151
|
Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc Natl Acad Sci U S A 2017; 114:1087-1092. [PMID: 28096395 DOI: 10.1073/pnas.1612561114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the causes of cis-regulatory variation is a long-standing aim in evolutionary biology. Although cis-regulatory variation has long been considered important for adaptation, we still have a limited understanding of the selective importance and genomic determinants of standing cis-regulatory variation. To address these questions, we studied the prevalence, genomic determinants, and selective forces shaping cis-regulatory variation in the outcrossing plant Capsella grandiflora We first identified a set of 1,010 genes with common cis-regulatory variation using analyses of allele-specific expression (ASE). Population genomic analyses of whole-genome sequences from 32 individuals showed that genes with common cis-regulatory variation (i) are under weaker purifying selection and (ii) undergo less frequent positive selection than other genes. We further identified genomic determinants of cis-regulatory variation. Gene body methylation (gbM) was a major factor constraining cis-regulatory variation, whereas presence of nearby transposable elements (TEs) and tissue specificity of expression increased the odds of ASE. Our results suggest that most common cis-regulatory variation in C. grandiflora is under weak purifying selection, and that gene-specific functional constraints are more important for the maintenance of cis-regulatory variation than genome-scale variation in the intensity of selection. Our results agree with previous findings that suggest TE silencing affects nearby gene expression, and provide evidence for a link between gbM and cis-regulatory constraint, possibly reflecting greater dosage sensitivity of body-methylated genes. Given the extensive conservation of gbM in flowering plants, this suggests that gbM could be an important predictor of cis-regulatory variation in a wide range of plant species.
Collapse
|
152
|
Cagan A, Theunert C, Laayouni H, Santpere G, Pybus M, Casals F, Prüfer K, Navarro A, Marques-Bonet T, Bertranpetit J, Andrés AM. Natural Selection in the Great Apes. Mol Biol Evol 2016; 33:3268-3283. [PMID: 27795229 PMCID: PMC5100057 DOI: 10.1093/molbev/msw215] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.
Collapse
Affiliation(s)
- Alexander Cagan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christoph Theunert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | - Hafid Laayouni
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Catalonia, Spain
| | - Gabriel Santpere
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Marc Pybus
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arcadi Navarro
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Tomas Marques-Bonet
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Jaume Bertranpetit
- Departament de Ciencies Experimentals i de la Salut, Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Archaeology and Anthropology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
153
|
Affiliation(s)
- Sonja Grath
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| | - John Parsch
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| |
Collapse
|
154
|
Survey of Global Genetic Diversity Within the Drosophila Immune System. Genetics 2016; 205:353-366. [PMID: 27815361 DOI: 10.1534/genetics.116.195016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Numerous studies across a wide range of taxa have demonstrated that immune genes are routinely among the most rapidly evolving genes in the genome. This observation, however, does not address what proportion of immune genes undergo strong selection during adaptation to novel environments. Here, we determine the extent of very recent divergence in genes with immune function across five populations of Drosophila melanogaster and find that immune genes do not show an overall trend of recent rapid adaptation. Our population-based approach uses a set of carefully matched control genes to account for the effects of demography and local recombination rate, allowing us to identify whether specific immune functions are putative targets of strong selection. We find evidence that viral-defense genes are rapidly evolving in Drosophila at multiple timescales. Local adaptation to bacteria and fungi is less extreme and primarily occurs through changes in recognition and effector genes rather than large-scale changes to the regulation of the immune response. Surprisingly, genes in the Toll pathway, which show a high rate of adaptive substitution between the D. melanogaster and D. simulans lineages, show little population differentiation. Quantifying the flies for resistance to a generalist Gram-positive bacterial pathogen, we found that this genetic pattern of low population differentiation was recapitulated at the phenotypic level. In sum, our results highlight the complexity of immune evolution and suggest that Drosophila immune genes do not follow a uniform trajectory of strong directional selection as flies encounter new environments.
Collapse
|
155
|
Schrider DR, Shanku AG, Kern AD. Effects of Linked Selective Sweeps on Demographic Inference and Model Selection. Genetics 2016; 204:1207-1223. [PMID: 27605051 PMCID: PMC5105852 DOI: 10.1534/genetics.116.190223] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 01/06/2023] Open
Abstract
The availability of large-scale population genomic sequence data has resulted in an explosion in efforts to infer the demographic histories of natural populations across a broad range of organisms. As demographic events alter coalescent genealogies, they leave detectable signatures in patterns of genetic variation within and between populations. Accordingly, a variety of approaches have been designed to leverage population genetic data to uncover the footprints of demographic change in the genome. The vast majority of these methods make the simplifying assumption that the measures of genetic variation used as their input are unaffected by natural selection. However, natural selection can dramatically skew patterns of variation not only at selected sites, but at linked, neutral loci as well. Here we assess the impact of recent positive selection on demographic inference by characterizing the performance of three popular methods through extensive simulation of data sets with varying numbers of linked selective sweeps. In particular, we examined three different demographic models relevant to a number of species, finding that positive selection can bias parameter estimates of each of these models-often severely. We find that selection can lead to incorrect inferences of population size changes when none have occurred. Moreover, we show that linked selection can lead to incorrect demographic model selection, when multiple demographic scenarios are compared. We argue that natural populations may experience the amount of recent positive selection required to skew inferences. These results suggest that demographic studies conducted in many species to date may have exaggerated the extent and frequency of population size changes.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08554
| | - Alexander G Shanku
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08554
| | - Andrew D Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08554
| |
Collapse
|
156
|
Pfeifer SP, Jensen JD. The Impact of Linked Selection in Chimpanzees: A Comparative Study. Genome Biol Evol 2016; 8:3202-3208. [PMID: 27678122 PMCID: PMC5174744 DOI: 10.1093/gbe/evw240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Levels of nucleotide diversity vary greatly across the genomes of most species owing to multiple factors. These include variation in the underlying mutation rates, as well as the effects of both direct and linked selection. Fundamental to interpreting the relative importance of these forces is the common observation of a strong positive correlation between nucleotide diversity and recombination rate. While indeed observed in humans, the interpretation of this pattern has been difficult in the absence of high-quality polymorphism data and recombination maps in closely related species. Here, we characterize genetic features driving nucleotide diversity in Western chimpanzees using a recently generated whole genome polymorphism data set. Our results suggest that recombination rate is the primary predictor of nucleotide variation with a strongly positive correlation. In addition, telomeric distance, regional GC-content, and regional CpG-island content are strongly negatively correlated with variation. These results are compared with humans, with both similarities and differences interpreted in the light of the estimated effective population sizes of the two species as well as their strongly differing recent demographic histories.
