been implicated in neurodegeneration [1], while mutations in APP, PSEN1 and PSEN2 have been implicated in a variety of clinical symptoms of AD [5]. Mutant htt protein is known to cause HD [2]. Much progress has been made to determine some causes of these neurodegenerative diseases, though permanent treatments have yet to be developed. In this review, we discuss the roles of mitochondrial dysfunction in the pathogenesis of these diseases.
Collapse
Affiliation(s)
| | | | - Gizem Donmez
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave. Boston MA, 02111, USA.
| |
Collapse
|
169
|
Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H, Reddy PH. Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2016; 25:4881-4897. [PMID: 28173111 PMCID: PMC6078590 DOI: 10.1093/hmg/ddw312] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/13/2022] Open
Abstract
The purpose of our study was to understand the protective effects of a partial reduction of dynamin-related protein 1 (Drp1) in Alzheimer’s disease (AD) progression and pathogenesis. Increasing evidence suggests that phosphorylated Tau and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline, in patients with AD. In the current study, we investigated whether a partial reduction of Drp1 protect neurons from phosphorylated Tau-induced mitochondrial and synaptic toxicities in AD progression. We crossed Drp1+/− mice with Tau transgenic mice (P301L line) and created double mutant (TauXDrp1+/−) mice. Using real-time RT-PCR, immunoblotting and immunostaining analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics—Drp1 and Fis1 (fission), Mfn1, Mfn2 and Opa1 (fusion), CypD (matrix), mitochondrial biogenesis—Nrf1, Nrf2, PGC1α and TFAM and synaptic—synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin in brain tissues from 6-month-old Drp1+/−, Tau, TauXDrp1+/− and wild-type mice. Using biochemical and immunoblotting methods, mitochondrial function and phosphorylated Tau were measured. Decreased mRNA and protein levels of fission and matrix and increased levels of fusion, mitochondrial biogenesis, and synaptic genes were found in 6-month-old TauXDrp1+/− mice relative to Tau mice. Mitochondrial dysfunction was reduced in TauXDrp1+/− mice relative to Tau mice. Phosphorylated Tau found to be reduced in TauXDrp1+/− mice relative to Tau mice. These findings suggest that a partial reduction of Drp1 decreases the production of phosphorylated Tau, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in Tau mice. Findings of this study may have implications for the development of Drp1 based therapeutics for patients with AD and other tauopathies.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Yeguvapalli Suneetha
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 109 Hunterian, Baltimore, MD 21205, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
- Cell Biology & Biochemistry Department
- Neuroscience & Pharmacology Department
- Neurology Department
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA
| |
Collapse
|
170
|
Naseri NN, Bonica J, Xu H, Park LC, Arjomand J, Chen Z, Gibson GE. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients. PLoS One 2016; 11:e0160384. [PMID: 27611087 PMCID: PMC5017661 DOI: 10.1371/journal.pone.0160384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction is well-documented in Huntington's disease (HD). However, the link between the mutant huntingtin (mHTT) gene and the pathology is unknown. The tricarboxylic acid (TCA) cycle is the main metabolic pathway for the production of NADH for conversion to ATP via the electron transport chain (ETC). The objective of this study was to test for differences in enzyme activities, mRNAs and protein levels related to the TCA cycle between lymphoblasts from healthy subjects and from patients with HD. The experiments utilize the advantages of lymphoblasts to reveal new insights about HD. The large quantity of homogeneous cell populations permits multiple dynamic measures to be made on exactly comparable tissues. The activities of nine enzymes related to the TCA cycle and the expression of twenty-nine mRNAs encoding for these enzymes and enzyme complexes were measured. Cells were studied under baseline conditions and during metabolic stress. The results support our recent findings that the activities of the pyruvate dehydrogenase complex (PDHC) and succinate dehydrogenase (SDH) are elevated in HD. The data also show a large unexpected depression in MDH activities. Furthermore, message levels for isocitrate dehydrogenase 1 (IDH1) were markedly increased in in HD lymphoblasts and were responsive to treatments. The use of lymphoblasts allowed us to clarify that the reported decrease in aconitase activity in HD autopsy brains is likely due to secondary hypoxic effects. These results demonstrate the mRNA and enzymes of the TCA cycle are critical therapeutic targets that have been understudied in HD.
