151
|
Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis. PLoS Genet 2015; 11:e1005104. [PMID: 25835496 PMCID: PMC4383634 DOI: 10.1371/journal.pgen.1005104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue. Precise temporal and cell-type specific regulation of gene expression is required for development of differentiated cells even in simple organisms. Endospore development by the bacterium Bacillus subtilis involves only two types of differentiated cells, a forespore that develops into the endospore, and a mother cell that nurtures the developing endospore. During development temporal and cell-type specific regulation of gene expression is controlled by transcription factors called sigma factors (σ). An anti-sigma factor known as CsfB binds to σG to prevent its premature activity in the forespore. We found that CsfB is also expressed in the mother cell where it blocks ectopic activity of σG, and blocks the activity σE to allow σK to take over control of gene expression during the final stages of development. Our finding that CsfB directly blocks σE activity also explains how CsfB plays a role in preventing ectopic activity of σE in the forespore. Remarkably, each of the major roles of CsfB, (i.e., control of ectopic σG and σE activities, and the temporal limitation of σE activity) is also accomplished by redundant regulatory processes. This redundancy reinforces control of key regulatory steps to insure reliability and stability of the developmental process.
Collapse
|
152
|
Hertel R, Rodríguez DP, Hollensteiner J, Dietrich S, Leimbach A, Hoppert M, Liesegang H, Volland S. Genome-based identification of active prophage regions by next generation sequencing in Bacillus licheniformis DSM13. PLoS One 2015; 10:e0120759. [PMID: 25811873 PMCID: PMC4374763 DOI: 10.1371/journal.pone.0120759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Prophages are viruses, which have integrated their genomes into the genome of a bacterial host. The status of the prophage genome can vary from fully intact with the potential to form infective particles to a remnant state where only a few phage genes persist. Prophages have impact on the properties of their host and are therefore of great interest for genomic research and strain design. Here we present a genome- and next generation sequencing (NGS)-based approach for identification and activity evaluation of prophage regions. Seven prophage or prophage-like regions were identified in the genome of Bacillus licheniformis DSM13. Six of these regions show similarity to members of the Siphoviridae phage family. The remaining region encodes the B. licheniformis orthologue of the PBSX prophage from Bacillus subtilis. Analysis of isolated phage particles (induced by mitomycin C) from the wild-type strain and prophage deletion mutant strains revealed activity of the prophage regions BLi_Pp2 (PBSX-like), BLi_Pp3 and BLi_Pp6. In contrast to BLi_Pp2 and BLi_Pp3, neither phage DNA nor phage particles of BLi_Pp6 could be visualized. However, the ability of prophage BLi_Pp6 to generate particles could be confirmed by sequencing of particle-protected DNA mapping to prophage locus BLi_Pp6. The introduced NGS-based approach allows the investigation of prophage regions and their ability to form particles. Our results show that this approach increases the sensitivity of prophage activity analysis and can complement more conventional approaches such as transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Robert Hertel
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - David Pintor Rodríguez
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Jacqueline Hollensteiner
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Sascha Dietrich
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Andreas Leimbach
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Michael Hoppert
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Heiko Liesegang
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Sonja Volland
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| |
Collapse
|
153
|
Complete Genome Sequence of Bacillus subtilis subsp. subtilis Strain 3NA. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00084-15. [PMID: 25767229 PMCID: PMC4357751 DOI: 10.1128/genomea.00084-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis 3NA reaches high cell densities during fed-batch fermentation and is an interesting target for further optimization as a production strain. Here, we announce the full genome of B. subtilis 3NA. The presence of specific Bacillus subtilis 168 and W23 genetic features suggests that 3NA is a hybrid of these strains.
Collapse
|
154
|
Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis. J Bacteriol 2015; 197:1492-506. [PMID: 25666134 DOI: 10.1128/jb.02570-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The PhoPR two-component signal transduction system controls one of three responses activated by Bacillus subtilis to adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, in B. subtilis and some other Firmicutes bacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB, yqgS, wapA, and dacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation of phoPR expression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3' end of the phoPR operon. IMPORTANCE The PhoPR two-component system controls one of three responses mounted by B. subtilis to adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB, yqgS, wapA, and dacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation of phoPR expression requires PhoP∼P binding to the 3' end of the operon.
Collapse
|
155
|
Role of branched-chain amino acid transport in Bacillus subtilis CodY activity. J Bacteriol 2015; 197:1330-8. [PMID: 25645558 DOI: 10.1128/jb.02563-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CodY is a branched-chain amino acid-responsive transcriptional regulator that controls the expression of several dozen transcription units in Bacillus subtilis. The presence of isoleucine, valine, and leucine in the growth medium is essential for achieving high activity of CodY and for efficient regulation of the target genes. We identified three permeases-BcaP, BraB, and BrnQ-that are responsible for the bulk of isoleucine and valine uptake and are also involved in leucine uptake. At least one more permease is capable of efficient leucine uptake, as well as low-affinity transport of isoleucine and valine. The lack of the first three permeases strongly reduced activity of CodY in an amino acid-containing growth medium. BcaP appears to be the most efficient isoleucine and valine permease responsible for their utilization as nitrogen sources. The previously described strong CodY-mediated repression of BcaP provides a mechanism for fine-tuning CodY activity by reducing the availability of amino acids and for delaying the utilization of isoleucine and valine as nitrogen and carbon sources under conditions of nutrient excess. IMPORTANCE Bacillus subtilis CodY is a global transcriptional regulator that is activated by branched-chain amino acids (BCAA). Since the level of BCAA achieved by intracellular synthesis is insufficient to fully activate CodY, transport of BCAA from the environment is critical for CodY activation, but the permeases needed for such activation have not been previously identified. This study identifies three such permeases, reports their amino acid transport specificity, and reveals their impact on CodY activation.
