151
|
Pravastatin attenuates left ventricular remodeling and diastolic dysfunction in angiotensin II-induced hypertensive mice. J Cardiovasc Pharmacol 2008; 51:62-70. [PMID: 18209570 DOI: 10.1097/fjc.0b013e31815bb629] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND A substantial proportion of patients with heart failure have a normal ejection fraction and diastolic dysfunction. However, there are few data available to guide the therapy of these patients. The effects of statins on cardiac remodeling are well documented in animal models and it is reported that statin therapy revealed a survival benefit in patients with diastolic heart failure (DHF). However, the exact mechanisms of statins possibly explaining the decreased cardiovascular morbidity and mortality in patients with DHF have not been elucidated. METHODS We used 8-week-old male C57BL/6J mice, in which angiotensin II was subcutaneously infused for 4 weeks to mimic cardiac remodeling and fibrosis. They were treated with either normal saline or pravastatin in daily doses, which did not lower the serum cholesterol levels and blood pressure. RESULTS Pravastatin improved diastolic dysfunction in angiotensin II-induced hypertensive mice, which was associated with the amelioration of left ventricular hypertrophy and remodeling. However, statin treatment showed no effect on the increased systolic blood pressure or cholesterol levels by angiotensin II infusion. The cardioprotective effects of pravastatin were closely associated with the downregulation of collagen I, transforming growth factor-beta, matrix metalloproteinases-2 and -3, atrial natriuretic factor, interleukin-6, tumor necrosis factor-alpha, ROCK1 gene expression, and the upregulation of endothelial nitric oxide synthase gene expression. CONCLUSIONS The beneficial effects of pravastatin on DHF and structural remodeling are through cholesterol- independent mechanism of statins or "pleiotropic" effects of statins involving improving or restoring endothelial function and decreasing vascular inflammation. These findings suggest the potential involvement of ROCK1. Thus, treatment with pravastatin might be beneficial in patients with DHF.
Collapse
|
152
|
Abstract
ROCK kinases, which play central roles in the organization of the actin cytoskeleton, are tantalizing targets for the treatment of human diseases. Deletion of ROCK I in mice revealed a role in the pathophysiological responses to high blood pressure, and validated ROCK inhibition for the treatment of specific types of cardiovascular disease. To date, the only ROCK inhibitor employed clinically in humans is fasudil, which has been used safely in Japan since 1995 for the treatment of cerebral vasospasm. Clinical trials, mostly focusing on the cardiovascular system, have uncovered beneficial effects of fasudil for additional indications. Intriguing recent findings also suggest significant potential for ROCK inhibitors in the production and implantation of stem cells for disease therapies.
Collapse
Affiliation(s)
- Michael F Olson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
153
|
Shi J, Zhang YW, Summers LJ, Dorn GW, Wei L. Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. J Mol Cell Cardiol 2008; 44:551-60. [PMID: 18178218 PMCID: PMC2728597 DOI: 10.1016/j.yjmcc.2007.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/19/2007] [Accepted: 11/29/2007] [Indexed: 12/30/2022]
Abstract
The development of left ventricular cardiomyocyte hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response. However, persistent stress eventually leads to dilated heart failure, which is a common cause of heart failure in human hypertensive and valvular heart disease. We have recently reported that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) homozygous knockout mice exhibited reduced cardiac fibrosis and cardiomyocyte apoptosis, while displaying a preserved compensatory hypertrophic response to pressure overload. In this study, we have tested the effects of ROCK1 deficiency on cardiac hypertrophy, dilation, and dysfunction. We have shown that ROCK1 deletion attenuated left ventricular dilation and contractile dysfunction, but not hypertrophy, in a transgenic model of Galphaq overexpression-induced hypertrophy which represents a well-characterized and highly relevant genetic mouse model of pathological hypertrophy. Although the development of cardiomyocyte hypertrophy was not affected, ROCK1 deletion in Galphaq mice resulted in a concentric hypertrophic phenotype associated with reduced induction of hypertrophic markers indicating that ROCK1 deletion could favorably modify hypertrophy without inhibiting it. Furthermore, ROCK1 deletion also improved contractile response to beta-adrenergic stimulation in Galphaq transgenic mice. Consistent with this observation, ROCK1 deletion prevented down-regulation of type V/VI adenylyl cyclase expression, which is associated with the impaired beta-adrenergic signaling in Galphaq mice. The present study establishes for the first time a role for ROCK1 in cardiac dilation and contractile dysfunction.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Dilatation, Pathologic
- Echocardiography
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isoenzymes/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- rho-Associated Kinases/genetics
- rho-Associated Kinases/physiology
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Yi-Wei Zhang
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Lelia J. Summers
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Gerald W. Dorn
- Center for Molecular Cardiovascular Research, University of Cincinnati, Cincinnati, Ohio
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
- Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
154
|
Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D, Kelly DJ, Krum H. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 2008; 294:H1804-14. [PMID: 18245565 DOI: 10.1152/ajpheart.01078.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The RhoA-Rho kinase (ROCK) signaling pathway has an important role in cardiovascular diseases. However, the effect of Rho kinase inhibition on pressure overload-induced cardiac hypertrophy (POH) and associated diastolic dysfunction has not been evaluated. This study examined the effect of a selective ROCK inhibitor (GSK-576371) in a POH model, induced by suprarenal abdominal aortic constriction. POH rats were divided into the following four groups: 1 (GSK 1, n = 9) or 3 (GSK 3, n = 10) mg/kg bid GSK-576371, 1 mg.kg(-1).day(-1) ramipril (n = 10) or vehicle (n = 11) treatment for 4 wk. Sham animals (n = 11) underwent surgery without banding. Echocardiograms were performed before surgery and posttreatment, and hemodynamic data were obtained at completion of the study. Echocardiography showed an increase in relative wall thickness of the left ventricle (LV) following POH + vehicle treatment compared with sham animals. This was attenuated by both doses of GSK-576371 and ramipril. Vehicle treatment demonstrated abnormal diastolic parameters, including mitral valve (MV) inflow E wave deceleration time, isovolumic relaxation time, and MV annular velocity, which were dose dependently restored toward sham values by GSK-576371. LV end diastolic pressure was increased following POH + vehicle treatment compared with sham (6.9 +/- 0.7 vs. 3.2 +/- 0.7 mmHg, P = 0.008) and was reduced with GSK 3 and ramipril treatment (1.7 +/- 0.7, P < 0.01 and 2.9 +/- 0.6 mmHg, P < 0.01, respectively). Collagen I deposition in the LV was increased following POH + vehicle treatment (32.2%; P < 0.01) compared with sham animals and was significantly attenuated with GSK 1 (21.7%; P < 0.05), GSK 3 (23.8%; P < 0.01), and ramipril (35.5%; P < 0.01) treatment. These results suggest that ROCK inhibition improves LV geometry and reduces collagen deposition accompanied by improved diastolic function in POH.
Collapse
Affiliation(s)
- Arintaya Phrommintikul
- Dept. of Epidemiology & Preventive Medicine, Monash University, Melbourne VIC 3004, Australia
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Phosphodiesterase type 5A (PDE5A) selectively hydrolyzes cyclic GMP. Inhibitors of PDE5A such as sildenafil are widely used to treat erectile dysfunction, but growing evidence supports important roles for the enzyme in both the vasculature and heart. In disorders such as cardiac failure, PDE5A upregulation may contribute to a decline in cGMP and protein kinase G signaling, exacerbating dysfunction. PDE5A plays an important role in the pulmonary vasculature where its inhibition benefits patients with pulmonary hypertension. In the heart, PDE5A signaling appears compartmentalized, and its inhibition is cardioprotective against ischemia-reperfusion and antracycline toxicity, blunts acute adrenergic contractile stimulation, and can suppress chronic hypertrophy and dysfunction attributable to pressure-overload. In this review, we discuss the molecular biology, pharmacology, and physiology of PDE5A, mechanisms of vascular and cardiac regulation, and recent evidence supporting the utility of selective PDE5A inhibition for the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
156
|
Rho-Kinase Inhibitors for Cardiovascular Disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
157
|
Goel A, Zhang Y, Anderson L, Rahimian R. Gender difference in rat aorta vasodilation after acute exposure to high glucose: involvement of protein kinase C beta and superoxide but not of Rho kinase. Cardiovasc Res 2007; 76:351-60. [PMID: 17678882 PMCID: PMC2128745 DOI: 10.1016/j.cardiores.2007.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/25/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Several reports suggest that acute hyperglycemia affects male and female vascular beds differently. However, little is known about the interactions between hyperglycemia and gender in the vasculature. The objectives of our study were to investigate if there is a gender-based difference in the relaxation response of rat aorta after acute exposure to high glucose concentration, and the potential role of protein kinase C-beta (PKCbeta), superoxide, and Rho kinase in the gender-specific effect of acute high glucose on the relaxation response. METHODS Endothelium-dependent dilator responses to acetylcholine (ACh, 10(-8) to 10(-5) M) were obtained before and after 3 h treatment with Krebs' solution containing high glucose (46 mM) in aortic rings pre-contracted with phenylephrine (2 microM) taken from female and male Sprague-Dawley rats. Similar experiments were generated in the presence of 1 microM LY379196, a selective PKCbeta inhibitor, 25 microM MnTMPyP, a superoxide dismutase mimetic, or 1 microM Fasudil, a Rho kinase inhibitor. Furthermore, protein expression of PKCbeta isoforms was measured by Western blotting. RESULTS We demonstrated that a 3 h incubation with elevated level of glucose impairs ACh responses only in the female rat aortic rings. Inhibition of PKCbeta or superoxide production but not Rho kinase prevents the high glucose-induced impairment of endothelium-dependent relaxation of female rat aorta. In addition, PKCbeta2 expression is significantly higher in the female rat aorta than that in male rat aorta. CONCLUSION These results suggest that the gender difference in the impairment of endothelium-dependent vasodilation after acute exposure to high glucose in rat aorta is possibly due to differences in PKCbeta2 expression.