Collapse
Affiliation(s)
- Nima N. Naseri
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States of America
| | - Joseph Bonica
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States of America
| | - Hui Xu
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States of America
| | - Larry C. Park
- CHDI Management/CHDI Foundation, Inc., 6080 Center Drive. Suite 100, Los Angeles, CA 90045, United States of America
| | - Jamshid Arjomand
- CHDI Management/CHDI Foundation, Inc., 6080 Center Drive. Suite 100, Los Angeles, CA 90045, United States of America
| | - Zhengming Chen
- Weill Cornell Medical College, Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, 425 East 61st Street, New York, NY 10065, United States of America
| | - Gary E. Gibson
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States of America
| |
Collapse
|
171
|
Lassus B, Magnifico S, Pignon S, Belenguer P, Miquel MC, Peyrin JM. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults. Sci Rep 2016; 6:32777. [PMID: 27604820 PMCID: PMC5015069 DOI: 10.1038/srep32777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events.
Collapse
Affiliation(s)
- Benjamin Lassus
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Sebastien Magnifico
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Sandra Pignon
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Pascale Belenguer
- CNRS UMR 5169 Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, Université Toulouse 3 Paul Sabatier, 31400, France
| | - Marie-Christine Miquel
- CNRS UMR 5169 Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, Université Toulouse 3 Paul Sabatier, 31400, France
| | - Jean-Michel Peyrin
- CNRS UMR 8256, Biological Adaptation and Ageing, Paris, 75005, France.,Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, Paris, 75005, France
| |
Collapse
|
172
|
Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016; 15:3266-83. [PMID: 27486686 PMCID: PMC5555151 DOI: 10.1021/acs.jproteome.6b00448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Raghothama Chaerkady
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Jacqueline C. Stewart
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Anialak Zavala
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Dobrila D. Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
| | - Russell L. Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway Street, Suite 371 BRB, Baltimore, Maryland 21205, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, Maryland 21287, United States
- Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
173
|
Comparative Mitochondrial-Based Protective Effects of Resveratrol and Nicotinamide in Huntington’s Disease Models. Mol Neurobiol 2016; 54:5385-5399. [DOI: 10.1007/s12035-016-0048-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
174
|
Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience 2016; 332:191-202. [DOI: 10.1016/j.neuroscience.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 01/19/2023]
|
175
|
Melkani GC. Huntington's Disease-Induced Cardiac Disorders Affect Multiple Cellular Pathways. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 2:325-338. [PMID: 29963642 PMCID: PMC6022757 DOI: 10.20455/ros.2016.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a rare, inherited, progressive, and fatal neurological disorder resulting from expanded polyglutamine repeats in the huntingtin protein. While HD is predominately characterized as a disease of the central nervous system, mortality surveys and epidemiological studies reveal heart disease as one of the leading causes of death in HD patients. Emerging evidence supports a link between HD and cardiovascular disease, such as cardiac amyloidosis (accumulation of aggregates in the heart). Experimental animal and clinical studies have attempted to explain the mechanisms of HD-induced cardiac pathology in the association of protein misfolding, autophagic defects, oxidative stress, mitochondrial dysfunction, and cell death. HD is increasingly understood as a complex disease with peripheral components of cardiac and skeletal muscle pathophysiology. While the discovery of these linkages and apparent pathological markers is promising, the mechanism of HD-induced cardiac pathology and the nature of its cell autonomy remain elusive. Further study of the wide-ranging cardiac function in HD patients is needed. This review highlights published literature on the pathological factors associated with HD-induced cardiac amyloidosis and other cardiovascular diseases, and addresses gaps in this expanding area of study. Through comprehensive experimental and clinical studies, potential drugs can be tested to attenuate and/or ameliorate HD-induced cardiac pathology and mortality.