Collapse
|
156
|
Sim M, Kim J. Metagenome assembly through clustering of next-generation sequencing data using protein sequences. J Microbiol Methods 2015; 109:180-7. [PMID: 25572018 DOI: 10.1016/j.mimet.2015.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/03/2015] [Indexed: 11/16/2022]
Abstract
The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising.
Collapse
Affiliation(s)
- Mikang Sim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jaebum Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
157
|
Fang D, Yu Y, Wu L, Wang Y, Zhang J, Zhi J. Bacillus subtilis-based colorimetric bioassay for acute biotoxicity assessment of heavy metal ions. RSC Adv 2015. [DOI: 10.1039/c5ra05452d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
β-Galactosidase generated byBacillus subtiliscatalyzes the hydrolysis of ONPG to produce ONP, which can be detected at 420 nm and used to evaluate acute biotoxicity of heavy metal ions that inhibit the activity of the enzyme.
Collapse
Affiliation(s)
- Deyu Fang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Yuan Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Liangzhuan Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Yu Wang
- Beijing Center for Physical & Chemical Analysis
- Beijing 100089
- PR China
| | - Jinghua Zhang
- Beijing Center for Physical & Chemical Analysis
- Beijing 100089
- PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| |
Collapse
|
158
|
Bundalovic-Torma C, Parkinson J. Comparative Genomics and Evolutionary Modularity of Prokaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:77-96. [PMID: 26621462 DOI: 10.1007/978-3-319-23603-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The soaring number of high-quality genomic sequences has ushered in the era of post-genomic research where our understanding of organisms has dramatically shifted towards defining the function of genes within their larger biological contexts. As a result, novel high-throughput experimental technologies are being increasingly employed to uncover physical and functional associations of genes and proteins in complex biological processes. Through the construction and analysis of physical, genetic and metabolic networks generated for the model organisms, such as Escherichia coli, organizational principles of the genome have been deduced, such as modularity, which has important implications toward understanding prokaryotic evolution and adaptation to novel lifestyles.
Collapse
Affiliation(s)
- Cedoljub Bundalovic-Torma
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 21-9830, Toronto, ON, Canada, M5G 0A4.
| | - John Parkinson
- Department of Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay St. Rm 20-9709, Toronto, ON, Canada, M5G 0A4.
| |
Collapse
|
159
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
160
|
Broy S, Chen C, Hoffmann T, Brock NL, Nau-Wagner G, Jebbar M, Smits SHJ, Dickschat JS, Bremer E. Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Environ Microbiol 2014; 17:2362-78. [PMID: 25384455 DOI: 10.1111/1462-2920.12698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/01/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant osmolyte and anti-stress compound produced primarily in marine ecosystems. After its release into the environment, microorganisms can exploit DMSP as a source of sulfur and carbon, or accumulate it as an osmoprotectant. However, import systems for this ecophysiologically important compatible solute, and its stress-protective properties for microorganisms that do not produce it are insufficiently understood. Here we address these questions using a well-characterized set of Bacillus subtilis mutants to chemically profile the influence of DMSP import on stress resistance, the osmostress-adaptive proline pool and on osmotically controlled gene expression. We included in this study the naturally occurring selenium analogue of DMSP, dimethylseleniopropionate (DMSeP), as well as a set of synthetic DMSP derivatives. We found that DMSP is not a nutrient for B. subtilis, but it serves as an excellent stress protectant against challenges conferred by sustained high salinity or lasting extremes in both low and high growth temperatures. DMSeP and synthetic DMSP derivatives retain part of these stress protective attributes, but DMSP is clearly the more effective stress protectant. We identified the promiscuous and widely distributed ABC transporter OpuC as a high-affinity uptake system not only for DMSP, but also for its natural and synthetic derivatives.
Collapse
Affiliation(s)
- Sebastian Broy
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Chiliang Chen
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| | - Nelson L Brock
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Gabriele Nau-Wagner
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Mohamed Jebbar
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,Laboratory of Microbiology of Extreme Environments, UMR 6197 (CNRS - Ifremer - UBO), European Institute of Marine Studies, University of West Brittany (Brest), Technopole Brest-Iroise, F-29280, Plouzané, France
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitäts Str. 1, D-40225, Düsseldorf, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany.,Kekule-Institute for Organic Chemistry and Biochemistry, Friedrich Wilhelms-University Bonn, Gerhard-Domagk-Str. 1, D-53121, Bonn, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| |
Collapse
|
161
|
Luo S, Dang L, Zhang K, Liang L, Li G. Cloning and heterologous expression of UDP-glycosyltransferase genes from Bacillus subtilis
and its application in the glycosylation of ginsenoside Rh1. Lett Appl Microbiol 2014; 60:72-8. [DOI: 10.1111/lam.12339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S.L. Luo
- Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education; Yunnan University; Kunming China
| | - L.Z. Dang
- Technology Centre of Hongyun Honghe Tobacco (Group) Co., Ltd.; Kunming China
| | - K.Q. Zhang
- Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education; Yunnan University; Kunming China
| | - L.M. Liang
- Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education; Yunnan University; Kunming China
| | - G.H. Li
- Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Microbial Resources of the Ministry of Education; Yunnan University; Kunming China
| |
Collapse
|
162
|
Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis. Appl Environ Microbiol 2014; 81:250-9. [PMID: 25344233 DOI: 10.1128/aem.02797-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The data presented here reveal a new facet of the physiological adjustment processes through which Bacillus subtilis can derive osmostress protection. We found that the import of proteogenic (Glu, Gln, Asp, Asn, and Arg) and of nonproteogenic (Orn and Cit) amino acids and their metabolic conversion into proline enhances growth under otherwise osmotically unfavorable conditions. Osmoprotection by amino acids depends on the functioning of the ProJ-ProA-ProH enzymes, but different entry points into this biosynthetic route are used by different amino acids to finally yield the compatible solute proline. Glu, Gln, Asp, and Asn are used to replenish the cellular pool of glutamate, the precursor for proline production, whereas Arg, Orn, and Cit are converted into γ-glutamic semialdehyde/Δ(1)-pyrroline-5-carboxylate, an intermediate in proline biosynthesis. The import of Glu, Gln, Asp, Asn, Arg, Orn, and Cit did not lead to a further increase in the size of the proline pool that is already present in osmotically stressed cells. Hence, our data suggest that osmoprotection of B. subtilis by this group of amino acids rests on the savings in biosynthetic building blocks and energy that would otherwise have to be devoted either to the synthesis of the proline precursor glutamate or of proline itself. Since glutamate is the direct biosynthetic precursor for proline, we studied its uptake and found that GltT, an Na(+)-coupled symporter, is the main uptake system for both glutamate and aspartate in B. subtilis. Collectively, our data show how effectively B. subtilis can exploit environmental resources to derive osmotic-stress protection through physiological means.