Collapse
Affiliation(s)
- Susanne P Pfeifer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,School of Life Sciences, Arizona State University (ASU), Tempe, Arizona
| | - Jeffrey D Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,School of Life Sciences, Arizona State University (ASU), Tempe, Arizona
| |
Collapse
|
157
|
Rousselle M, Faivre N, Ballenghien M, Galtier N, Nabholz B. Hemizygosity Enhances Purifying Selection: Lack of Fast-Z Evolution in Two Satyrine Butterflies. Genome Biol Evol 2016; 8:3108-3119. [PMID: 27590089 PMCID: PMC5174731 DOI: 10.1093/gbe/evw214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fixation probability of a recessive beneficial mutation is increased on the X or Z chromosome, relative to autosomes, because recessive alleles carried by X or Z are exposed to selection in the heterogametic sex. This leads to an increased dN/dS ratio on sex chromosomes relative to autosomes, a pattern called the “fast-X” or “fast-Z” effect. Besides positive selection, the strength of genetic drift and the efficacy of purifying selection, which affect the rate of molecular evolution, might differ between sex chromosomes and autosomes. Disentangling the complex effects of these distinct forces requires the genome-wide analysis of polymorphism, divergence and gene expression data in a variety of taxa. Here we study the influence of hemizygosity of the Z chromosome in Maniola jurtina and Pyronia tithonus, two species of butterflies (Lepidoptera, Nymphalidae, Satyrinae). Using transcriptome data, we compare the strength of positive and negative selection between Z and autosomes accounting for sex-specific gene expression. We show that M. jurtina and P. tithonus do not experience a faster, but rather a slightly slower evolutionary rate on the Z than on autosomes. Our analysis failed to detect a significant difference in adaptive evolutionary rate between Z and autosomes, but comparison of male-biased, unbiased and female-biased Z-linked genes revealed an increased efficacy of purifying selection against recessive deleterious mutations in female-biased Z-linked genes. This probably contributes to the lack of fast-Z evolution of satyrines. We suggest that the effect of hemizygosity on the fate of recessive deleterious mutations should be taken into account when interpreting patterns of molecular evolution in sex chromosomes vs. autosomes.
Collapse
Affiliation(s)
- Marjolaine Rousselle
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, Université de Montpellier, IRD, EPHE, Place E. Bataillon, Montpellier, France
| | - Nicolas Faivre
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, Université de Montpellier, IRD, EPHE, Place E. Bataillon, Montpellier, France
| | - Marion Ballenghien
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, Université de Montpellier, IRD, EPHE, Place E. Bataillon, Montpellier, France
| | - Nicolas Galtier
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, Université de Montpellier, IRD, EPHE, Place E. Bataillon, Montpellier, France
| | - Benoit Nabholz
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, Université de Montpellier, IRD, EPHE, Place E. Bataillon, Montpellier, France
| |
Collapse
|
158
|
Bazykin GA. Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins. Biol Lett 2016; 11:rsbl.2015.0315. [PMID: 26445980 DOI: 10.1098/rsbl.2015.0315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The fitness landscape-the function that relates genotypes to fitness-and its role in directing evolution are a central object of evolutionary biology. However, its huge dimensionality precludes understanding of even the basic aspects of its shape. One way to approach it is to ask a simpler question: what are the properties of a function that assigns fitness to each possible variant at just one particular site-a single position fitness landscape-and how does it change in the course of evolution? Analyses of genomic data from multiple species and multiple individuals within a species have proved beyond reasonable doubt that fitness functions of positions throughout the genome do themselves change with time, thus shaping protein evolution. Here, I will briefly review the literature that addresses these dynamics, focusing on recent genome-scale analyses of fitness functions of amino acid sites, i.e. vectors of fitnesses of 20 individual amino acid variants at a given position of a protein. The set of amino acids that confer high fitness at a particular position changes with time, and the rate of this change is comparable with the rate at which a position evolves, implying that this process plays a major role in evolutionary dynamics. However, the causes of these changes remain largely unclear.
Collapse
Affiliation(s)
- Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow 127051, Russia Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
159
|
Xue C, Raveendran M, Harris RA, Fawcett GL, Liu X, White S, Dahdouli M, Rio Deiros D, Below JE, Salerno W, Cox L, Fan G, Ferguson B, Horvath J, Johnson Z, Kanthaswamy S, Kubisch HM, Liu D, Platt M, Smith DG, Sun B, Vallender EJ, Wang F, Wiseman RW, Chen R, Muzny DM, Gibbs RA, Yu F, Rogers J. The population genomics of rhesus macaques (Macaca mulatta) based on whole-genome sequences. Genome Res 2016; 26:1651-1662. [PMID: 27934697 PMCID: PMC5131817 DOI: 10.1101/gr.204255.116] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022]
Abstract
Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole-genome sequencing analysis of 133 rhesus macaques revealed more than 43.7 million single-nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing, and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and noncoding variation, and its cellular consequences. Despite modestly higher levels of nonsynonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of nonsynonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease.
Collapse
Affiliation(s)
- Cheng Xue
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gloria L Fawcett
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaoming Liu
- University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Simon White
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mahmoud Dahdouli
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David Rio Deiros
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer E Below
- University of Texas Health Science Center, Houston, Texas 77030, USA
| | - William Salerno
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Laura Cox
- Southwest National Primate Research Center, San Antonio, Texas 78227, USA
| | - Guoping Fan
- Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Betsy Ferguson
- Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Julie Horvath
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27601, USA.,Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708, USA
| | - Zach Johnson
- Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Sree Kanthaswamy
- California National Primate Research Center, Davis, California 95616, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85004, USA
| | - H Michael Kubisch
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, Anhui University, Anhui, China 230601
| | - Michael Platt
- Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA.,Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David G Smith
- California National Primate Research Center, Davis, California 95616, USA
| | - Binghua Sun
- Center for Stem Cell and Translational Medicine, Anhui University, Anhui, China 230601
| | - Eric J Vallender
- Tulane National Primate Research Center, Covington, Louisiana 70433, USA.,New England National Primate Research Center, Southborough, Massachusetts 01772, USA
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, Wisconsin 53711, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fuli Yu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
160
|
Rodrigue N, Lartillot N. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model. Mol Biol Evol 2016; 34:204-214. [PMID: 27744408 PMCID: PMC5854120 DOI: 10.1093/molbev/msw220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as the mutation–selection framework, attempts to explicitly account for selective patterns at the amino acid level, with some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids have comparatively low (high) rates. Here, we study the use of such a mutation–selection framework as a null model for the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a mutation–selection modeling framework that includes a Dirichlet process approach to account for across-codon-site variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent mutation–selection models in the detection of adaptation, calling for further model refinements as well as large-scale applications.