Collapse
Affiliation(s)
- Girish C Melkani
- Department of Biology, Molecular Biology and Heart Institutes, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
176
|
Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci Rep 2016; 6:31155. [PMID: 27499269 PMCID: PMC4976327 DOI: 10.1038/srep31155] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
The presence of expanded poly-glutamine (polyQ) repeats in proteins is directly linked to the pathogenesis of several neurodegenerative diseases, including Huntington’s disease. However, the molecular and structural basis underlying the increased toxicity of aggregates formed by proteins containing expanded polyQ repeats remain poorly understood, in part due to the size and morphological heterogeneity of the aggregates they form in vitro. To address this knowledge gap and technical limitations, we investigated the structural, mechanical and morphological properties of fibrillar aggregates at the single molecule and nanometer scale using the first exon of the Huntingtin protein as a model system (Exon1). Our findings demonstrate a direct correlation of the morphological and mechanical properties of Exon1 aggregates with their structural organization at the single aggregate and nanometric scale and provide novel insights into the molecular and structural basis of Huntingtin Exon1 aggregation and toxicity.
Collapse
|
177
|
Naia L, Ferreira IL, Ferreiro E, Rego AC. Mitochondrial Ca 2+ handling in Huntington's and Alzheimer's diseases - Role of ER-mitochondria crosstalk. Biochem Biophys Res Commun 2016; 483:1069-1077. [PMID: 27485547 DOI: 10.1016/j.bbrc.2016.07.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Mitochondria play a relevant role in Ca2+ buffering, governing energy metabolism and neuronal function. Huntington's disease (HD) and Alzheimer's disease (AD) are two neurodegenerative disorders that, although clinically distinct, share pathological features linked to selective brain damage. These include mitochondrial dysfunction, intracellular Ca2+ deregulation and mitochondrial Ca2+ handling deficits. Both diseases are associated with misfolding and aggregation of specific proteins that physically interact with mitochondria and interfere with endoplasmic reticulum (ER)/mitochondria-contact sites. Cumulating evidences indicate that impairment of mitochondrial Ca2+ homeostasis underlies the susceptibility to selective neuronal death observed in HD and AD; however data obtained with different models and experimental approaches are not always consistent. In this review, we explore the recent literature on deregulation of mitochondrial Ca2+ handling underlying the interplay between mitochondria and ER in HD and AD-associated neurodegeneration.
Collapse
Affiliation(s)
- Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ildete Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Polo II, Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Polo II, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
178
|
Hwang S, Disatnik MH, Mochly-Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med 2016; 7:1307-26. [PMID: 26268247 PMCID: PMC4604685 DOI: 10.15252/emmm.201505256] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in multiple neurodegenerative diseases. In order to maintain a healthy population of functional mitochondria in cells, defective mitochondria must be properly eliminated by lysosomal machinery in a process referred to as mitophagy. Here, we uncover a new molecular mechanism underlying mitophagy driven by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under the pathological condition of Huntington’s disease (HD) caused by expansion of polyglutamine repeats. Expression of expanded polyglutamine tracts catalytically inactivates GAPDH (iGAPDH), which triggers its selective association with damaged mitochondria in several cell culture models of HD. Through this mechanism, iGAPDH serves as a signaling molecule to induce direct engulfment of damaged mitochondria into lysosomes (micro-mitophagy). However, abnormal interaction of mitochondrial GAPDH with long polyglutamine tracts stalled GAPDH-mediated mitophagy, leading to accumulation of damaged mitochondria, and increased cell death. We further demonstrated that overexpression of inactive GAPDH rescues this blunted process and enhances mitochondrial function and cell survival, indicating a role for GAPDH-driven mitophagy in the pathology of HD.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
179
|
Brustovetsky N. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling. Mol Neurobiol 2016; 53:2944-2953. [PMID: 25941077 PMCID: PMC4635103 DOI: 10.1007/s12035-015-9188-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/22/2015] [Indexed: 01/13/2023]
Abstract
Elongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.
Collapse
Affiliation(s)
- Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Science Bldg 547, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
180
|
Sorolla MA, Rodríguez-Colman MJ, Vall-Llaura N, Vived C, Fernández-Nogales M, Lucas JJ, Ferrer I, Cabiscol E. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice. Metab Brain Dis 2016; 31:579-86. [PMID: 26666246 DOI: 10.1007/s11011-015-9777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.
