151
|
Wei B, Hou J, Sukop MC, Du Q, Wang H. Flow behaviors of emulsions in constricted capillaries: A lattice Boltzmann simulation study. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Huang X, Zhou W, Deng D. Validation of pore network modeling for determination of two-phase transport in fibrous porous media. Sci Rep 2020; 10:20852. [PMID: 33257750 PMCID: PMC7705660 DOI: 10.1038/s41598-020-74581-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
Pore network modeling (PNM) has been widely investigated in the study of multiphase transport in porous media due to its high computational efficiency. The advantage of PNM is achieved in part at the cost of using simplified geometrical elements. Therefore, the validation of pore network modeling needs further verification. A Shan-Chen (SC) multiphase lattice Boltzmann model (LBM) was used to simulate the multiphase flow and provided as the benchmark. PNM using different definitions of throat radius was performed and compared. The results showed that the capillary pressure and saturation curves agreed well when throat radius was calculated using the area-equivalent radius. The discrepancy of predicted phase occupations from different methods was compared in slice images and the reason can be attributed to the capillary pressure gradients demonstrated in LBM. Finally, the relative permeability was also predicted using PNM and provided acceptable predictions when compared with the results using single-phase LBM.
Collapse
Affiliation(s)
- Xiang Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, 361021, China.
| | - Wei Zhou
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, China
| | - Daxiang Deng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
153
|
Farzaneh M, Ström H, Zanini F, Carmignato S, Sasic S, Maggiolo D. Pore-Scale Transport and Two-Phase Fluid Structures in Fibrous Porous Layers: Application to Fuel Cells and Beyond. Transp Porous Media 2020; 136:245-270. [PMID: 33250547 PMCID: PMC7682777 DOI: 10.1007/s11242-020-01509-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
We present pore-scale simulations of two-phase flows in a reconstructed fibrous porous layer. The three-dimensional microstructure of the material, a fuel cell gas diffusion layer, is acquired via X-ray computed tomography and used as input for lattice Boltzmann simulations. We perform a quantitative analysis of the multiphase pore-scale dynamics, and we identify the dominant fluid structures governing mass transport. The results show the existence of three different regimes of transport: a fast inertial dynamics at short times, characterised by a compact uniform front, a viscous-capillary regime at intermediate times, where liquid is transported along a gradually increasing number of preferential flow paths of the size of one–two pores, and a third regime at longer times, where liquid, after having reached the outlet, is exclusively flowing along such flow paths and the two-phase fluid structures are stabilised. We observe that the fibrous layer presents significant variations in its microscopic morphology, which have an important effect on the pore invasion dynamics, and counteract the stabilising viscous force. Liquid transport is indeed affected by the presence of microstructure-induced capillary pressures acting adversely to the flow, leading to capillary fingering transport mechanism and unstable front displacement, even in the absence of hydrophobic treatments of the porous material. We propose a macroscopic model based on an effective contact angle that mimics the effects of the such a dynamic capillary pressure. Finally, we underline the significance of the results for the optimal design of face masks in an effort to mitigate the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Meisam Farzaneh
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Filippo Zanini
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy
| | - Simone Carmignato
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy
| | - Srdjan Sasic
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Dario Maggiolo
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
154
|
Wu S, Chen Y, Chen LQ. Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio. Phys Rev E 2020; 102:053308. [PMID: 33327084 DOI: 10.1103/physreve.102.053308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/01/2020] [Indexed: 11/07/2022]
Abstract
In this study, we extend the pseudopotential lattice Boltzmann model proposed by Huang and Wu [J. Comput. Phys. 327, 121 (2016)10.1016/j.jcp.2016.09.030] to a three-dimensional model for practical simulations of multiphase flows with high density ratio. In this model, an additional source term is introduced into the evolution function, and the performed high-order Chapman-Enskog analysis demonstrates that the Navier-Stokes equations with accurate pressure tensor are recovered. Also, an alternative geometric formulation is developed to obtain various contact angles and an iteration scheme is involved in the initialization to improve the stability of the model. Theoretical and numerical investigations both validate that the thermodynamic consistency and tuning surface tension independently of density ratio is achieved through varying the two free parameters in the source term. Numerical simulations of droplet wetting indicate that a large degree range of contact angles can be precisely realized with the implementation of the wetting boundary scheme. Further dynamic examinations of droplet impingement on a thin film and a dry surface also verify the stability and capability of the proposed pseudopotential lattice Boltzmann model.