Collapse
Affiliation(s)
- Aditya Goel
- AG, YZ, RR, Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific (Stockton, CA 95211)
| | - Yingmin Zhang
- AG, YZ, RR, Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific (Stockton, CA 95211)
| | - Leigh Anderson
- LA, Department of Anatomical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific (San Francisco, CA 94115)
| | - Roshanak Rahimian
- AG, YZ, RR, Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific (Stockton, CA 95211)
| |
Collapse
|
158
|
Abstract
The Rho kinase (ROCK) isoforms, ROCK1 and ROCK2, were initially discovered as downstream targets of the small GTP-binding protein Rho. Because ROCKs mediate various important cellular functions such as cell shape, motility, secretion, proliferation, and gene expression, it is likely that this pathway will intersect with other signaling pathways known to contribute to cardiovascular disease. Indeed, ROCKs have already been implicated in the regulation of vascular tone, proliferation, inflammation, and oxidative stress. However, it is not entirely clear how ROCKs are regulated, what some of their downstream targets are, and whether ROCK1 and ROCK2 mediate different cellular functions. Clinically, inhibition of ROCK pathway is believed to contribute to some of the cardiovascular benefits of statin therapy that are independent of lipid lowering (ie, pleiotropic effects). To what extent ROCK activity is inhibited in patients on statin therapy is not known, but it may have important clinical implications. Indeed, several pharmaceutical companies are already actively engaged in the development of ROCK inhibitors as the next generation of therapeutic agents for cardiovascular disease because evidence from animal studies suggests the potential involvement of ROCK in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- James K Liao
- The Vascular Medicine Research Unit, Brigham and Women's Hospital, Cambridge 02139 and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
159
|
Shimokawa H, Rashid M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci 2007; 28:296-302. [PMID: 17482681 DOI: 10.1016/j.tips.2007.04.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 03/12/2007] [Accepted: 04/19/2007] [Indexed: 01/01/2023]
Abstract
Rho-kinase (ROCK) is one of the downstream effectors of the small G-protein Rho. The Rho-ROCK pathway has an important role in mediating various cellular functions, including contraction, actin cytoskeleton organization, cell adhesion and motility, proliferation, cytokinesis and gene expression, all of which are involved in the pathogenesis of cardiovascular disease. Indeed, vascular smooth muscle cells, endothelial cells, adventitial cells, cardiomyocytes and nerve cells all undergo pathophysiological changes through the ROCK pathway. Abnormal activation of this pathway is associated with the pathogenesis of various cardiovascular diseases such as hypertension, coronary and cerebral vasospasm, restenosis, atherosclerosis, stroke and heart failure, although the roles of the ROCK isoforms (ROCK1 and ROCK2) remain to be elucidated. In this article, we review the information about the therapeutic importance of the ROCK pathway and summarize the current status of the development of ROCK inhibitors.