Collapse
|
163
|
Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbiol Biotechnol 2014; 99:885-96. [DOI: 10.1007/s00253-014-6131-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/23/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
164
|
Kamada M, Hase S, Sato K, Toyoda A, Fujiyama A, Sakakibara Y. Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads. PLoS One 2014; 9:e109999. [PMID: 25329997 PMCID: PMC4199626 DOI: 10.1371/journal.pone.0109999] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/04/2014] [Indexed: 01/24/2023] Open
Abstract
De novo microbial genome sequencing reached a turning point with third-generation sequencing (TGS) platforms, and several microbial genomes have been improved by TGS long reads. Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and it has a function in the production of the traditional Japanese fermented food "natto." The B. subtilis natto BEST195 genome was previously sequenced with short reads, but it included some incomplete regions. We resequenced the BEST195 genome using a PacBio RS sequencer, and we successfully obtained a complete genome sequence from one scaffold without any gaps, and we also applied Illumina MiSeq short reads to enhance quality. Compared with the previous BEST195 draft genome and Marburg 168 genome, we found that incomplete regions in the previous genome sequence were attributed to GC-bias and repetitive sequences, and we also identified some novel genes that are found only in the new genome.
Collapse
Affiliation(s)
- Mayumi Kamada
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Principles of Informatics Research Division, National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| |
Collapse
|
165
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
166
|
Chiu KC, Lin CJ, Shaw GC. Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology (Reading) 2014; 160:2178-2189. [DOI: 10.1099/mic.0.079806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis lutABC operon encodes three iron–sulfur-containing proteins required for l-lactate utilization and involved in biofilm formation. The transcriptional regulator LutR of the GntR family negatively controls lutABC expression. The lutP gene, which is situated immediately upstream of lutR, encodes an l-lactate permease. Here, we show that lutP expression can be strongly induced by l-lactate and is subject to partial catabolite repression by glucose. Disruption of the lutR gene led to a strong derepression of lutP and no further induction by l-lactate, suggesting that the LutR repressor can also negatively control lutP expression. Electrophoretic mobility shift assay revealed a LutR-binding site located downstream of the promoter of lutA or lutP and containing a consensus inverted repeat sequence 5′-TCATC-N1-GATGA-3′. Reporter gene analysis showed that deletion of each LutR-binding site caused a strong derepression of lutA or lutP. These results indicated that these two LutR-binding sites can function as operators in vivo. Moreover, deletion analysis identified a DNA segment upstream of the lutP promoter to be important for lutP expression. In contrast to the truncated LutR of laboratory strains 168 and PY79, the full-length LutR of the undomesticated strain RO-NN-1, and probably many other B. subtilis strains, can directly and negatively regulate lutP transcription. The absence or presence of the N-terminal 21 aa of the full-length LutR, which encompass a small part of the predicted winged helix–turn–helix DNA-binding motif, may probably alter the DNA-binding specificity or affinity of LutR.
Collapse
Affiliation(s)
- Kuo-Chin Chiu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chen-Jyun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
167
|
Gomes D, Aguiar TQ, Dias O, Ferreira EC, Domingues L, Rocha I. Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics 2014; 15:810. [PMID: 25253284 PMCID: PMC4190384 DOI: 10.1186/1471-2164-15-810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins. RESULTS After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG's annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii's metabolism in comparison to the one of S. cerevisiae (post-WGD - whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism. CONCLUSIONS This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii's metabolism.