Collapse
Affiliation(s)
- Suchen Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic China.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yongping Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic China.,Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People's Republic China
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
155
|
Zhang H, Chen S, Zhang B, Zhang X. Inhibiting Ostwald Ripening by Scaffolding Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13682-13688. [PMID: 33143409 DOI: 10.1021/acs.langmuir.0c02602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoemulsions as colloidal dispersions of deformable nanodroplets promise wide range of applications in pharmaceuticals, cosmetics, and agriculture. The main limitation that reduces their industrial applications is stability, with Ostwald ripening acting as the main destabilization mechanism. Different from the conventional methods by functionalizing nanoemulsions with adequate ripening inhibitors, here we propose an alternative strategy to stabilize nanoemulsions by inhibiting Ostwald ripening. We report via Lattice Boltzmann method (LBM) and theoretical analysis that the evolution of droplets can be manipulated with the help of solid substrates, either along or against the direction of Ostwald ripening. It turns out that through pinning contact line of sessile droplets, heterogeneous substrates or solid nanoparticles can behave as a scaffold to suppress Ostwald ripening, to regulate droplet morphology and to enhance droplet stability. The identical curvature and unexpected stability of scaffolding droplets are then interpreted with free energy analysis. In addition, by simulating substrates with various heterogeneities and solid particles of different shapes, we demonstrate that it is a common phenomenon that scaffolding droplets can evolve beyond Ostwald ripening.
Collapse
Affiliation(s)
- Hongguang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shan Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bo Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
156
|
Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
157
|
Czelusniak LE, Mapelli VP, Guzella MS, Cabezas-Gómez L, Wagner AJ. Force approach for the pseudopotential lattice Boltzmann method. Phys Rev E 2020; 102:033307. [PMID: 33076024 DOI: 10.1103/physreve.102.033307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/17/2020] [Indexed: 11/07/2022]
Abstract
One attractive feature of the original pseudopotential method consists on its simplicity of adding a force dependent on a nearest-neighbor potential function. In order to improve the method, regarding thermodynamic consistency and control of surface tension, different approaches were developed in the literature, such as multirange interactions potential and modified forcing schemes. In this work, a strategy to combine these enhancements with an appropriate interaction force field using only nearest-neighbor interactions is devised, starting from the desired pressure tensor. The final step of our procedure is implementing this external force by using the classical Guo forcing scheme. Numerical tests regarding static and dynamic flow conditions were performed. Static tests showed that current procedure is suitable to control the surface tension and phase densities. Based on thermodynamic principles, it is devised a solution for phase densities in a droplet, which states explicitly dependence on the surface tension and interface curvature. A comparison with numerical results suggest a physical inconsistency in the pseudopotential method. This fact is not commonly discussed in the literature, since most of studies are limited to the Maxwell equal area rule. However, this inconsistency is shown to be dependent on the equation of state (EOS), and its effects can be mitigated by an appropriate choice of Carnahan-Starling EOS parameters. Also, a droplet oscillation test was performed, and the most divergent solution under certain flow conditions deviated 7.5% from the expected analytical result. At the end, a droplet impact test against a solid wall was performed to verify the method stability, and it was possible to reach stable simulation results with density ratio of almost 2400 and Reynolds number of Re=373. The observed results corroborate that the proposed method is able to replicate the desired macroscopic multiphase behavior.