Collapse
Affiliation(s)
- M Alba Sorolla
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| | - María José Rodríguez-Colman
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Núria Vall-Llaura
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Celia Vived
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Marta Fernández-Nogales
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| |
Collapse
|
181
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
182
|
Demers-Lamarche J, Guillebaud G, Tlili M, Todkar K, Bélanger N, Grondin M, Nguyen AP, Michel J, Germain M. Loss of Mitochondrial Function Impairs Lysosomes. J Biol Chem 2016; 291:10263-76. [PMID: 26987902 PMCID: PMC4858975 DOI: 10.1074/jbc.m115.695825] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/04/2016] [Indexed: 02/04/2023] Open
Abstract
Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Demers-Lamarche
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Gérald Guillebaud
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Mouna Tlili
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Kiran Todkar
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| | - Noémie Bélanger
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Martine Grondin
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Angela P Nguyen
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Jennifer Michel
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and
| | - Marc Germain
- From the Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale and Centre de recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada and
| |
Collapse
|
183
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease. Hum Mol Genet 2016; 25:2762-2775. [PMID: 27131346 DOI: 10.1093/hmg/ddw133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alterations in oxidative metabolism and defects in mitochondrial Ca2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca2+ Overall, our data argue against respiratory deficiency and impaired Ca2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology .,Stark Neuroscience Research InstituteIndiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
184
|
GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7:e2206. [PMID: 27124580 PMCID: PMC4855649 DOI: 10.1038/cddis.2016.104] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.
Collapse
|
185
|
Zhang G, Frederick DT, Wu L, Wei Z, Krepler C, Srinivasan S, Chae YC, Xu X, Choi H, Dimwamwa E, Ope O, Shannan B, Basu D, Zhang D, Guha M, Xiao M, Randell S, Sproesser K, Xu W, Liu J, Karakousis GC, Schuchter LM, Gangadhar TC, Amaravadi RK, Gu M, Xu C, Ghosh A, Xu W, Tian T, Zhang J, Zha S, Liu Q, Brafford P, Weeraratna A, Davies MA, Wargo JA, Avadhani NG, Lu Y, Mills GB, Altieri DC, Flaherty KT, Herlyn M. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 2016; 126:1834-56. [PMID: 27043285 DOI: 10.1172/jci82661] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/18/2016] [Indexed: 12/22/2022] Open
Abstract
Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi.
Collapse
|
186
|
Chandra A, Sharma A, Calingasan NY, White JM, Shurubor Y, Yang XW, Beal MF, Johri A. Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington's disease. Hum Mol Genet 2016; 25:2269-2282. [PMID: 27008868 DOI: 10.1093/hmg/ddw095] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a devastating illness and at present there is no disease modifying therapy or cure for it; and management of the disease is limited to a few treatment options for amelioration of symptoms. Recently, we showed that the administration of bezafibrate, a pan-PPAR agonist, increases the expression of PGC-1α and mitochondrial biogenesis, and improves phenotype and survival in R6/2 transgenic mouse model of HD. Since the R6/2 mice represent a 'truncated' huntingtin (Htt) mouse model of HD, we tested the efficacy of bezafibrate in a 'full-length' Htt mouse model, the BACHD mice. Bezafibrate treatment restored the impaired PPARγ, PPARδ, PGC-1α signaling pathway, enhanced mitochondrial biogenesis and improved antioxidant defense in the striatum of BACHD mice. Untreated BACHD mice show robust and progressive motor deficits, as well as late-onset and selective neuropathology in the striatum, which was markedly ameliorated in the BACHD mice treated with bezafibrate. Our data demonstrate the efficacy of bezafibrate in ameliorating both neuropathological features and disease phenotype in BACHD mice, and taken together with our previous studies with the R6/2 mice, highlight the strong therapeutic potential of bezafibrate for treatment of HD.