Collapse
Affiliation(s)
- Daniel Gomes
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
168
|
Elsholz AKW, Wacker SA, Losick R. Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev 2014; 28:1710-20. [PMID: 25085422 PMCID: PMC4117945 DOI: 10.1101/gad.246397.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exopolysaccharide (EPS) is an extracellular matrix constituent of the B. subtilis biofilm. Here, Losick and colleagues report a previously unrecognized mechanism for the self-regulation of EPS production. EPS synthesis depends on a tyrosine kinase that consists of a membrane component (EpsA) and a kinase component (EpsB). EPS interacts with the extracellular domain of EpsA to control kinase activity. Further data show that EPS is a signaling molecule that controls its own synthesis. Importantly, tyrosine kinase-mediated self-regulation could be a widespread system of intercellular communication controlling exopolysaccharide production in bacteria. We report that the Bacillus subtilis exopolysaccharide (EPS) is a signaling molecule that controls its own production. EPS synthesis depends on a tyrosine kinase that consists of a membrane component (EpsA) and a kinase component (EpsB). EPS interacts with the extracellular domain of EpsA, which is a receptor, to control kinase activity. In the absence of EPS, the kinase is inactivated by autophosphorylation. The presence of EPS inhibits autophosphorylation and instead promotes the phosphorylation of a glycosyltransferase in the biosynthetic pathway, thereby stimulating the production of EPS. Thus, EPS production is subject to a positive feedback loop that ties its synthesis to its own concentration. Tyrosine kinase-mediated self-regulation could be a widespread feature of the control of exopolysaccharide production in bacteria.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sarah A Wacker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
169
|
Abstract
Sporulation by Bacillus subtilis is a cell density-dependent response to nutrient deprivation. Central to the decision of entering sporulation is a phosphorelay, through which sensor kinases promote phosphorylation of Spo0A. The phosphorelay integrates both positive and negative signals, ensuring that sporulation, a time- and energy-consuming process that may bring an ecological cost, is only triggered should other adaptations fail. Here we report that a gastrointestinal isolate of B. subtilis sporulates with high efficiency during growth, bypassing the cell density, nutritional, and other signals that normally make sporulation a post-exponential-phase response. Sporulation during growth occurs because Spo0A is more active per cell and in a higher fraction of the population than in a laboratory strain. This in turn, is primarily caused by the absence from the gut strain of the genes rapE and rapK, coding for two aspartyl phosphatases that negatively modulate the flow of phosphoryl groups to Spo0A. We show, in line with recent results, that activation of Spo0A through the phosphorelay is the limiting step for sporulation initiation in the gut strain. Our results further suggest that the phosphorelay is tuned to favor sporulation during growth in gastrointestinal B. subtilis isolates, presumably as a form of survival and/or propagation in the gut environment.
Collapse
|
170
|
Iiyama K, Otao M, Mori K, Mon H, Lee JM, Kusakabe T, Tashiro K, Asano SI, Yasunaga-Aoki C. Phylogenetic relationship of Paenibacillus species based on putative replication origin regions and analysis of an yheCD-like sequence found in this region. Biosci Biotechnol Biochem 2014; 78:891-7. [PMID: 25035995 DOI: 10.1080/09168451.2014.905188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To determine the phylogenetic relationship among Paenibacillus species, putative replication origin regions were compared. In the rsmG-gyrA region, gene arrangements in Paenibacillus species were identical to those of Bacillus species, with the exception of an open reading frame (orf14) positioned between gyrB and gyrA, which was observed only in Paenibacillus species. The orf14 product was homologous to the endospore-associated proteins YheC and YheD of Bacillus subtilis. Phylogenetic analysis based on the YheCD proteins suggested that Orf14 could be categorized into the YheC group. In the Paenibacillus genome, DnaA box clusters were found in rpmH-dnaA and dnaA-dnaN intergenic regions, known as box regions C and R, respectively; this localization was similar to that observed in B. halodurans. A phylogenetic tree based on the nucleotide sequences of the whole replication origin regions suggested that P. popilliae, P. thiaminolyticus, and P. dendritiformis are closely related species.
Collapse
Affiliation(s)
- Kazuhiro Iiyama
- a Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University , Fukuoka , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Complete Genome Sequences of Bacillus subtilis subsp. subtilis Laboratory Strains JH642 (AG174) and AG1839. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00663-14. [PMID: 24994804 PMCID: PMC4082004 DOI: 10.1128/genomea.00663-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that contains a mutation in the replication initiation gene dnaB and a linked Tn917.
Collapse
|
172
|
Commichau FM, Alzinger A, Sande R, Bretzel W, Meyer FM, Chevreux B, Wyss M, Hohmann HP, Prágai Z. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. Metab Eng 2014; 25:38-49. [PMID: 24972371 DOI: 10.1016/j.ymben.2014.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.
Collapse
Affiliation(s)
- Fabian M Commichau
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland; Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Ariane Alzinger
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Rafael Sande
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Bretzel
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Frederik M Meyer
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Bastien Chevreux
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Markus Wyss
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Hans-Peter Hohmann
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Zoltán Prágai
- DSM Nutritional Products Ltd., P.O. Box 2676, CH-4002 Basel, Switzerland.
| |
Collapse
|
173
|
A Novel Small Protein ofBacillus subtilisInvolved in Spore Germination and Spore Coat Assembly. Biosci Biotechnol Biochem 2014; 75:1119-28. [DOI: 10.1271/bbb.110029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
174
|
Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM, Burton BM. The ESX system in Bacillus subtilis mediates protein secretion. PLoS One 2014; 9:e96267. [PMID: 24798022 PMCID: PMC4010439 DOI: 10.1371/journal.pone.0096267] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Esat-6 protein secretion systems (ESX or Ess) are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.
Collapse
Affiliation(s)
- Laura A. Huppert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Talia L. Ramsdell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David A. Sarracino
- Thermo Fisher Scientific, BRIMS Unit, Cambridge, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Briana M. Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
175
|
Koßmehl S, Wöhlbrand L, Drüppel K, Feenders C, Blasius B, Rabus R. Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395. Proteomics 2014; 13:2743-60. [PMID: 23907795 DOI: 10.1002/pmic.201300112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/11/2022]
Abstract
Phaeobacter inhibens DSM 17395 is a metabolically versatile, secondary metabolite producing and surface colonizing member of the alphaproteobacterial Roseobacter clade. Proteins compartmentalized across the Gram-negative cell envelope are expected to be relevant for the habitat success of P. inhibens DSM 17395. Subcellular fractionation was followed by gel- or nano-LC-based separation of proteins and peptides, respectively. Subsequent MS-based identification of in total 1187 proteins allowed allocation to cytoplasm (303 proteins), cytoplasmic membrane (346), periplasm (325), outer membrane (76), and extracellular milieu (22). Multidimensional scaling was used to visualize the spreading of heuristically allocated proteins across the five different compartments. Experimentally inferred subcellular protein localization was compared with PSORTb prediction of protein secretion and membrane localization. Determined subcellular localizations of identified proteins were interpreted to reconstruct the functional traits of the different cell envelope compartments, in particular protein secretion and sorting, direct effector molecule transit, and cell envelope biogenesis. From a proteogenomic perspective, functional prediction of 74 genes (including 17 coding for proteins of hitherto unknown function) could be refined.