Collapse
Affiliation(s)
- L E Czelusniak
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - V P Mapelli
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - M S Guzella
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucurí Valleys, UFVJM, Diamantina, MG, Brazil
| | - L Cabezas-Gómez
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Alexander J Wagner
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
158
|
Thippavathini S, Das AK. Passage of a Liquid Taylor Drop through Successive Bends in a Rectangular Channel. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudhakar Thippavathini
- National Institute of Technology, Uttarakhand, Srinagar 246174, Garhwal, Uttarakhand, India
- Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Arup K. Das
- Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
159
|
Montellà EP, Chareyre B, Salager S, Gens A. Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic conditions. MethodsX 2020; 7:101090. [PMID: 33194560 PMCID: PMC7645066 DOI: 10.1016/j.mex.2020.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
Hydrostatic properties of partially saturated granular materials at the pore scale are evaluated by the lattice Boltzmann method (LBM) using Palabos implementation of the multi-component multiphase Shan-Chen model. Benchmark cases are presented to quantify the discretization errors and the sensitivity to geometrical and physical properties. This work offers practical guidelines to design LBM simulations of multiphase problems in porous media. Namely, a solid walls retraction procedure is proposed to reduce discretization errors significantly, leading to quadratic convergence. On this basis the equilibrium shapes of pendular bridges simulated numerically are in good agreement with the Young-Laplace equation. Likewise, entry capillary pressure and meniscus profiles in tubes of various cross-sectional shapes are in agreement with analytical predictions. The main points of this article are summarized as:•Benchmark cases for a multi-component Lattice-Boltzmann method are illustrated to be a guideline to calibrate the method in hydrostatic conditions.•A wall retraction procedure is introduced to minimize discretization errors.
Collapse
Affiliation(s)
- E P Montellà
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France.,Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya - CIMNE, Barcelona, Spain
| | - B Chareyre
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France
| | - S Salager
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France
| | - A Gens
- Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya - CIMNE, Barcelona, Spain
| |
Collapse
|
160
|
Lattice Boltzmann Method Applied to Nuclear Reactors—A Systematic Literature Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12187835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear engineering requires computationally efficient methods to simulate different components and systems of plants. The Lattice Boltzmann Method (LBM), a numerical method with a mesoscopic approach to Computational Fluid Dynamic (CFD) derived from the Boltzmann equation and the Maxwell–Boltzmann distribution, can be an adequate option. The purpose of this paper is to present a review of the recent applications of the Lattice Boltzmann Method in nuclear engineering research. A systematic literature review using three databases (Web of Science, Scopus, and ScienceDirect) was done, and the items found were categorized by the main research topics into computational fluid dynamics and neutronic applications. The features of the problem addressed, the characteristics of the numerical method, and some relevant conclusions of each study are resumed and presented. A total of 45 items (25 for computational fluid dynamics applications and 20 for neutronics) was found on a wide range of nuclear engineering problems, including thermal flow, turbulence mixing of coolant, sedimentation of impurities, neutron transport, criticality problem, and other relevant issues. The LBM results in being a flexible numerical method capable of integrating multiphysics and hybrid schemes, and is efficient for the inner parallelization of the algorithm that brings a widely applicable tool in nuclear engineering problems. Interest in the LBM applications in this field has been increasing and evolving from early stages to a mature form, as this review shows.