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku Sendai 980-8574, Japan.
| | | |
Collapse
|
160
|
Shirai H, Autieri M, Eguchi S. Small GTP-binding proteins and mitogen-activated protein kinases as promising therapeutic targets of vascular remodeling. Curr Opin Nephrol Hypertens 2007; 16:111-5. [PMID: 17293685 DOI: 10.1097/mnh.0b013e3280148e4f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To summarize the most recent findings concerning the targeting of mitogen-activated protein kinases and small GTP-binding proteins toward vascular remodeling together with molecular mechanisms of their activations in vascular pathophysiology. RECENT FINDINGS In addition to targeting the classical Ras/extracellular signal-regulated kinase cascade, Rho-kinase inhibitors, as well as the HMG-CoA reductase inhibitors, or 'statins', have pleiotropic efficacy for experimental cardiovascular diseases that involve inhibition of the signal transduction cascades originated by the small GTP-binding proteins such as Rho and Rac. Moreover, the underlying molecular mechanisms of the activation of these small GTP-binding proteins and downstream mitogen-activated protein kinases in cardiovascular tissue and cells have recently been better characterized. Additionally, gene-targeting studies in animal models are revealing select roles of the isoforms of these signaling proteins in the pathophysiology of cardiovascular disease. This is exemplified by the role of c-Jun NH(2)-terminal kinases in mediating atherosclerosis and diabetes. SUMMARY Characterization of the function of small GTP-binding proteins, mitogen-activated protein kinases and their effectors in cardiovascular pathophysiology can be readily identified by using select inhibitors, dominant-negative gene transfer and the generation of select gene-targeted animals. These findings strongly support the notion that small GTP-binding proteins and mitogen-activated protein kinases are promising therapeutic targets toward cardiovascular diseases.
Collapse
Affiliation(s)
- Heigoro Shirai
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
161
|
Thomas V, Fikrig E. Anaplasma phagocytophilum specifically induces tyrosine phosphorylation of ROCK1 during infection. Cell Microbiol 2007; 9:1730-7. [PMID: 17346310 DOI: 10.1111/j.1462-5822.2007.00908.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum, an obligate intracellular pathogen that persists within polymorphonuclear leucocytes, is the second most common tick-borne agent in North America. We now show that infection of a promyelocytic cell line and neutrophils with A. phagocytophilum results in pathogen-specific tyrosine phosphorylation of ROCK1. Phosphorylation is associated with PSGL-1 and Syk, because PSGL-1 blocking antibodies and siRNA targeting Syk interfere with ROCK1 phosphorylation in A. phagocytophilum-infected cells. Knockdown of either Syk or ROCK1 also markedly impaired A. phagocytophilum infection. These data demonstrate a role for A. phagocytophilum-mediated ROCK1 phosphorylation in infection, and suggests that inhibiting this pathway may lead to new, non-antibiotic strategies to treat human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Venetta Thomas
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
162
|
Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007; 55:61-75. [PMID: 17347801 PMCID: PMC2612781 DOI: 10.1007/s00005-007-0009-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 12/19/2022]
Abstract
Rho kinase (ROCK) belongs to a family of serine/threonine kinases that are activated via interaction with Rho GTPases. ROCK is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, and proliferation. Recent studies have shown that ROCK plays an important role in the regulation of apoptosis in various cell types and animal disease models. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be function redundant, this based largely on kinase construct overexpression and chemical inhibitors (Y27632 and fasudil) which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiological, and patho-physiological functions of the two ROCK isoforms. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling in the regulation of apoptosis and highlights new findings from recently generated ROCK-deficient mice.
Collapse
Affiliation(s)
- Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, R4 building, Room 370, 1044 West Walnut Str, Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
163
|
Tawara S, Shimokawa H. Progress of the Study of Rho-kinase and Future Perspective of the Inhibitor. YAKUGAKU ZASSHI 2007; 127:501-14. [PMID: 17329936 DOI: 10.1248/yakushi.127.501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho-kinase has been identified as one of the effectors of the small GTP-binding protein Rho. Accumulating evidence has demonstrated that the Rho/Rho-kinase pathway plays an important role in various cellular functions, not only in vascular smooth muscle cell (VSMC) contraction but also in VSMC proliferation, cell migration, and gene expression. Two isoforms of Rho-kinase encoded by two different genes have been identified: ROCK1 and ROCK2. These isoforms are ubiquitously expressed, but with preferential expression of ROCK2 in the brain and skeletal muscle. The expression of Rho-kinase itself is mediated by the protein kinase C/NF-kappaB pathway with an inhibitory and stimulatory modulation by estrogen and nicotine, respectively. At the cellular level, Rho-kinase mediates VSMC contraction, stimulates VSMC proliferation and migration, and enhances inflammatory cell motility. Rho-kinase also upregulates various molecules that accelerate inflammation/oxidative stress, thrombus formation, and fibrosis, while it downregulates endothelial nitric oxide synthase and inhibits insulin signaling. Rho-kinase activity regulates major morphogenetic events during embryonic development through cell migration, differentiation, and axis formation. In animal and clinical studies, Rho-kinase has been shown to be substantially involved in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and ischemia/reperfusion injury. Fasudil, a selective Rho-kinase inhibitor developed in Japan, is effective for the treatment of a wide range of cardiovascular diseases, with reasonable safety. Thus Rho-kinase is an important therapeutic target in cardiovascular medicine. This review summarizes the recent progress in the study of Rho-kinase and addresses future perspectives of Rho-kinase inhibitors.