Collapse
Affiliation(s)
- Sebastian Koßmehl
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
176
|
Nowak M, Olszewski M, Śpibida M, Kur J. Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol 2014; 14:91. [PMID: 24725436 PMCID: PMC3991886 DOI: 10.1186/1471-2180-14-91] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination and repair in Bacteria, Archaea and Eukarya. In recent years, there has been an increasing interest in SSBs, since they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila (DpsSSB), Flavobacterium psychrophilum (FpsSSB), Psychrobacter arcticus (ParSSB), Psychrobacter cryohalolentis (PcrSSB), Psychromonas ingrahamii (PinSSB), Photobacterium profundum (PprSSB), and Psychroflexus torquis (PtoSSB). The proteins show a high differential within the molecular mass of their monomers and the length of their amino acid sequences. The high level of identity and similarity in respect to the EcoSSB is related to the OB-fold and some of the last amino acid residues. They are functional as homotetramers, with each monomer encoding one single stranded DNA binding domain (OB-fold). The fluorescence titrations indicated that the length of the ssDNA-binding site size is approximately 30 ± 2 nucleotides for the PinSSB, 31 ± 2 nucleotides for the DpsSSB, and 32 ± 2 nucleotides for the ParSSB, PcrSSB, PprSSB and PtoSSB. They also demonstrated that it is salt independent. However, when the ionic strength was changed from low salt to high, binding-mode transition was observed for the FpsSSB, at 31 ± 2 nucleotides and 45 ± 2 nucleotides, respectively. As expected, the SSB proteins under study cause duplex DNA destabilization. The greatest decrease in duplex DNA melting temperature was observed in the presence of the PtoSSB 17°C. The SSBs in question possess relatively high thermostability for proteins derived from cold-adapted bacteria. Conclusion The results showed that SSB proteins from psychrophilic microorganisms are typical bacterial SSBs and possess relatively high thermostability, offering an attractive alternative to other thermostable SSBs in molecular biology applications.
Collapse
Affiliation(s)
| | | | | | - Józef Kur
- Department of Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
177
|
Bacillus subtilis
Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol Spectr 2014; 2. [DOI: 10.1128/microbiolspec.tbs-0019-2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Endospore-forming bacteria, with
Bacillus subtilis
being the prevalent model organism, belong to the phylum Firmicutes. Although the last common ancestor of all
Firmicutes
is likely to have been an endospore-forming species, not every lineage in the phylum has maintained the ability to produce endospores (hereafter, spores). In 1997, the release of the full genome sequence for
B. subtilis
strain 168 marked the beginning of the genomic era for the study of spore formation (sporulation). In this original genome sequence, 139 of the 4,100 protein-coding genes were annotated as sporulation genes. By the time a revised genome sequence with updated annotations was published in 2009, that number had increased significantly, especially since transcriptional profiling studies (transcriptomics) led to the identification of several genes expressed under the control of known sporulation transcription factors. Over the past decade, genome sequences for multiple spore-forming species have been released (including several strains in the
Bacillus anthracis
/
Bacillus cereus
group and many
Clostridium
species), and phylogenomic analyses have revealed many conserved sporulation genes. Parallel advances in transcriptomics led to the identification of small untranslated regulatory RNAs (sRNAs), including some that are expressed during sporulation. An extended array of -omics techniques, i.e., techniques designed to probe gene function on a genome-wide scale, such as proteomics, metabolomics, and high-throughput protein localization studies, have been implemented in microbiology. Combined with the use of new computational methods for predicting gene function and inferring regulatory relationships on a global scale, these -omics approaches are uncovering novel information about sporulation and a variety of other bacterial cell processes.
Collapse
|
178
|
Yu ACS, Yim AKY, Mat WK, Tong AHY, Lok S, Xue H, Tsui SKW, Wong JTF, Chan TF. Mutations enabling displacement of tryptophan by 4-fluorotryptophan as a canonical amino acid of the genetic code. Genome Biol Evol 2014; 6:629-41. [PMID: 24572018 PMCID: PMC3971595 DOI: 10.1093/gbe/evu044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/26/2022] Open
Abstract
The 20 canonical amino acids of the genetic code have been invariant over 3 billion years of biological evolution. Although various aminoacyl-tRNA synthetases can charge their cognate tRNAs with amino acid analogs, there has been no known displacement of any canonical amino acid from the code. Experimental departure from this universal protein alphabet comprising the canonical amino acids was first achieved in the mutants of the Bacillus subtilis QB928 strain, which after serial selection and mutagenesis led to the HR23 strain that could use 4-fluorotryptophan (4FTrp) but not canonical tryptophan (Trp) for propagation. To gain insight into this displacement of Trp from the genetic code by 4FTrp, genome sequencing was performed on LC33 (a precursor strain of HR23), HR23, and TR7 (a revertant of HR23 that regained the capacity to propagate on Trp). Compared with QB928, the negative regulator mtrB of Trp transport was found to be knocked out in LC33, HR23, and TR7, and sigma factor sigB was mutated in HR23 and TR7. Moreover, rpoBC encoding RNA polymerase subunits were mutated in three independent isolates of TR7 relative to HR23. Increased expression of sigB was also observed in HR23 and in TR7 growing under 4FTrp. These findings indicated that stabilization of the genetic code can be provided by just a small number of analog-sensitive proteins, forming an oligogenic barrier that safeguards the canonical amino acids throughout biological evolution.