Collapse
|
161
|
Mousavi SE, Moshfegh A, Afrouzi HH, Javadzadegan A, Toghraie D. Simulation of droplet detachment from hydrophobic and hydrophilic solid surfaces under the electric field using Lattice Boltzmann Method (LBM). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
162
|
Study on the Collapse Process of Cavitation Bubbles Near the Concave Wall by Lattice Boltzmann Method Pseudo-Potential Model. ENERGIES 2020. [DOI: 10.3390/en13174398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the lattice Boltzmann pseudo-potential model coupled the Carnahan–Starling (C-S) equation of state and Li’s force scheme are used to study the collapse process of cavitation bubbles near the concave wall. It mainly includes the collapse process of the single and double cavitation bubbles in the near-wall region. Studies have shown that the collapse velocity of a single cavitation bubble becomes slower as the additional pressure reduces, and the velocity of the micro-jet also decreases accordingly. Moreover, the second collapse of the cavitation bubble cannot be found if the additional pressure reduces further. When the cavitation bubble is located in different angles with vertical direction, its collapse direction is always perpendicular to the wall. If the double cavitation bubbles are arranged vertically, the collapse process of the upper bubble will be quicker, as the relative distance increases. When the relative distance between the bubbles is large enough, no second collapse can be found for the upper bubble. On the other hand, when two cavitation bubbles are in the horizontal arrangement, the suppression effect between cavitation bubbles decreases as the relative distance between the bubbles increases and the collapse position of cavitation bubbles moves from the lower part to the upper part.
Collapse
|
163
|
Pasieczynski K, Chen B. Multipseudopotential interaction models for thermal lattice Boltzmann method simulations. Phys Rev E 2020; 102:013311. [PMID: 32794902 DOI: 10.1103/physreve.102.013311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/06/2020] [Indexed: 11/07/2022]
Abstract
In this work, in the first instance, the multipseudopotential interaction (MPI) model's capabilities are extended for hydrodynamic simulations. This is achieved by combining MPI with the multiple-relaxation-time collision operator and with surface tension modification methods. A method of approaching thermodynamic consistency is also proposed, which consists of splitting the ɛ_{j} term into separate terms. One of these terms is used in the calculation of the interparticle force, and the second one is used in the forcing scheme. Secondly, MPI is combined with thermal models in order to simulate droplet evaporation and bubble nucleation in pool boiling. Thermal coupling is implemented using a double distribution function thermal model and a hybrid thermal model. It is found that MPI thermal models obey the D^{2}-law closely for droplet evaporation. MPI is also found to correctly simulate bubble nucleation and departure from the heating element during nucleate pool boiling. It can be suggested that MPI thermal models are comparatively better suited to thermal simulations at low reduced temperatures than single pseudopotential interaction models, although such cases remain very challenging. Droplet evaporation simulations are carried out at a reduced temperature (T_{r}) of 0.6 by setting the parameters in the Peng-Robinson equation of state to a=1/6272 and b=1/168.
Collapse
Affiliation(s)
- Kamil Pasieczynski
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Baixin Chen
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
164
|
Zhang T, Javadpour F, Li X, Wu K, Li J, Yin Y. Mesoscopic method to study water flow in nanochannels with different wettability. Phys Rev E 2020; 102:013306. [PMID: 32794987 DOI: 10.1103/physreve.102.013306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Molecular dynamics (MD) simulations is currently the most popular and credible tool to model water flow in nanoscale where the conventional continuum equations break down due to the dominance of fluid-surface interactions. However, current MD simulations are computationally challenging for the water flow in complex tube geometries or a network of nanopores, e.g., membrane, shale matrix, and aquaporins. We present a novel mesoscopic lattice Boltzmann method (LBM) for capturing fluctuated density distribution and a nonparabolic velocity profile of water flow through nanochannels. We incorporated molecular interactions between water and the solid inner wall into LBM formulations. Details of the molecular interactions were translated into true and apparent slippage, which were both correlated to the surface wettability, e.g., contact angle. Our proposed LBM was tested against 47 published cases of water flow through infinite-length nanochannels made of different materials and dimensions-flow rates as high as seven orders of magnitude when compared with predictions of the classical no-slip Hagen-Poiseuille (HP) flow. Using the developed LBM model, we also studied water flow through finite-length nanochannels with tube entrance and exit effects. Results were found to be in good agreement with 44 published finite-length cases in the literature. The proposed LBM model is nearly as accurate as MD simulations for a nanochannel, while being computationally efficient enough to allow implications for much larger and more complex geometrical nanostructures.