Collapse
Affiliation(s)
- Shunsuke Tawara
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
164
|
Hauck L, Harms C, Grothe D, An J, Gertz K, Kronenberg G, Dietz R, Endres M, von Harsdorf R. Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res 2006; 100:50-60. [PMID: 17158337 DOI: 10.1161/01.res.0000254704.92532.b9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21(CIP1/WAF1) (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21(-/-) mice and that reconstitution of p21 function by TAT.p21 protein transduction can rescue statin action in these otherwise normally developed animals. Lovastatin specifically recruits the forkhead box FoxO3a transcription factor to the p21 promoter, mediating transcriptional transactivation of the p21 gene as analyzed in isolated primary cardiomyocytes. Lovastatin also stimulates protein kinase B/Akt kinase activity, and Akt-dependent phosphorylation forces p21 in the cytoplasm, where it inhibits Rho-kinases contributing to the suppression of cardiomyocyte hypertrophy. Loss of p21 or FoxO3a by RNA interference causes a general inhibition of lovastatin signal transduction. These results suggest that p21 functions as FoxO3a downstream target to mediate an statin-derived anti-hypertrophic response. Taken together, our genetic and biochemical data delineate an essential function of p21 for statin-dependent inhibition of cardiac myocyte hypertrophy.
Collapse
Affiliation(s)
- Ludger Hauck
- University Health Network, MaRS 3-908, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Fu P, Liu F, Su S, Wang W, Huang XR, Entman ML, Schwartz RJ, Wei L, Lan HY. Signaling mechanism of renal fibrosis in unilateral ureteral obstructive kidney disease in ROCK1 knockout mice. J Am Soc Nephrol 2006; 17:3105-14. [PMID: 17005937 DOI: 10.1681/asn.2005121366] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown that blockade of Rho kinase with pharmacologic inhibitors inhibits renal fibrosis. This study examined the role of Rho kinase in renal fibrosis in the unilateral ureteral obstruction (UUO) model in mice that do not express the ROCK1 gene, a critical downstream mediator of Rho GTPase. Unexpected, real-time PCR, Western blot, and immunohistochemistry demonstrated that, compared with the wild-type mice, mice with ROCK1 knockout (KO) were not protected against renal fibrosis at both the early (day 5) and late (day 10) UUO, as determined by histology and expression of both mRNA and protein levels of alpha-smooth muscle actin, collagen types I and III, and fibronectin within the diseased kidney. Then the mechanisms of loss of protective effect on renal fibrosis in ROCK1 KO mice were investigated. It is interesting that mice that lacked ROCK1 did not have altered expression of ROCK2 but significantly increased TGF-beta expression and Smad2/3 activation (phosphorylation and nuclear translocation) in the diseased kidney at day 5, which remained high at day 10 of UUO. Similarly, primary cultures of kidney fibroblasts that were obtained from both ROCK1 wild-type and KO mice showed that deletion of ROCK1 did not prevent TGF-beta-induced activation of Smad2/3 and collagen I expression. This also was observed in the presence of Rho kinase inhibitor Y-27632. Taken together, results from this study suggest that Rho/Rho kinase may not be a necessary or a central pathway for renal fibrosis in the UUO model. The interplay between the Rho/Rho kinase pathway and the Smad signaling pathway may be a key mechanism by which loss of ROCK1 does not prevent renal fibrosis in the UUO model.