Collapse
Affiliation(s)
- Nicolas Rodrigue
- Department of Biology, Institute of Biochemistry, and School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | - Nicolas Lartillot
- Université de Lyon, Laboratoire de Biométrie, Biologie Évolutive, Villeurbanne, France
| |
Collapse
|
161
|
Librado P, Rozas J. Weak Polygenic Selection Drives the Rapid Adaptation of the Chemosensory System: Lessons from the Upstream Regions of the Major Gene Families. Genome Biol Evol 2016; 8:2493-504. [PMID: 27503297 PMCID: PMC5010915 DOI: 10.1093/gbe/evw191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
The animal chemosensory system is involved in essential biological processes, most of them mediated by proteins encoded in multigene families. These multigene families have been fundamental for the adaptation to new environments, significantly contributing to phenotypic variation. This adaptive potential contrasts, however, with the lack of studies at their upstream regions, especially taking into account the evidence linking their transcriptional changes to certain phenotypic effects. Here, we explicitly characterize the contribution of the upstream sequences of the major chemosensory gene families to rapid adaptive processes. For that, we analyze the genome sequences of 158 lines from a population of Drosophila melanogaster that recently colonized North America, and integrate functional and transcriptional data available for this species. We find that both, strong negative and strong positive selection, shape transcriptional evolution at the genome-wide level. The chemosensory upstream regions, however, exhibit a distinctive adaptive landscape, including multiple mutations of small beneficial effect and a reduced number of cis-regulatory elements. Together, our results suggest that the promiscuous and partially redundant transcription and function of the chemosensory genes provide evolutionarily opportunities for rapid adaptive episodes through weak polygenic selection.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
162
|
Charlesworth B, Charlesworth D. Population genetics from 1966 to 2016. Heredity (Edinb) 2016; 118:2-9. [PMID: 27460498 PMCID: PMC5176116 DOI: 10.1038/hdy.2016.55] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022] Open
Abstract
We describe the astonishing changes and progress that have occurred in the field of population genetics over the past 50 years, slightly longer than the time since the first Population Genetics Group (PGG) meeting in January 1968. We review the major questions and controversies that have preoccupied population geneticists during this time (and were often hotly debated at PGG meetings). We show how theoretical and empirical work has combined to generate a highly productive interaction involving successive developments in the ability to characterise variability at the molecular level, to apply mathematical models to the interpretation of the data and to use the results to answer biologically important questions, even in nonmodel organisms. We also describe the changes from a field that was largely dominated by UK and North American biologists to a much more international one (with the PGG meetings having made important contributions to the increased number of population geneticists in several European countries). Although we concentrate on the earlier history of the field, because developments in recent years are more familiar to most contemporary researchers, we end with a brief outline of topics in which new understanding is still actively developing.
Collapse
Affiliation(s)
- B Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
163
|
Messer PW, Ellner SP, Hairston NG. Can Population Genetics Adapt to Rapid Evolution? Trends Genet 2016; 32:408-418. [DOI: 10.1016/j.tig.2016.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
164
|
Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J. Recent demography drives changes in linked selection across the maize genome. NATURE PLANTS 2016; 2:16084. [PMID: 27294617 DOI: 10.1038/nplants.2016.84] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/12/2016] [Indexed: 05/14/2023]
Abstract
Genetic diversity is shaped by the interaction of drift and selection, but the details of this interaction are not well understood. The impact of genetic drift in a population is largely determined by its demographic history, typically summarized by its long-term effective population size (Ne). Rapidly changing population demographics complicate this relationship, however. To better understand how changing demography impacts selection, we used whole-genome sequencing data to investigate patterns of linked selection in domesticated and wild maize (teosinte). We produce the first whole-genome estimate of the demography of maize domestication, showing that maize was reduced to approximately 5% the population size of teosinte before it experienced rapid expansion post-domestication to population sizes much larger than its ancestor. Evaluation of patterns of nucleotide diversity in and near genes shows little evidence of selection on beneficial amino acid substitutions, and that the domestication bottleneck led to a decline in the efficiency of purifying selection in maize. Young alleles, however, show evidence of much stronger purifying selection in maize, reflecting the much larger effective size of present day populations. Our results demonstrate that recent demographic change-a hall-mark of many species including both humans and crops-can have immediate and wide-ranging impacts on diversity that conflict with expectations based on long-term Ne alone.
Collapse
Affiliation(s)
- Timothy M Beissinger
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Li Wang
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Kate Crosby
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Arun Durvasula
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616, USA
- Genome Center and Center for Population Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
165
|
Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. eLife 2016; 5. [PMID: 27187613 PMCID: PMC4869911 DOI: 10.7554/elife.12469] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Viruses interact with hundreds to thousands of proteins in mammals, yet adaptation against viruses has only been studied in a few proteins specialized in antiviral defense. Whether adaptation to viruses typically involves only specialized antiviral proteins or affects a broad array of virus-interacting proteins is unknown. Here, we analyze adaptation in ~1300 virus-interacting proteins manually curated from a set of 9900 proteins conserved in all sequenced mammalian genomes. We show that viruses (i) use the more evolutionarily constrained proteins within the cellular functions they interact with and that (ii) despite this high constraint, virus-interacting proteins account for a high proportion of all protein adaptation in humans and other mammals. Adaptation is elevated in virus-interacting proteins across all functional categories, including both immune and non-immune functions. We conservatively estimate that viruses have driven close to 30% of all adaptive amino acid changes in the part of the human proteome conserved within mammals. Our results suggest that viruses are one of the most dominant drivers of evolutionary change across mammalian and human proteomes.