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China.,Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, Texas 78713, USA
| | - Farzam Javadpour
- Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, Texas 78713, USA
| | - Xiangfang Li
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China
| | - Keliu Wu
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China.,The Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, Canada T2N1N4
| | - Jing Li
- The Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, Canada T2N1N4
| | - Ying Yin
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
165
|
Simulation of Boiling Heat Transfer at Different Reduced Temperatures with an Improved Pseudopotential Lattice Boltzmann Method. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pseudopotential Lattice Boltzmann Method has attracted much attention in the recent years for the simulation of boiling heat transfer. Many studies have been published recently for the simulation of the bubble cycle (nucleation, growth and departure from a heated surface). This paper puts forward two-dimensional simulations of bubble nucleation, growth and departure using an improved pseudopotential Lattice Boltzmann Model from the literature at different reduced temperatures, Tr=0.76 and Tr=0.86. Two different models using the Bhatnagar–Gross–Krook (BGK) and the Multiple-Relaxation-Time (MRT) collision operators with appropriate forcing schemes are used. The results for pool boiling show that the bubbles exhibit axial symmetry during growth and departure. Numerical results of departure diameter and release period for pool boiling are compared against empirical correlations from the literature by varying the gravitational acceleration. Reasonable agreement is observed. Nucleate boiling trends with heat flux are also captured by the simulations. Numerical results of flow boiling simulations are compared by varying the Reynolds number for both reduced temperatures with the MRT model. It was found that the departure diamenter and release period decreases with the increase of the Reynolds number. These results are a direct effect of the drag force. Proper conclusions are commented at the end of the paper.
Collapse
|
166
|
Wang X, Xu B, Chen Z, Yang Y, Cao Q. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9204-9214. [PMID: 32660253 DOI: 10.1021/acs.langmuir.0c01469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The model of vapor condensation heat transfer on downward-facing surfaces with different wettabilities is built by a two-dimensional (2D) lattice Boltzmann method. Dynamic evolution of condensate microdroplets on different wettability surfaces is simulated and the influence on heat transfer performance is analyzed. Moreover, the mechanism of a heterogeneous wettability surface enhancing condensation heat transfer is explored by investigating the condensate behaviors in the process of condensation. The numerical results indicate that as the contact angle of the homogeneous wettability surface increases, the initial nucleation time of the condensate is prolonged, while the departure time of the condensate is reduced significantly. The temperature adjacent to the gas-liquid interface, especially in the three-phase contact line region, is much higher than elsewhere due to the release of latent heat during condensation. Coalescence and detachment behaviors of condensate droplets cause the average heat flux to fluctuate locally with time. For the hybrid wettability surface, if the proportion of hydrophobic regions is small, the condensation heat transfer performance will be deteriorated. However, increasing the hydrophobic-hydrophilic ratio has a positive effect on enhancing heat transfer. It is found that a critical hydrophobic-hydrophilic ratio exists to optimize the heat transfer performance. For the gradient wettability surface, directional migration induced by capillary force facilitates the removal of condensate droplets, thereby enhancing the condensation heat transfer. Furthermore, a larger wetting gradient benefits to further improve the heat transfer performance. The results are valuable for optimally designing the heat transfer enhancement of vapor condensation on functionalized surfaces with heterogeneous wettability.