Collapse
Affiliation(s)
- Ping Fu
- Department of Medicine-Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Yoneda A, Ushakov D, Multhaupt HA, Couchman JR. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II. Mol Biol Cell 2006; 18:66-75. [PMID: 17065553 PMCID: PMC1751322 DOI: 10.1091/mbc.e06-08-0684] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular matrix is integral to tissue architecture and regulates many aspects of cell behavior. Fibronectin matrix assembly involves the actin cytoskeleton and the small GTPase RhoA, but downstream signaling is not understood. Here, down-regulation of either rho kinase isoform (ROCK I or -II) by small interfering RNA treatment blocked fibronectin matrix assembly, although the phenotypes were distinct and despite persistence of the alternate kinase. Remnant fibronectin on ROCK-deficient fibroblasts was mostly punctate and more deoxycholate soluble compared with controls. Fibronectin matrix assembly defects in ROCK-deficient cells did not result from decreased synthesis/secretion, altered fibronectin mRNA splicing, metalloproteinase activity, or alpha5beta1 integrin dysfunction. Rescue could be effected by ROCK protein restoration or phosphomimetic myosin light chain expression. However, the effect of ROCK I deficiency on fibronectin matrix assembly was secondary to altered cell surface morphology, rich in filopodia, resulting from high GTP-Cdc42 levels. Total internal reflection microscopy revealed that a submembranous pool of myosin light chain in control cells was missing in ROCK II-deficient cells and replaced by stress fibers. Together, two rho kinases contribute to fibronectin matrix assembly in a different manner and cortical myosin II-driven contractility, but not stress fibers, may be critical in this activity.
Collapse
Affiliation(s)
- Atsuko Yoneda
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dmitriy Ushakov
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hinke A.B. Multhaupt
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - John R. Couchman
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
167
|
Kumar R, Singh VP, Baker KM. Kinase inhibitors for cardiovascular disease. J Mol Cell Cardiol 2006; 42:1-11. [PMID: 17059822 DOI: 10.1016/j.yjmcc.2006.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/05/2006] [Accepted: 09/08/2006] [Indexed: 02/07/2023]
Abstract
Over the last decade, there has been substantial progress toward understanding the pathophysiology and treatment of cardiovascular diseases (CVDs). Elucidating cellular responses to the extracellular environment and signal transduction mechanisms have provided the opportunity to explore novel molecular therapeutic approaches for the treatment of CVDs. Neurohormonal stimulation has been implicated in these diseases; blockade of the renin-angiotensin and beta-adrenergic systems are examples of therapeutic effectiveness. There are multiple cell signaling cascades, some of which are beneficial or compensatory and others deleterious. The balance between these pathways, which in large part is dictated by the cellular environment, determines the outcome as a diseased or non-diseased state. Selective targeting of signaling pathways using protein kinase inhibitors, would have a potential advantage over receptor blockers. We review potential protein kinase targets and recent evidence supporting therapeutic interventional value in CVDs.
Collapse
Affiliation(s)
- Rajesh Kumar
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | |
Collapse
|
168
|
Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, Schwartz RJ. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A 2006; 103:14495-500. [PMID: 16983089 PMCID: PMC1599988 DOI: 10.1073/pnas.0601911103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Indexed: 11/18/2022] Open
Abstract
Rho-associated coiled-coil protein kinase 1 (ROCK-1) is a direct cleavage substrate of activated caspase-3, which is associated with heart failure. In the course of human heart failure, we found marked cleavage of ROCK-1 resulting in a 130-kDa subspecies, which was absent in normal hearts and in an equivalent cohort of patients with left ventricular assist devices. Murine cardiomyocytes treated with doxorubicin led to enhanced ROCK-1 cleavage and apoptosis, all of which was blocked by a caspase-3 inhibitor. In addition, a bitransgenic mouse model of severe cardiomyopathy, which overexpresses Gq protein and hematopoietic progenitor kinase-/germinal center kinase-like kinase, revealed the robust accumulation of the 130-kDa ROCK-1 cleaved fragment. This constitutively active ROCK-1 subspecies, when expressed in cardiomyocytes, led to caspase-3 activation, indicating a positive feed-forward regulatory loop. ROCK-1-dependent caspase-3 activation was coupled with the activation of PTEN and the subsequent inhibition of protein kinase B (Akt) activity, all of which was attenuated by siRNA directed against ROCK-1 expression. Similarly, ROCK-1-null mice (Rock-1(-/-)) showed a marked reduction in myocyte apoptosis associated with pressure overload. These data suggest an obligatory role for ROCK-1 cleavage in promoting apoptotic signals in myocardial hypertrophy and/or failure.
Collapse
Affiliation(s)
- Jiang Chang
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- Affiliated Hospital of Hainan Medical College, Haikou, Hainan 571101, China
| | - Min Xie
- Center for Cardiovascular Development
- Department of Medicine, and
| | - Viraj R. Shah
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | | | - Mark L. Entman
- Department of Medicine, and
- Section of Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Lei Wei
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Robert J. Schwartz
- *Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| |
Collapse
|