Collapse
Affiliation(s)
- David Enard
- Department of Biology, Stanford University, Stanford, United States
| | - Le Cai
- Department of Biology, Stanford University, Stanford, United States
| | - Carina Gwennap
- Department of Biology, Stanford University, Stanford, United States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
166
|
Inferring the Frequency Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in Protein-Coding Genes of Drosophila melanogaster. Genetics 2016; 203:975-84. [PMID: 27098912 DOI: 10.1534/genetics.116.188102] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the high-copy-number elements of the SFS is difficult, however, because of misassignment of alleles as derived vs. ancestral. This is a known problem with parsimony using outgroup species. Here we show that the problem is particularly serious if there is variation in the substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS using one or two outgroups that attempts to overcome the problem of misassignment. We show that two outgroups are required for accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for nonsynonymous sites in protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites in a population of Drosophila melanogaster from phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to estimate the frequency and strength of advantageous and deleterious mutations and estimate that ∼50% of amino acid substitutions are positively selected but that <0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12.
Collapse
|
167
|
Elevated Linkage Disequilibrium and Signatures of Soft Sweeps Are Common in Drosophila melanogaster. Genetics 2016; 203:863-80. [PMID: 27098909 DOI: 10.1534/genetics.115.184002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/25/2016] [Indexed: 12/20/2022] Open
Abstract
The extent to which selection and demography impact patterns of genetic diversity in natural populations of Drosophila melanogaster is yet to be fully understood. We previously observed that linkage disequilibrium (LD) at scales of ∼10 kb in the Drosophila Genetic Reference Panel (DGRP), consisting of 145 inbred strains from Raleigh, North Carolina, measured both between pairs of sites and as haplotype homozygosity, is elevated above neutral demographic expectations. We also demonstrated that signatures of strong and recent soft sweeps are abundant. However, the extent to which these patterns are specific to this derived and admixed population is unknown. It is also unclear whether these patterns are a consequence of the extensive inbreeding performed to generate the DGRP data. Here we analyze LD statistics in a sample of >100 fully-sequenced strains from Zambia; an ancestral population to the Raleigh population that has experienced little to no admixture and was generated by sequencing haploid embryos rather than inbred strains. We find an elevation in long-range LD and haplotype homozygosity compared to neutral expectations in the Zambian sample, thus showing the elevation in LD is not specific to the DGRP data set. This elevation in LD and haplotype structure remains even after controlling for possible confounders including genomic inversions, admixture, population substructure, close relatedness of individual strains, and recombination rate variation. Furthermore, signatures of partial soft sweeps similar to those found in the DGRP as well as partial hard sweeps are common in Zambia. These results suggest that while the selective forces and sources of adaptive mutations may differ in Zambia and Raleigh, elevated long-range LD and signatures of soft sweeps are generic in D. melanogaster.
Collapse
|
168
|
Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene. Genetics 2016; 203:525-41. [PMID: 27017626 PMCID: PMC4858797 DOI: 10.1534/genetics.115.183285] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects.
Collapse
|
169
|
A modified Wright-Fisher model that incorporates Ne: A variant of the standard model with increased biological realism and reduced computational complexity. J Theor Biol 2016; 393:218-28. [PMID: 26796316 DOI: 10.1016/j.jtbi.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 11/20/2022]
Abstract
The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have achieved good accuracy in all cases considered. In summary, the present work extends the realism and tractability of an important model of evolutionary biology and population genetics.
Collapse
|
170
|
Hodgins KA, Yeaman S, Nurkowski KA, Rieseberg LH, Aitken SN. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers. Mol Biol Evol 2016; 33:1502-16. [PMID: 26873578 DOI: 10.1093/molbev/msw032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sam Yeaman
- Department of Botany, University of British Columbia, Vancouver, BC, Canada Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
171
|
Matsumoto T, John A, Baeza-Centurion P, Li B, Akashi H. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations. Mol Biol Evol 2016; 33:1580-9. [PMID: 26873577 DOI: 10.1093/molbev/msw027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees.
Collapse
Affiliation(s)
- Tomotaka Matsumoto
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Anoop John
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Pablo Baeza-Centurion
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Boyang Li
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Hiroshi Akashi
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
| |
Collapse
|
172
|
Brandvain Y, Wright SI. The Limits of Natural Selection in a Nonequilibrium World. Trends Genet 2016; 32:201-210. [PMID: 26874998 DOI: 10.1016/j.tig.2016.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance.
Collapse
Affiliation(s)
- Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
173
|
Ávila V, Campos JL, Charlesworth B. The effects of sex-biased gene expression and X-linkage on rates of adaptive protein sequence evolution in Drosophila. Biol Lett 2016; 11:20150117. [PMID: 25926696 PMCID: PMC4424624 DOI: 10.1098/rsbl.2015.0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.
Collapse
Affiliation(s)
- Victoria Ávila
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
174
|
Galtier N. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis. PLoS Genet 2016; 12:e1005774. [PMID: 26752180 PMCID: PMC4709115 DOI: 10.1371/journal.pgen.1005774] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023] Open
Abstract
The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed. The rate at which species adapt to environmental changes is a controversial topic. The theory predicts that adaptation is easier in large than in small populations, and the genomic studies of model organisms have revealed a much higher adaptive rate in large population-sized flies than in small population-sized humans and apes. Here we build and analyse a large data set of protein-coding sequences made of thousands of genes in 44 pairs of species from various groups of animals including insects, molluscs, annelids, echinoderms, reptiles, birds, and mammals. Extending and improving existing data analysis methods, we show that adaptation is a major process in protein evolution across all phyla of animals: the proportion of amino-acid substitutions that occurred adaptively is above 50% in a majority of species, and reaches up to 90%. Our analysis does not confirm that population size, here approached through species genetic diversity and ecological traits, does influence the rate of adaptive molecular evolution, but points to human and apes as a special case, compared to other animals, in terms of adaptive genomic processes.