Collapse
Affiliation(s)
- Allen Chi-Shing Yu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aldrin Kay-Yuen Yim
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Kin Mat
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Amy Hin-Yan Tong
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Si Lok
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Xue
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - J. Tze-Fei Wong
- Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
179
|
Choi KY, Wernick DG, Tat CA, Liao JC. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 2014; 23:53-61. [PMID: 24566040 DOI: 10.1016/j.ymben.2014.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 01/24/2023]
Abstract
The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products.
Collapse
Affiliation(s)
- Kwon-Young Choi
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - David G Wernick
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Christine A Tat
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, 7523 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Institute for Genomics and Proteomics, University of California, 201 Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; The Molecular Biology Institute, University of California, Paul D. Boyer Hall Box 951570, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
180
|
Draft Genome Sequence of Bacillus subtilis Type Strain B7-S, Which Converts Ferulic Acid to Vanillin. GENOME ANNOUNCEMENTS 2014; 2:2/1/e00025-14. [PMID: 24526629 PMCID: PMC3924361 DOI: 10.1128/genomea.00025-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis type strain B7-S was obtained through induction with ferulic acid. Here, we present the draft genome of strain B7-S, which contains 5,313,924 bp, with a G+C content of 35.8%, 5,135 protein-coding genes, and 40 tRNA-encoding genes.
Collapse
|
181
|
Zhan D, Sun J, Feng Y, Han W. Theoretical study on the allosteric regulation of an oligomeric protease from Pyrococcus horikoshii by Cl- Ion. Molecules 2014; 19:1828-1842. [PMID: 24514746 PMCID: PMC6270742 DOI: 10.3390/molecules19021828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/24/2023] Open
Abstract
The thermophilic intracellular protease (PH1704) from Pyrococcus horikoshii that functions as an oligomer (hexamer or higher forms) has proteolytic activity and remarkable stability. PH1704 is classified as a member of the C56 family of peptidases. This study is the first to observe that the use of Cl- as an allosteric inhibitor causes appreciable changes in the catalytic activity of the protease. Theoretical methods were used for further study. Quantum mechanical calculations indicated the binding mode of Cl- with Arg113. A molecular dynamics simulation explained how Cl- stabilized distinct contact species and how it controls the enzyme activity. The new structural insights obtained from this study are expected to stimulate further biochemical studies on the structures and mechanisms of allosteric proteases. It is clear that the discovery of new allosteric sites of the C56 family of peptidases may generate opportunities for pharmaceutical development and increases our understanding of the basic biological processes of this peptidase family.
Collapse
Affiliation(s)
- Dongling Zhan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China.
| | - Jiao Sun
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| | - Yan Feng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China.
| |
Collapse
|
182
|
Muntel J, Fromion V, Goelzer A, Maaβ S, Mäder U, Büttner K, Hecker M, Becher D. Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)). Mol Cell Proteomics 2014; 13:1008-19. [PMID: 24696501 DOI: 10.1074/mcp.m113.032631] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MS(E)). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification. The quantification results covered almost four orders of magnitude, ranging roughly from 10 to 150,000 copies per cell. To prove this method for its biological relevance selected physiological aspects of B. subtilis cells grown under conditions requiring either amino acid synthesis or alternatively amino acid degradation were analyzed. This allowed both in particular the validation of the adjustment of protein levels by known regulatory events and in general a perspective of new insights into bacterial physiology. Within new findings the analysis of "protein costs" of cellular processes is extremely important. Such a comprehensive and detailed characterization of cellular protein concentrations based on data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MS(E)) data has been performed for the first time and should pave the way for future comprehensive quantitative characterization of microorganisms as physiological entities.
Collapse
Affiliation(s)
- Jan Muntel
- Institute for Microbiology, Ernst Moritz Arndt University Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol 2014; 30:1893-900. [DOI: 10.1007/s11274-014-1611-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
|
184
|
Bartholomae M, Meyer FM, Commichau FM, Burkovski A, Hillen W, Seidel G. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J 2014; 281:1132-43. [PMID: 24325460 DOI: 10.1111/febs.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.
Collapse
Affiliation(s)
- Maike Bartholomae
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
185
|
Kim D, Yu BJ, Kim JA, Lee YJ, Choi SG, Kang S, Pan JG. The acetylproteome of Gram-positive model bacterium Bacillus subtilis. Proteomics 2013; 13:1726-36. [PMID: 23468065 DOI: 10.1002/pmic.201200001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
N(ε) -lysine acetylation, a reversible and highly regulated PTM, has been shown to occur in the model Gram-negative bacteria Escherichia coli and Salmonella enterica. Here, we extend this acetylproteome analysis to Bacillus subtilis, a model Gram-positive bacterium. Through anti-acetyllysine antibody-based immunoseparation of acetylpeptides followed by nano-HPLC/MS/MS analysis, we identified 332 unique lysine-acetylated sites on 185 proteins. These proteins are mainly involved in cellular housekeeping functions such as central metabolism and protein synthesis. Fifity-nine of the lysine-acetylated proteins showed homology with lysine-acetylated proteins previously identified in E. coli, suggesting that acetylated proteins are more conserved. Notably, acetylation was found at or near the active sites predicted by Prosite signature, including SdhA, RocA, Kbl, YwjH, and YfmT, indicating that lysine acetylation may affect their activities. In 2-amino-3-ketobutyrate CoA ligase Kbl, a class II aminotransferase, a lysine residue involved in pyridoxal phosphate attachment was found to be acetylated. This data set provides evidence for the generality of lysine acetylation in eubacteria and opens opportunities to explore the consequences of acetylation modification on the molecular physiology of B. subtilis.