Collapse
Affiliation(s)
- Abhishek Chandra
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Abhijeet Sharma
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noel Y Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joshua M White
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yevgeniya Shurubor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior; Department of Psychiatry and Biobehavioral Sciences; and Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Flint Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ashu Johri
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
187
|
Wallace M, Downing N, Lourens S, Mills J, Kim JI, Long J, Paulsen J. Is There an Association of Physical Activity with Brain Volume, Behavior, and Day-to-day Functioning? A Cross Sectional Design in Prodromal and Early Huntington Disease. PLOS CURRENTS 2016; 8. [PMID: 27818843 PMCID: PMC4866530 DOI: 10.1371/currents.hd.cba6ea74972cf8412a73ce52eb018c1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Huntington disease (HD) is a genetic neurodegenerative disease leading to progressive motor, cognitive, and behavioral decline. Subtle changes in these domains are detectable up to 15 years before a definitive motor diagnosis is made. This period, called prodromal HD, provides an opportunity to examine lifestyle behaviors that may impact disease progression. THEORETICAL FRAMEWORK Physical activity relates to decreased rates of brain atrophy and improved cognitive and day-to-day functioning in Alzheimer disease and healthy aging populations. Previous research has yielded mixed results regarding the impact of physical activity on disease progression in HD and paid little attention to the prodromal phase. METHODS We conducted analyses of associations among current physical activity level, current and retrospective rate of change for hippocampus and striatum volume, and cognitive, motor, and day-to-day functioning variables. Participants were 48 gene-expanded cases with prodromal and early-diagnosed HD and 27 nongene-expanded control participants. Participants wore Fitbit Ultra activity monitors for three days and completed the self-reported International Physical Activity Questionnaire (IPAQ). Hippocampal and striatal white matter volumes were measured using magnetic resonance imaging. Cognitive tests included the Stroop Color and Word Test, and the Symbol Digit Modalities Test (SDMT). Motor function was assessed using the Unified Huntington's Disease Rating Scale total motor score (TMS). Day-to-day functioning was measured using the World Health Organization Disability Assessment Schedule (WHODAS) version 2.0. RESULTS Higher Fitbit activity scores were significantly related to better scores on the SDMT and WHODAS in case participants but not in controls. Fitbit activity scores tracked better with TMS scores in the group as a whole, though the association did not reach statistical significance in the case participants. Higher Fitbit activity scores related to less day-to-day functioning decline in retrospective slope analyses. Fitbit activity scores did not differ significantly between cases and controls. CONCLUSIONS This is the first known study examining the associations between activity level and imaging, motor, cognitive, and day-to-day functioning outcomes in prodromal and early HD. Preliminary results suggest physical activity positively correlates with improved cognitive and day-to-day functioning and possibly motor function in individuals in the prodromal and early phase of the condition.
Collapse
Affiliation(s)
- McKenzie Wallace
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Iowa City, Iowa, USA
| | - Nancy Downing
- College of Nursing, The University of Iowa, Iowa City, Iowa, USA
| | - Spencer Lourens
- School of Medicine, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - James Mills
- Department on Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Ji-In Kim
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jeffrey Long
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jane Paulsen
- Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
188
|