Collapse
Affiliation(s)
- Xin Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, P. R. China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, P. R. China
| | - Yang Yang
- Engineering and Technology Center For Space Applications, Chinese Academy of Sciences, Beijing 100094, P. R. China
| | - Qian Cao
- Engineering and Technology Center For Space Applications, Chinese Academy of Sciences, Beijing 100094, P. R. China
| |
Collapse
|
167
|
Lubbers N, Agarwal A, Chen Y, Son S, Mehana M, Kang Q, Karra S, Junghans C, Germann TC, Viswanathan HS. Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media. Sci Rep 2020; 10:13312. [PMID: 32770012 PMCID: PMC7414857 DOI: 10.1038/s41598-020-69661-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Fine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. At these scales, fluids are under confinement, affecting key properties such as density, viscosity, adsorption, etc. Pore-scale Lattice Boltzmann Methods (LBM) can simulate flow in complex pore structures relevant to predicting hydrocarbon production, but must be corrected to account for confinement effects. Molecular dynamics (MD) can model confinement effects but is computationally expensive in comparison. The hurdle to bridging MD with LBM is the computational expense of MD simulations needed to perform this correction. Here, we build a Machine Learning (ML) surrogate model that captures adsorption effects across a wide range of parameter space and bridges the MD and LBM scales using a relatively small number of MD calculations. The model computes upscaled adsorption parameters across varying density, temperature, and pore width. The ML model is 7 orders of magnitude faster than brute force MD. This workflow is agnostic to the physical system and could be generalized to further scale-bridging applications.
Collapse
Affiliation(s)
- Nicholas Lubbers
- Information Sciences Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yu Chen
- Computational Earth Science Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Soyoun Son
- Institut des Sciences de la Terre, Université Grenoble Alpes, Grenoble, France.,Geophysics Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mohamed Mehana
- Computational Earth Science Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Qinjun Kang
- Computational Earth Science Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Satish Karra
- Computational Earth Science Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Christoph Junghans
- Applied Computer Science Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Timothy C Germann
- Physics and Chemistry of Materials Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Hari S Viswanathan
- Computational Earth Science Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
168
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
169
|
Wen B, Zhao L, Qiu W, Ye Y, Shan X. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios. Phys Rev E 2020; 102:013303. [PMID: 32794892 DOI: 10.1103/physreve.102.013303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/17/2020] [Indexed: 11/07/2022]
Abstract
The liquid-gas density ratio is a key property of multiphase flow methods to model real fluid systems. Here, a chemical-potential multiphase lattice Boltzmann method is constructed to realize extremely large density ratios. The simulations show that the method reaches very low temperatures, at which the liquid-gas density ratio is more than 10^{14}, while the thermodynamic consistency is still preserved. Decoupling the mesh space from the momentum space through a proportional coefficient, a smaller mesh step provides denser lattice nodes to exactly describe the transition region and the resulting dimensional transformation has no loss of accuracy. A compact finite-difference method is applied to calculate the discrete derivatives in the mesh space with high-order accuracy. These enhance the computational accuracy of the nonideal force and suppress the spurious currents to a very low level, even if the density ratio is up to tens of thousands. The simulation of drop splashing verifies that the present model is Galilean invariant for the dynamic flow field. An upper limit of the chemical potential is used to reduce the influence of nonphysical factors and improve the stability.
Collapse
Affiliation(s)
- Binghai Wen
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Liang Zhao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Wen Qiu
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Yong Ye
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Xiaowen Shan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
170
|
Lee YK, Ahn KH. Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann method coupled with the smoothed profile method. Phys Rev E 2020; 101:053302. [PMID: 32575323 DOI: 10.1103/physreve.101.053302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/12/2020] [Indexed: 11/07/2022]
Abstract
We suggest a numerical method to describe particle dynamics at the fluid interface. We adopt a coupling strategy by combining the color gradient lattice Boltzmann method (CGLBM) and smoothed profile method (SPM). The proposed scheme correctly resolves the momentum transfer among the solid particles and fluid phases while effectively controlling the wetting condition. To validate the present algorithm (CGLBM-SPM), we perform several simulation tests like wetting a single solid particle and capillary interactions in two solid particles floating at the fluid interface. Simulation results show a good agreement with the analytical solutions available and look qualitatively reasonable. From these analyses, we conclude that the key features of the particle dynamics at the fluid interface are correctly resolved in our simulation method. In addition, we apply the present method for spinodal decomposition of a ternary mixture, which contains two-immiscible fluids with solid particles. By adding solid particles, fluid segregation is much suppressed than in the binary liquid mixture case. Furthermore, it has different morphology, such as with the jamming structure of the particles at the fluid interface, and captured images are similar to bicontinuous interfacially jammed emulsion gels in literature. From these results, we confirm the feasibility of the present method to describe soft matters; in particular, emulsion systems that contain solid particles at the interface.