Collapse
Affiliation(s)
- Nicolas Galtier
- Institut des Sciences de l'Evolution UMR5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
- * E-mail:
| |
Collapse
|
175
|
James JE, Piganeau G, Eyre‐Walker A. The rate of adaptive evolution in animal mitochondria. Mol Ecol 2016; 25:67-78. [PMID: 26578312 PMCID: PMC4737298 DOI: 10.1111/mec.13475] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
Abstract
We have investigated whether there is adaptive evolution in mitochondrial DNA, using an extensive data set containing over 500 animal species from a wide range of taxonomic groups. We apply a variety of McDonald-Kreitman style methods to the data. We find that the evolution of mitochondrial DNA is dominated by slightly deleterious mutations, a finding which is supported by a number of previous studies. However, when we control for the presence of deleterious mutations using a new method, we find that mitochondria undergo a significant amount of adaptive evolution, with an estimated 26% (95% confidence intervals: 5.7-45%) of nonsynonymous substitutions fixed by adaptive evolution. We further find some weak evidence that the rate of adaptive evolution is correlated to synonymous diversity. We interpret this as evidence that at least some adaptive evolution is limited by the supply of mutations.
Collapse
Affiliation(s)
| | - Gwenael Piganeau
- UPMC Univ Paris 06UMR 7232Observatoire OceanologiqueAvenue de FontauléBP 44, 66651 Banyuls‐sur‐MerFrance
- CNRSUMR 7232Observatoire OceanologiqueAvenue de FontauléBP 44, 66651 Banyuls‐sur‐MerFrance
| | | |
Collapse
|
176
|
Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species. Genetics 2015; 202:1185-200. [PMID: 26721855 PMCID: PMC4788117 DOI: 10.1534/genetics.115.183152] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/24/2015] [Indexed: 12/30/2022] Open
Abstract
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.
Collapse
|
177
|
Hartfield M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol 2015; 29:5-22. [DOI: 10.1111/jeb.12770] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023]
Affiliation(s)
- M. Hartfield
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
- Bioinformatics Research Centre; University of Aarhus; Aarhus Denmark
| |
Collapse
|
178
|
Castellano D, Coronado-Zamora M, Campos JL, Barbadilla A, Eyre-Walker A. Adaptive Evolution Is Substantially Impeded by Hill-Robertson Interference in Drosophila. Mol Biol Evol 2015; 33:442-55. [PMID: 26494843 PMCID: PMC4794616 DOI: 10.1093/molbev/msv236] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.
Collapse
Affiliation(s)
- David Castellano
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina (IBB) and Department de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Adam Eyre-Walker
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
179
|
Berg JJ, Coop G. A Coalescent Model for a Sweep of a Unique Standing Variant. Genetics 2015; 201:707-25. [PMID: 26311475 PMCID: PMC4596678 DOI: 10.1534/genetics.115.178962] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has become a major pursuit of modern evolutionary genetics. In addition to the classical "hard sweep" hitchhiking model, recent research has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective sweeps. Samples from multiple populations and/or time points have the potential to ease this difficulty.
Collapse
Affiliation(s)
- Jeremy J Berg
- Graduate Group in Population Biology, University of California, Davis, California 95616 Center for Population Biology, University of California, Davis, California 95616 Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California 95616 Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
180
|
Pophaly SD, Tellier A. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize. Mol Biol Evol 2015; 32:3226-35. [PMID: 26374232 DOI: 10.1093/molbev/msv191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence.
Collapse
Affiliation(s)
- Saurabh D Pophaly
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
181
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
182
|
Koufopanou V, Lomas S, Tsai IJ, Burt A. Estimating the Fitness Effects of New Mutations in the Wild Yeast Saccharomyces paradoxus. Genome Biol Evol 2015; 7:1887-95. [PMID: 26085542 PMCID: PMC4524479 DOI: 10.1093/gbe/evv112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nature of selection acting on a population is in large measure determined by the distribution of fitness effects of new mutations. In this study, we use DNA sequences from four closely related clades of Saccharomyces paradoxus and Saccharomyces cerevisiae to identify and polarize new mutations and estimate their fitness effects. By progressively restricting the analyses to narrower categories of sites, we further seek to characterize sites with predictable mutational effects, that is, unconditionally deleterious, neutral or beneficial. Consistent with previous studies on S. paradoxus, we have failed to find evidence for mutations with beneficial effects, even in regions that were divergent in two outgroup clades, perhaps a consequence of the relatively unchallenged, predominantly asexual and highly inbred lifestyle of this species. On the other hand, there is abundant evidence of deleterious mutations, varying in severity of effect from strongly deleterious to very mild, particularly in regions conserved in the outgroup taxa, indicating a history of persistent purifying selection. Narrowing the analysis down to individual amino acids reduces further the range of effects: for example, mutations changing cysteine are predicted to be nearly always strongly deleterious, whereas those changing arginine, serine, and tyrosine are expected to be nearly neutral. The proportion of mutations with deleterious effects for a particular amino acid is correlated with long-term stasis of that amino acid among highly divergent sequences from a variety of organisms, showing that functionality of sites tends to persist through the diversification of clades and that our findings are also relevant to longer evolutionary times and other taxa.
Collapse
Affiliation(s)
- Vassiliki Koufopanou
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks, United Kingdom
| | - Susan Lomas
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks, United Kingdom
| | - Isheng J Tsai
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks, United Kingdom Present address: Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks, United Kingdom
| |
Collapse
|
183
|
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RFA, Glastad KM, Hunt BG, Goodisman MAD, Hauser F, Grimmelikhuijzen CJP, Pinheiro DG, Nunes FMF, Soares MPM, Tanaka ÉD, Simões ZLP, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science 2015; 348:1139-43. [PMID: 25977371 PMCID: PMC5471836 DOI: 10.1126/science.aaa4788] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Collapse
Affiliation(s)
- Karen M Kapheim
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Hailin Pan
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA. Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tanja Magoc
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hugh M Robertson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew E Hudson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aarti Venkat
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brielle J Fischman
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Ence
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - George D Yocum
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - William P Kemp
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Jordi Bosch
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Eckart Stolle
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Queen Mary University of London, School of Biological and Chemical Sciences Organismal Biology Research Group, London E1 4NS, UK
| | - F Bernhard Kraus
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Department of Laboratory Medicine, University Hospital Halle, Ernst Grube Strasse 40, D-06120 Halle (Saale), Germany
| | - Sophie Helbing
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Robin F A Moritz
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Karl M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | | | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Guariz Pinheiro
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil. Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), 14884-900 Jaboticabal, SP, Brazil
| | - Francis Morais Franco Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Michelle Prioli Miranda Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Érica Donato Tanaka
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD 20705 USA
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Reed M Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA
| | - Jonathan H Massey
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Martin Hasselmann
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Daniel Hamacher
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Matthias Biewer
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Clement F Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada. Janelia Farm Research Campus, Howard Hughes Medical Institue, Ashburn, VA 20147, USA
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Charles Blatti
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Sinha
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shawn J Hanrahan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sarah D Kocher
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jun Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong.