Filosto M, Lanzi G, Nesti C, Vielmi V, Marchina E, Galvagni A, Giliani S, Santorelli FM, Padovani A. A novel mitochondrial tRNA(Ala) gene variant causes chronic progressive external ophthalmoplegia in a patient with Huntington disease. Mol Genet Metab Rep 2016; 6:70-3. [PMID: 27014581 PMCID: PMC4789388 DOI: 10.1016/j.ymgmr.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic progressive external ophthalmoplegia is a mitochondrial disorder usually caused by single or multiple mitochondrial DNA (mtDNA) deletions and, more rarely, by maternally inherited mtDNA point mutations, most frequently in tRNA genes (MTT). We report on a patient presenting with a progressive eyelid ptosis with bilateral ophthalmoparesis, dysphagia, dysphonia and mild proximal limb weakness associate with a mild movement disorder characterized by abnormal involuntary movements involving head and limbs, imbalance and gait instability. Muscle biopsy demonstrated the presence of ragged red fibers and several cytochrome-C-oxidase negative fibers. Molecular analysis showed the novel m.5613T > C heteroplasmic mutation in the mitochondrial tRNA(Ala) gene (MTTA) which disrupts a conserved site and fulfills the accepted criteria of pathogenicity. Moreover, a 38 CAG trinucleotide repeat expansion was found on the huntingtin gene, thus configuring a singular CPEO/"reduced penetrance" Huntington disease "double trouble". With this novel MTTA point mutation, we extend the spectrum of provisional pathogenic changes in this gene, which is a very rare site of pathogenic mutation, and confirm that clinical expression of these mutations is hardly ever heterogeneous, including myopathy and CPEO. Mitochondrial involvement is an emerging key determinant in the pathogenesis of Huntington disease and it is well known that mutant huntingtin influences the mitochondrial respiratory complexes II and III. A synergist effect of the HTT and MTTA mutations on respiratory chain function may be hypothesized in our patient and should be regarded as a spur for further studies on the mtDNA/HTT reciprocal interactions.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital “Spedali Civili”, Brescia, Italy
| | - Gaetana Lanzi
- Institute of Molecular Medicine “A. Nocivelli”, University Hospital “Spedali Civili”, Brescia, Italy
| | - Claudia Nesti
- Unit of Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | - Valentina Vielmi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital “Spedali Civili”, Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, University of Brescia, Italy
| | - Anna Galvagni
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital “Spedali Civili”, Brescia, Italy
| | - Silvia Giliani
- Institute of Molecular Medicine “A. Nocivelli”, University Hospital “Spedali Civili”, Brescia, Italy
| | | | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital “Spedali Civili”, Brescia, Italy
| |
Collapse
|
189
|
Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum Mol Genet 2016; 25:1739-53. [PMID: 26908605 DOI: 10.1093/hmg/ddw045] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.
Collapse
Affiliation(s)
| | | | - P Hemachandra Reddy
- Garrison Institute on Aging, Cell Biology and Biochemistry, Neuroscience & Pharmacology, Neurology and Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| |
Collapse
|
190
|
Pont L, Benavente F, Jaumot J, Tauler R, Alberch J, Ginés S, Barbosa J, Sanz-Nebot V. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools. Electrophoresis 2016; 37:795-808. [DOI: 10.1002/elps.201500378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Laura Pont
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Fernando Benavente
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Romà Tauler
- Department of Environmental Chemistry; IDAEA-CSIC; Barcelona Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina; Universitat de Barcelona; Barcelona Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - José Barbosa
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Departament de Química Analítica, Facultat de Química; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
191
|
Abstract
Mitochondria are an essential component of multicellular life - from primitive organisms, to highly complex entities like mammals. The importance of mitochondria is underlined by their plethora of well-characterized essential functions such as energy production through oxidative phosphorylation (OX-PHOS), calcium and reactive oxygen species (ROS) signaling, and regulation of apoptosis. In addition, novel roles and attributes of mitochondria are coming into focus through the recent years of mitochondrial research. In particular, over the past decade the study of mitochondrial shape and dynamics has achieved special significance, as they are found to impact mitochondrial function. Recent advances indicate that mitochondrial function and dynamics are inter-connected, and maintain the balance between health and disease at a cellular and an organismal level. For example, excessive mitochondrial division (fission) is associated with functional defects, and is implicated in multiple human diseases from neurodegenerative diseases to cancer. In this chapter we examine the recent literature on the mitochondrial dynamics-function relationship, and explore how it impacts on the development and progression of human diseases. We will also highlight the implications of therapeutic manipulation of mitochondrial dynamics in treating various human pathologies.