Collapse
Affiliation(s)
- Dooil Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
186
|
A highly unstable transcript makes CwlO D,L-endopeptidase expression responsive to growth conditions in Bacillus subtilis. J Bacteriol 2013; 196:237-47. [PMID: 24163346 DOI: 10.1128/jb.00986-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis cell wall is a dynamic structure, composed of peptidoglycan and teichoic acid, that is continually remodeled during growth. Remodeling is effected by the combined activities of penicillin binding proteins and autolysins that participate in the synthesis and turnover of peptidoglycan, respectively. It has been established that one or the other of the CwlO and LytE D,L-endopeptidase-type autolysins is essential for cell viability, a requirement that is fulfilled by coordinate control of their expression by WalRK and SigI RsgI. Here we report on the regulation of cwlO expression. The cwlO transcript is very unstable, with its degradation initiated by RNase Y cleavage within the 187-nucleotide leader sequence. An antisense cwlO transcript of heterogeneous length is expressed from a SigB promoter that has the potential to control cellular levels of cwlO RNA and protein under stress conditions. We discuss how a multiplicity of regulatory mechanisms makes CwlO expression and activity responsive to the prevailing growth conditions.
Collapse
|
187
|
The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis. J Bacteriol 2013; 196:515-26. [PMID: 24142252 DOI: 10.1128/jb.01128-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates.
Collapse
|
188
|
Identification of laboratory-specific variations of Bacillus subtilis strains used in Japan. Biosci Biotechnol Biochem 2013; 77:2073-6. [PMID: 24096670 DOI: 10.1271/bbb.130438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The strain of Bacillus subtilis 168 used in laboratories in Japan was distributed in the 1990s when the sequencing consortium commenced operations. After 20 years of use of B. subtilis 168 in many laboratories, observations of variations in growth phenotypes have been reported. In this study, to uncover laboratory-specific variations of B. subtilis 168 strains in Japan, we re-sequenced 11 B. subtilis 168 strains from nine laboratories and analyzed how their genomes differed. We found that the 168 strains from different laboratories differed by 1-7 variations. These variations might have been caused by differences in storage conditions in the laboratories or differences among colonies of the original stock. Based on our results, researchers ought to understand the genetic differences among wild-type (parental) strains in different laboratories and the reference strain by re-sequencing analysis, and ought to pay more attention to the management of laboratory strains.
Collapse
|
189
|
Wiegand S, Dietrich S, Hertel R, Bongaerts J, Evers S, Volland S, Daniel R, Liesegang H. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation. BMC Genomics 2013; 14:667. [PMID: 24079885 PMCID: PMC3871023 DOI: 10.1186/1471-2164-14-667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. RESULTS A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. CONCLUSION The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Norddeutsches Zentrum für Mikrobielle Genomforschung, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Firrao G, Martini M, Ermacora P, Loi N, Torelli E, Foissac X, Carle P, Kirkpatrick BC, Liefting L, Schneider B, Marzachì C, Palmano S. Genome wide sequence analysis grants unbiased definition of species boundaries in "Candidatus Phytoplasma". Syst Appl Microbiol 2013; 36:539-48. [PMID: 24034865 DOI: 10.1016/j.syapm.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
The phytoplasmas are currently named using the Candidatus category, as the inability to grow them in vitro prevented (i) the performance of tests, such as DNA-DNA hybridization, that are regarded as necessary to establish species boundaries, and (ii) the deposition of type strains in culture collections. The recent accession to complete or nearly complete genome sequence information disclosed the opportunity to apply to the uncultivable phytoplasmas the same taxonomic approaches used for other bacteria. In this work, the genomes of 14 strains, belonging to the 16SrI, 16SrIII, 16SrV and 16SrX groups, including the species "Ca. P. asteris", "Ca. P. mali", "Ca. P. pyri", "Ca. P. pruni", and "Ca. P. australiense" were analyzed along with Acholeplasma laidlawi, to determine their taxonomic relatedness. Average nucleotide index (ANIm), tetranucleotide signature frequency correlation index (Tetra), and multilocus sequence analysis of 107 shared genes using both phylogenetic inference of concatenated (DNA and amino acid) sequences and consensus networks, were carried out. The results were in large agreement with the previously established 16S rDNA based classification schemes. Moreover, the taxonomic relationships within the 16SrI, 16SrIII and 16SrX groups, that represent clusters of strains whose relatedness could not be determined by 16SrDNA analysis, could be comparatively evaluated with non-subjective criteria. "Ca. P. mali" and "Ca. P. pyri" were found to meet the genome characteristics for the retention into two different, yet strictly related species; representatives of subgroups 16SrI-A and 16SrI-B were also found to meet the standards used in other bacteria to distinguish separate species; the genomes of the strains belonging to 16SrIII were found more closely related, suggesting that their subdivision into Candidatus species should be approached with caution.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Dipartimento di Scienze Agrarie ed Ambientali, Università di Udine, Udine, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Interuniversity Consortium, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Chan CM, Danchin A, Marlière P, Sekowska A. Paralogous metabolism: S-alkyl-cysteine degradation in Bacillus subtilis. Environ Microbiol 2013; 16:101-17. [PMID: 23944997 DOI: 10.1111/1462-2920.12210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
Metabolism is prone to produce analogs of essential building blocks in the cell (here named paralogous metabolism). The variants result from lack of absolute accuracy in enzyme-templated reactions as well as from molecular aging. If variants were left to accumulate, the earth would be covered by chemical waste. The way bacteria cope with this situation is essentially unexplored. To gain a comprehensive understanding of Bacillus subtilis sulphur paralogous metabolism, we used expression profiling with DNA arrays to investigate the changes in gene expression in the presence of S-methyl-cysteine (SMeC) and its close analog, methionine, as sole sulphur source. Altogether, more than 200 genes whose relative strength of induction was significantly different depending on the sulphur source used were identified. This allowed us to pinpoint operon ytmItcyJKLMNytmO_ytnIJ_rbfK_ytnLM as controlling the pathway cycling SMeC directly to cysteine, without requiring sulphur oxygenation. Combining genetic and physiological experiments, we deciphered the corresponding pathway that begins with protection of the metabolite by acetylation. Oxygenation of the methyl group then follows, and after deprotection (deacetylation), N-formyl cysteine is produced. This molecule is deformylated by the second deformylase present in B. subtilis DefB, yielding cysteine. This pathway appears to be present in plant-associated microbes.