| | - Gene E Robinson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center for Advanced Study Professor in Entomology and Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
184
|
Deinum EE, Halligan DL, Ness RW, Zhang YH, Cong L, Zhang JX, Keightley PD. Recent Evolution in Rattus norvegicus Is Shaped by Declining Effective Population Size. Mol Biol Evol 2015; 32:2547-58. [PMID: 26037536 PMCID: PMC4576703 DOI: 10.1093/molbev/msv126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The brown rat, Rattus norvegicus, is both a notorious pest and a frequently used model in biomedical research. By analyzing genome sequences of 12 wild-caught brown rats from their presumed ancestral range in NE China, along with the sequence of a black rat, Rattus rattus, we investigate the selective and demographic forces shaping variation in the genome. We estimate that the recent effective population size (Ne) of this species = 1.24×105, based on silent site diversity. We compare patterns of diversity in these genomes with patterns in multiple genome sequences of the house mouse (Mus musculus castaneus), which has a much larger Ne. This reveals an important role for variation in the strength of genetic drift in mammalian genome evolution. By a Pairwise Sequentially Markovian Coalescent analysis of demographic history, we infer that there has been a recent population size bottleneck in wild rats, which we date to approximately 20,000 years ago. Consistent with this, wild rat populations have experienced an increased flux of mildly deleterious mutations, which segregate at higher frequencies in protein-coding genes and conserved noncoding elements. This leads to negative estimates of the rate of adaptive evolution (α) in proteins and conserved noncoding elements, a result which we discuss in relation to the strongly positive estimates observed in wild house mice. As a consequence of the population bottleneck, wild rats also show a markedly slower decay of linkage disequilibrium with physical distance than wild house mice.
Collapse
Affiliation(s)
- Eva E Deinum
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel L Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Rob W Ness
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peter D Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
185
|
Santpere G, Carnero-Montoro E, Petit N, Serra F, Hvilsom C, Rambla J, Heredia-Genestar JM, Halligan DL, Dopazo H, Navarro A, Bosch E. Analysis of Five Gene Sets in Chimpanzees Suggests Decoupling between the Action of Selection on Protein-Coding and on Noncoding Elements. Genome Biol Evol 2015; 7:1490-505. [PMID: 25977458 PMCID: PMC4494068 DOI: 10.1093/gbe/evv082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson’s and Alzheimer’s diseases). To that effect, we combine human–chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald–Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled.
Collapse
Affiliation(s)
- Gabriel Santpere
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Elena Carnero-Montoro
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Natalia Petit
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - François Serra
- Structural Genomics Team, Genome Biology Group, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | | | - Jordi Rambla
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Jose Maria Heredia-Genestar
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Daniel L Halligan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hernan Dopazo
- Biomedical Genomics & Evolution Laboratory, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Arcadi Navarro
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain National Institute for Bioinformatics (INB), PRBB, Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Spain Center for Genomic Regulation (CRG), PRBB, Barcelona, Spain
| | - Elena Bosch
- Departament de Ciències Experimentals i la Salut, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
186
|
Burgarella C, Gayral P, Ballenghien M, Bernard A, David P, Jarne P, Correa A, Hurtrez-Boussès S, Escobar J, Galtier N, Glémin S. Molecular Evolution of Freshwater Snails with Contrasting Mating Systems. Mol Biol Evol 2015; 32:2403-16. [PMID: 25980005 DOI: 10.1093/molbev/msv121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because mating systems affect population genetics and ecology, they are expected to impact the molecular evolution of species. Self-fertilizing species experience reduced effective population size, recombination rates, and heterozygosity, which in turn should decrease the efficacy of natural selection, both adaptive and purifying, and the strength of meiotic drive processes such as GC-biased gene conversion. The empirical evidence is only partly congruent with these predictions, depending on the analyzed species, some, but not all, of the expected effects have been observed. One possible reason is that self-fertilization is an evolutionary dead-end, so that most current selfers recently evolved self-fertilization, and their genome has not yet been strongly impacted by selfing. Here, we investigate the molecular evolution of two groups of freshwater snails in which mating systems have likely been stable for several millions of years. Analyzing coding sequence polymorphism, divergence, and expression levels, we report a strongly reduced genetic diversity, decreased efficacy of purifying selection, slower rate of adaptive evolution, and weakened codon usage bias/GC-biased gene conversion in the selfer Galba compared with the outcrosser Physa, in full agreement with theoretical expectations. Our results demonstrate that self-fertilization, when effective in the long run, is a major driver of population genomic and molecular evolutionary processes. Despite the genomic effects of selfing, Galba truncatula seems to escape the demographic consequences of the genetic load. We suggest that the particular ecology of the species may buffer the negative consequences of selfing, shedding new light on the dead-end hypothesis.
Collapse
Affiliation(s)
- Concetta Burgarella
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | - Philippe Gayral
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | - Marion Ballenghien
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | - Aurélien Bernard
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | | | | | - Ana Correa
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle), UMR (UM1-UM2-CNRS 5290-IRD224), IRD, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle), UMR (UM1-UM2-CNRS 5290-IRD224), IRD, Montpellier, France
| | - Juan Escobar
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| | - Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR, CNRS 5554, Université Montpellier II, Montpellier, France
| |
Collapse
|
187
|
Daub JT, Dupanloup I, Robinson-Rechavi M, Excoffier L. Inference of Evolutionary Forces Acting on Human Biological Pathways. Genome Biol Evol 2015; 7:1546-58. [PMID: 25971280 PMCID: PMC4494071 DOI: 10.1093/gbe/evv083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures.