Collapse
|
192
|
Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders. Rejuvenation Res 2015; 19:21-40. [PMID: 26087000 DOI: 10.1089/rej.2015.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Tanveer Ali Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Aashiq Hussain Bhat
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Khalid B Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Suhail Anees
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | | | - Akbar Masood
- 2 Department of Biochemistry, University of Kashmir Srinagar , India
| |
Collapse
|
193
|
Fayaz SM, Rajanikant GK. Modelling the molecular mechanism of protein-protein interactions and their inhibition: CypD-p53 case study. Mol Divers 2015; 19:931-43. [PMID: 26170095 DOI: 10.1007/s11030-015-9612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Cyclophilin D (CypD) is an important regulatory protein involved in mitochondrial membrane permeability transition and cell death. Further, the mitochondrial CypD-p53 axis is an important contributor to necroptosis, a form of programmed necrosis, involved in various cardiovascular and neurological disorders. The CypD ligand, Cyclosporin A (CsA), was identified as an inhibitor of this interaction. In this study, using computational methods, we have attempted to model the CypD-p53 interaction in order to delineate their mode of binding and also to disclose the molecular mechanism, by means of which CsA interferes with this interaction. It was observed that p53 binds at the CsA-binding site of CypD. The knowledge obtained from this modelling was employed to identify novel CypD inhibitors through structure-based methods. Further, the identified compounds were tested by a similar strategy, adopted during the modelling process. This strategy could be applied to study the mechanism of protein-protein interaction (PPI) inhibition and to identify novel PPI inhibitors.
Collapse
Affiliation(s)
- S M Fayaz
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India
| | - G K Rajanikant
- School of Biotechnology, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
194
|
Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1423-31. [PMID: 26518267 PMCID: PMC4655839 DOI: 10.1016/j.bbagrm.2015.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/04/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3′UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1. hnRNP A1 increases Drp1 expression through the interaction with 3′UTR of Drp1 mRNA. Down-regulation of hnRNP A1 increases mitochondrial elongation by reducing drp1 expression. Down-regulation of hnRNPA1 inhibits 3-NP-mediated mitochondrial dysfunction. Over-expression of hnRNP A1 potentiates 3-NP-mediated mitochondrial dysfunction and cell death. Treatment of 3-NP promotes translocation of hnRNP A1 to the cytoplasm and enhances Drp1 expression.
Collapse
|
195
|
Manczak M, Reddy PH. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease. Hum Mol Genet 2015; 24:7308-25. [PMID: 26464486 DOI: 10.1093/hmg/ddv429] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondrial division inhibitor 1 (Mdivi1) in striatal neurons that stably express mutant Htt (STHDhQ111/Q111) and wild-type (WT) Htt (STHDhQ7/Q7). Using gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods, we studied (i) mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, (ii) mitochondrial function and (iii) ultra-structural changes in mutant Htt neurons relative to WT Htt neurons. We also studied these parameters in Mdivil-treated and untreated WT and mutant Htt neurons. Increased expressions of mitochondrial fission genes, decreased expression of fusion genes and synaptic genes were found in the mutant Htt neurons relative to the WT Htt neurons. Electron microscopy of the mutant Htt neurons revealed a significantly increased number of mitochondria, indicating that mutant Htt fragments mitochondria. Biochemical analysis revealed defective mitochondrial functioning. In the Mdivil-treated mutant Htt neurons, fission genes were down-regulated, and fusion genes were up-regulated, suggesting that Mdivil decreases fission activity. Synaptic genes were up-regulated, and mitochondrial function was normal in the Mdivi1-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with mRNA findings. The TEM studies revealed that increased numbers of structurally intact mitochondria were present in Mdivi1-treated mutant Htt neurons. Increased synaptic and mitochondrial fusion genes and decreased fission genes were found in the Mdivi1-treated WT Htt neurons, indicating that Mdivi1 beneficially affects healthy neurons. Taken together, these findings suggest that Mdivi1 is protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons and that Mdivi1 may be a promising molecule for the treatment of HD patients.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Garrison Institute on Aging and Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
196
|
Smalley JL, Breda C, Mason RP, Kooner G, Luthi-Carter R, Gant TW, Giorgini F. Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington's disease models. J Mol Med (Berl) 2015; 94:235-45. [PMID: 26428929 PMCID: PMC4762922 DOI: 10.1007/s00109-015-1344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Huntington's disease (HD) is a genetic disease caused by a CAG trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin (HTT) protein, ultimately leading to neuronal loss and consequent cognitive decline and death. As no treatments for HD currently exist, several chemical screens have been performed using cell-based models of mutant HTT toxicity. These screens measured single disease-related endpoints, such as cell death, but had low 'hit rates' and limited dimensionality for therapeutic detection. Here, we have employed gene expression microarray analysis of HD samples--a snapshot of the expression of 25,000 genes--to define a gene expression signature for HD from publically available data. We used this information to mine a database for chemicals positively and negatively correlated to the HD gene expression signature using the Connectivity Map, a tool for comparing large sets of gene expression patterns. Chemicals with negatively correlated expression profiles were highly enriched for protective characteristics against mutant HTT fragment toxicity in in vitro and in vivo models. This study demonstrates the potential of using gene expression to mine chemical activity, guide chemical screening, and detect potential novel therapeutic compounds. KEY MESSAGES Single-endpoint chemical screens have low therapeutic discovery hit-rates. In the context of HD, we guided a chemical screen using gene expression data. The resulting chemicals were highly enriched for suppressors of mutant HTT fragment toxicity. This study provides a proof of concept for wider usage in all chemical screening.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.,MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Gurdeep Kooner
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ruth Luthi-Carter
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Timothy W Gant
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK.,Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Oxfordshire, OX11 0RQ, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
197
|
Bucha S, Mukhopadhyay D, Bhattacharyya NP. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2. Biochem Biophys Res Commun 2015; 465:797-802. [DOI: 10.1016/j.bbrc.2015.08.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/20/2015] [Indexed: 11/15/2022]
|
198
|
Richter V, Singh AP, Kvansakul M, Ryan MT, Osellame LD. Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission. Cell Mol Life Sci 2015; 72:3695-707. [PMID: 26059473 PMCID: PMC11113115 DOI: 10.1007/s00018-015-1950-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023]
Abstract
Mitochondria are dynamic organelles whose shape is regulated by the opposing processes of fission and fusion, operating in conjunction with organelle distribution along the cytoskeleton. The importance of fission and fusion homeostasis has been highlighted by a number of disease states linked to mutations in proteins involved in regulating mitochondrial morphology, in addition to changes in mitochondrial dynamics in Alzheimer's, Huntington's and Parkinson's diseases. While a number of mitochondrial morphology proteins have been identified, how they co-ordinate to assemble the fission apparatus is not clear. In addition, while the master mediator of mitochondrial fission, dynamin-related protein 1, is conserved throughout evolution, the adaptor proteins involved in its mitochondrial recruitment are not. This review focuses on our current understanding of mitochondrial fission and the proteins that regulate this process in cell homeostasis, with a particular focus on the recent mechanistic insights based on protein structures.
Collapse
Affiliation(s)
- Viviane Richter
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, 3086, Australia
| | - Abeer P Singh
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, 3086, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, 3086, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia.
| | - Laura D Osellame
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia.
| |
Collapse
|
199
|
Reddy PH, Blackmon J, Molinar-Lopez V, Ament C, Manczak M, Kandimalla R, Yin X, Pandey A, Kuruva CS, Wang R, Fry D, Osborn C, Stonum K, Quesada K, Gonzales R, Boles A. Garrison Institute on Aging: A New Hope for Elderly Individuals and Patients with Alzheimer's Disease. J Alzheimers Dis 2015; 48:547-55. [PMID: 26402018 DOI: 10.3233/jad-150490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Garrison Institute on Aging (GIA) is an established institute within Texas Tech University Health Sciences Center, whose mission is to promote healthy aging through cutting-edge research on Alzheimer's disease (AD) and other diseases of aging through innovative educational opportunities for students, clinicians, researchers, health care professionals, and the public. The GIA has multiple programs, including both research and education on healthy aging and AD, community outreach, caregiving, the Retired Senior Volunteer Program, Healthy Lubbock, the GIA Brain Bank, healthy aging seminars, research seminars, and collaborations and scholarships. The GIA programs connect basic and clinical researchers and health care professionals, and provide a unique environment to help our growing elderly population and patients with AD and their families.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Joan Blackmon
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Veronica Molinar-Lopez
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Clay Ament
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Xianglin Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Akhilesh Pandey
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Rui Wang
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Carrah Osborn
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kathleen Stonum
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kandi Quesada
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ruben Gonzales
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Annette Boles
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
200
|
Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JMA. Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol Dis 2015; 90:51-7. [PMID: 26388396 DOI: 10.1016/j.nbd.2015.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João de Proença
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|