Collapse
Affiliation(s)
- Che-Man Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | |
Collapse
|
192
|
Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 2013; 97:6113-27. [DOI: 10.1007/s00253-013-4960-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/29/2023]
|
193
|
Fernández FJ, Vega MC. Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 2013; 23:365-73. [DOI: 10.1016/j.sbi.2013.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
|
194
|
Ederveen THA, Overmars L, van Hijum SAFT. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction. PLoS One 2013; 8:e63523. [PMID: 23675487 PMCID: PMC3651085 DOI: 10.1371/journal.pone.0063523] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF) calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35–52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path) to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes) with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4%) and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.
Collapse
Affiliation(s)
- Thomas H. A. Ederveen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lex Overmars
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
| | - Sacha A. F. T. van Hijum
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- NIZO Food Research, Kluyver Centre for Genomics of Industrial Fermentation, Ede, The Netherlands
- Top Institute Food and Nutrition, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
195
|
Genome Sequencing of Bacillus subtilis Strain XF-1 with High Efficiency in the Suppression of Plasmodiophora brassicae. GENOME ANNOUNCEMENTS 2013; 1:e0006613. [PMID: 23558530 PMCID: PMC3622977 DOI: 10.1128/genomea.00066-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the rhizobacterium Bacillus subtilis XF-1 is 4.06 Mb in size and harbors 3,853 coding sequences (CDS). Giant gene clusters were dedicated to the nonribosomal synthesis of antimicrobial lipopeptides and polyketides. Remarkably, XF-1 possesses a gene cluster involved in the synthesis of chitosanase that is related to the suppression of the pathogen Plasmodiophora brassicae.
Collapse
|
196
|
Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D, Médigue C, Danchin A. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (Reading) 2013; 159:757-770. [DOI: 10.1099/mic.0.064691-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eugeni Belda
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - François Le Fèvre
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne Morgat
- Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Damien Mornico
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christos Ouzounis
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - David Vallenet
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claudine Médigue
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Danchin
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
197
|
Joubert V, Cheype C, Bonnet J, Packan D, Garnier JP, Teissié J, Blanckaert V. Inactivation of Bacillus subtilis var. niger of both spore and vegetative forms by means of corona discharges applied in water. WATER RESEARCH 2013; 47:1381-1389. [PMID: 23286986 DOI: 10.1016/j.watres.2012.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Spores are dormant units of bacteria resistant to numerous disinfection methods. Additionally, the effects on bacteria of repetitive electrical discharges in water by used of the so-called "corona discharges" or streamer are poorly described. In this study vegetative and spore forms of Bacillus subtilis var. niger were subjected to these discharges. To generate corona discharges in water, a Marx generator capable of delivering 60-90 kV was used with a coaxial chamber of treatment. Vegetative and spore form reductions were defined using colony-forming unit counting. Proteins extracts were separated by two-dimensional electrophoresis and spots of interest were characterized by mass spectrometry. Shock waves were assessed by the diminution of liposome size and OD(400 nm). The results show a decrease in bacteria viability of 2 log(10) after 1000 discharges on the vegetative form and 4 log(10) after 10,000 discharges on the spores. Two-dimensional electrophoresis showed that the streamers impact the regulation of several proteins in the vegetative forms with UniProt ID: P80861, Q06797, P80244, C0ZI91, respectively. The reduction appears to be due, in part, to hydrogen peroxide (H(2)O(2)) generated by the corona discharges while spore deactivation remained insensitive to these chemicals. The spore eradication was associated to shock waves induced by the discharges but not H(2)O(2). Corona discharges appear as a prospective method for eradication of spores in water. The corona discharges can be an efficient method for decontamination processes of waste water.
Collapse
Affiliation(s)
- Vanessa Joubert
- CERPEM, Maison de la Technopole, 6 rue Léonard de Vinci, 53000 Laval, France.
| | | | | | | | | | | | | |
Collapse
|
198
|
Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, Ara K, Ozaki K, Ogasawara N. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact 2013; 12:18. [PMID: 23419162 PMCID: PMC3600796 DOI: 10.1186/1475-2859-12-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/06/2013] [Indexed: 11/23/2022] Open
Abstract
Background The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). Results Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. Conclusions We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.
Collapse
Affiliation(s)
- Kenji Manabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Genome of a Gut Strain of Bacillus subtilis. GENOME ANNOUNCEMENTS 2013; 1:genomeA00184-12. [PMID: 23409263 PMCID: PMC3569322 DOI: 10.1128/genomea.00184-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis is a Gram-positive, rod-shaped, spore-forming bacterium. We present the genome sequence of an undomesticated strain, BSP1, isolated from poultry. The sequence of the BSP1 genome supports the view that B. subtilis has a biphasic lifestyle, cycling between the soil and the animal gastrointestinal tract, and it provides molecular-level insight into the adaptation of B. subtilis to life under laboratory conditions.
Collapse
|
200
|
Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 2013; 195:510-22. [PMID: 23175650 PMCID: PMC3554007 DOI: 10.1128/jb.01505-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.
Collapse
Affiliation(s)
- Tamara Hoffmann
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Annette Wensing
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Margot Brosius
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Marburg, Germany
| |
Collapse
|