Collapse
Affiliation(s)
- Josephine T Daub
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland Present address: Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain
| | - Isabelle Dupanloup
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, University of Berne, Switzerland Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| |
Collapse
|
188
|
Bataillon T, Duan J, Hvilsom C, Jin X, Li Y, Skov L, Glemin S, Munch K, Jiang T, Qian Y, Hobolth A, Wang J, Mailund T, Siegismund HR, Schierup MH. Inference of purifying and positive selection in three subspecies of chimpanzees (Pan troglodytes) from exome sequencing. Genome Biol Evol 2015; 7:1122-32. [PMID: 25829516 PMCID: PMC4419804 DOI: 10.1093/gbe/evv058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We study genome-wide nucleotide diversity in three subspecies of extant chimpanzees using exome capture. After strict filtering, Single Nucleotide Polymorphisms and indels were called and genotyped for greater than 50% of exons at a mean coverage of 35× per individual. Central chimpanzees (Pan troglodytes troglodytes) are the most polymorphic (nucleotide diversity, θw = 0.0023 per site) followed by Eastern (P. t. schweinfurthii) chimpanzees (θw = 0.0016) and Western (P. t. verus) chimpanzees (θw = 0.0008). A demographic scenario of divergence without gene flow fits the patterns of autosomal synonymous nucleotide diversity well except for a signal of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked versus autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection statistic exhibits a strong nonmonotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous versus nonsynonymous frequency classes to infer the distribution of S coefficients acting on nonsynonymous mutations in each subspecies. The strength of purifying selection we infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human populations.
Collapse
Affiliation(s)
| | - Jinjie Duan
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Christina Hvilsom
- Science and Conservation, Copenhagen Zoo, Denmark Bioinformatics, University of Copenhagen, Denmark
| | | | | | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Sylvain Glemin
- Institut des Sciences de l'Evolution, Universite Montpellier 2, France
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Denmark
| | | | - Yu Qian
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Asger Hobolth
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Jun Wang
- BGI Shenzhen, China Section of Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark The Department of Genetic Medicine, Faculty of Medicine and Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia Department of Biology, University of Copenhagen, Denmark Macau University of Science and Technology, China
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Denmark
| | | | | |
Collapse
|
189
|
Abstract
Longevity as a complex life-history trait shares an ontogenetic relationship with other quantitative traits and varies among individuals, families and populations. Heritability estimates of longevity suggest that about a third of the phenotypic variation associated with the trait is attributable to genetic factors, and the rest is influenced by epigenetic and environmental factors. Individuals react differently to the environments that they are a part of, as well as to the environments they construct for their survival and reproduction; the latter phenomenon is known as niche construction. Lifestyle influences longevity at all the stages of development and levels of human diversity. Hence, lifestyle may be viewed as a component of niche construction. Here, we: a) interpret longevity using a combination of genotype-epigenetic-phenotype (GEP) map approach and niche-construction theory, and b) discuss the plausible influence of genetic and epigenetic factors in the distribution and maintenance of longevity among individuals with normal life span on the one hand, and centenarians on the other. Although similar genetic and environmental factors appear to be common to both of these groups, exceptional longevity may be influenced by polymorphisms in specific genes, coupled with superior genomic stability and homeostatic mechanisms, maintained by negative frequency-dependent selection. We suggest that a comparative analysis of longevity between individuals with normal life span and centenarians, along with insights from population ecology and evolutionary biology, would not only advance our knowledge of biological mechanisms underlying human longevity, but also provide deeper insights into extending healthy life span.
Collapse
Affiliation(s)
- Diddahally Govindaraju
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| | - Gil Atzmon
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, United States
| |
Collapse
|
190
|
Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet 2015; 11:e1005004. [PMID: 25706129 PMCID: PMC4338236 DOI: 10.1371/journal.pgen.1005004] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes. Evolutionary adaptation is a process in which beneficial mutations increase in frequency in response to selective pressures. If these mutations were previously rare or absent from the population, adaptation should generate a characteristic signature in the genetic diversity around the adaptive locus, known as a selective sweep. Such selective sweeps can be distinguished into hard selective sweeps, where only a single adaptive mutation rises in frequency, or soft selective sweeps, where multiple adaptive mutations at the same locus sweep through the population simultaneously. Here we design a new statistical method that can identify both hard and soft sweeps in population genomic data and apply this method to a Drosophila melanogaster population genomic dataset consisting of 145 sequenced strains collected in North Carolina. We find that selective sweeps were abundant in the recent history of this population. Interestingly, we also find that practically all of the strongest and most recent sweeps show patterns that are more consistent with soft rather than hard sweeps. We discuss the implications of these findings for the discovery and quantification of adaptation from population genomic data in Drosophila and other species with large population sizes.
Collapse
Affiliation(s)
- Nandita R. Garud
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (NRG); (DAP)
| | - Philipp W. Messer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Erkan O. Buzbas
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Statistical Science, University of Idaho, Moscow, Idaho, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (NRG); (DAP)
| |
Collapse
|
191
|
Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans. G3-GENES GENOMES GENETICS 2015; 5:583-92. [PMID: 25670770 PMCID: PMC4390574 DOI: 10.1534/g3.114.015875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.
Collapse
|
192
|
|
193
|
Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc Natl Acad Sci U S A 2015; 112:1662-9. [PMID: 25572964 DOI: 10.1073/pnas.1423275112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing has revealed high levels of variability within most species. Statistical methods based on population genetics theory have been applied to the resulting data and suggest that most mutations affecting functionally important sequences are deleterious but subject to very weak selection. Quantitative genetic studies have provided information on the extent of genetic variation within populations in traits related to fitness and the rate at which variability in these traits arises by mutation. This paper attempts to combine the available information from applications of the two approaches to populations of the fruitfly Drosophila in order to estimate some important parameters of genetic variation, using a simple population genetics model of mutational effects on fitness components. Analyses based on this model suggest the existence of a class of mutations with much larger fitness effects than those inferred from sequence variability and that contribute most of the standing variation in fitness within a population caused by the input of mildly deleterious mutations. However, deleterious mutations explain only part of this standing variation, and other processes such as balancing selection appear to make a large contribution to genetic variation in fitness components in Drosophila.
Collapse
|
194
|
Hollister JD, Greiner S, Wang W, Wang J, Zhang Y, Wong GKS, Wright SI, Johnson MT. Recurrent Loss of Sex Is Associated with Accumulation of Deleterious Mutations in Oenothera. Mol Biol Evol 2014; 32:896-905. [DOI: 10.1093/molbev/msu345] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
195
|
Bank C, Ewing GB, Ferrer-Admettla A, Foll M, Jensen JD. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet 2014; 30:540-6. [PMID: 25438719 DOI: 10.1016/j.tig.2014.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 02/03/2023]
Abstract
In the age of next-generation sequencing, the availability of increasing amounts and improved quality of data at decreasing cost ought to allow for a better understanding of how natural selection is shaping the genome than ever before. However, alternative forces, such as demography and background selection (BGS), obscure the footprints of positive selection that we would like to identify. In this review, we illustrate recent developments in this area, and outline a roadmap for improved selection inference. We argue (i) that the development and obligatory use of advanced simulation tools is necessary for improved identification of selected loci, (ii) that genomic information from multiple time points will enhance the power of inference, and (iii) that results from experimental evolution should be utilized to better inform population genomic studies.
Collapse
Affiliation(s)
- Claudia Bank
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.
| | - Gregory B Ewing
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Anna Ferrer-Admettla
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland; Department of Biology and Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matthieu Foll
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Jeffrey D Jensen
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| |
Collapse
|
196
|
Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet 2014; 10:e1004745. [PMID: 25375861 PMCID: PMC4222645 DOI: 10.1371/journal.pgen.1004745] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues.
Collapse
Affiliation(s)
- Zachary H. Lemmon
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Robert Bukowski
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - John F. Doebley
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
197
|
Avila V, Marion de Procé S, Campos JL, Borthwick H, Charlesworth B, Betancourt AJ. Faster-X effects in two Drosophila lineages. Genome Biol Evol 2014; 6:2968-82. [PMID: 25323954 PMCID: PMC4224355 DOI: 10.1093/gbe/evu229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Under certain circumstances, X-linked loci are expected to experience more adaptive substitutions than similar autosomal loci. To look for evidence of faster-X evolution, we analyzed the evolutionary rates of coding sequences in two sets of Drosophila species, the melanogaster and pseudoobscura clades, using whole-genome sequences. One of these, the pseudoobscura clade, contains a centric fusion between the ancestral X chromosome and the autosomal arm homologous to 3L in D. melanogaster. This offers an opportunity to study the same loci in both an X-linked and an autosomal context, and to compare these loci with those that are only X-linked or only autosomal. We therefore investigated these clades for evidence of faster-X evolution with respect to nonsynonymous substitutions, finding mixed results. Overall, there was consistent evidence for a faster-X effect in the melanogaster clade, but not in the pseudoobscura clade, except for the comparison between D. pseudoobscura and its close relative, Drosophila persimilis. An analysis of polymorphism data on a set of genes from D. pseudoobscura that evolve rapidly with respect to their protein sequences revealed no evidence for a faster-X effect with respect to adaptive protein sequence evolution; their rapid evolution is instead largely attributable to lower selective constraints. Faster-X evolution in the melanogaster clade was not related to male-biased gene expression; surprisingly, however, female-biased genes showed evidence for faster-X effects, perhaps due to their sexually antagonistic effects in males.
Collapse
Affiliation(s)
- Victoria Avila
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institute of Biological, Environmental and Rural Sciences, Abertystwyth University, Aberystwyth, United Kingdom
| | - Sophie Marion de Procé
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - José L Campos
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Helen Borthwick
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Brian Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Andrea J Betancourt
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present address: Institut for Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
198
|
Williamson RJ, Josephs EB, Platts AE, Hazzouri KM, Haudry A, Blanchette M, Wright SI. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLoS Genet 2014; 10:e1004622. [PMID: 25255320 PMCID: PMC4178662 DOI: 10.1371/journal.pgen.1004622] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5' and 3' untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.
Collapse
Affiliation(s)
- Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emily B. Josephs
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Adrian E. Platts
- Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- School for Computer Science, McGill University, Montreal, Quebec, Canada
| | - Khaled M. Hazzouri
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Annabelle Haudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Mathieu Blanchette
- Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- School for Computer Science, McGill University, Montreal, Quebec, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
199
|
Jackson BC, Campos JL, Zeng K. The effects of purifying selection on patterns of genetic differentiation between Drosophila melanogaster populations. Heredity (Edinb) 2014; 114:163-74. [PMID: 25227256 PMCID: PMC4270736 DOI: 10.1038/hdy.2014.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023] Open
Abstract
Using the data provided by the Drosophila Population Genomics Project, we investigate factors that affect the genetic differentiation between Rwandan and French populations of D. melanogaster. By examining within-population polymorphisms, we show that sites in long introns (especially those >2000 bp) have significantly lower π (nucleotide diversity) and more low-frequency variants (as measured by Tajima's D, minor allele frequencies, and prevalence of variants that are private to one of the two populations) than short introns, suggesting a positive relationship between intron length and selective constraint. A similar analysis of protein-coding polymorphisms shows that 0-fold (degenerate) sites in more conserved genes are under stronger purifying selection than those in less conserved genes. There is limited evidence that selection on codon bias has an effect on differentiation (as measured by FST) at 4-fold (degenerate) sites, and 4-fold sites and sites in 8–30 bp of short introns ⩽65 bp have comparable FST values. Consistent with the expected effect of purifying selection, sites in long introns and 0-fold sites in conserved genes are less differentiated than those in short introns and less conserved genes, respectively. Genes in non-crossover regions (for example, the fourth chromosome) have very high FST values at both 0-fold and 4-fold degenerate sites, which is probably because of the large reduction in within-population diversity caused by tight linkage between many selected sites. Our analyses also reveal subtle statistical properties of FST, which arise when information from multiple single nucleotide polymorphisms is combined and can lead to the masking of important signals of selection.
Collapse
Affiliation(s)
- B C Jackson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - K Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
200
|
Charlesworth B, Campos JL. The relations between recombination rate and patterns of molecular variation and evolution in Drosophila. Annu Rev Genet 2014; 48:383-403. [PMID: 25251853 DOI: 10.1146/annurev-genet-120213-092525] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the Drosophila genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of Drosophila genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; , ,
| | | |
Collapse
|