Collapse
Affiliation(s)
- Young Ki Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| | - Kyung Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
171
|
Suo S, Liu M, Gan Y. An LBM-PNM framework for immiscible flow: With applications to droplet spreading on porous surfaces. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
172
|
Visualization of dispersed phase in the carrier phase with lattice Boltzmann method through high- and low-resolution observations. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
173
|
Peng C, Ayala LF, Wang Z, Ayala OM. Attainment of rigorous thermodynamic consistency and surface tension in single-component pseudopotential lattice Boltzmann models via a customized equation of state. Phys Rev E 2020; 101:063309. [PMID: 32688506 DOI: 10.1103/physreve.101.063309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 11/07/2022]
Abstract
The lack of thermodynamic consistency is a well-recognized problem in the single-component pseudopotential lattice Boltzmann models which prevents them from replicating accurate liquid and vapor phase densities; i.e., current models remain unable to exactly match coexisting density values predicted by the associated thermodynamic model. Most of the previous efforts had attempted to solve this problem by introducing tuning parameters, whose determination required empirical trial and error until acceptable thermodynamic consistency was achieved. In this study, we show that the problem can be alternatively solved by properly designing customized equations of state (EOSs) that replace any cubic EOS of choice during the computation of effective mass used in Shan-Chen forces. A two-parameter cubic-shaped customized EOS is introduced. Contrary to previous efforts, customization parameters in the new EOS are nonempirical and are rather derived from solving the integral mechanical stability equation, which neglects the need for any type of tuning for the attainment of rigorous thermodynamic consistency. The proposed approach reduces the errors of the coexisting densities and saturated pressure in the simulation to a maximum of 0.01% within the liquid-vapor density ratio range from O(1) to O(10^{4}), which had not been achieved in any of the previous tuning-based efforts. A straightforward way for achieving the desired surface tension via the customized EOS is also provided.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luis F Ayala
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Zhicheng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Orlando M Ayala
- Department of Engineering Technology, Old Dominion University, 111A Kaufman Hall, Norfolk, Virginia 23529, USA
| |
Collapse
|
174
|
Gharibi F, Ashrafizaadeh M. Simulation of high-viscosity-ratio multicomponent fluid flow using a pseudopotential model based on the nonorthogonal central-moments lattice Boltzmann method. Phys Rev E 2020; 101:043311. [PMID: 32422822 DOI: 10.1103/physreve.101.043311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/29/2020] [Indexed: 11/07/2022]
Abstract
In this research, the development of a pseudopotential multicomponent model with the capability of simulating high-viscosity-ratio flows is discussed and examined. The proposed method is developed based on the non-orthogonal central moments model in the lattice Boltzmann method, and the exact difference model (EDM) is used to apply the intercomponent interaction force. In contrast to the original Shan-Chen model, in which the applying force has the viscosity-dependent error term, the error term of this model does not depend on the viscosity. A GPU parallel cuda code has been developed and is employed to study the proposed method. Different cases are considered to evaluate the ability of the model, including the Laplace test, a static droplet, and a two-component concurrent channel flow. Also, wetting and nonwetting relative permeabilities for flows with dynamic viscosity ratios between 0.0002 and 5000 are predicted. Numerical results are compared with those of available analytical solutions. Very good agreement between these results are observed. The model has the capability of simulating multicomponent flows with very low kinematic viscosities of the order of 10^{-5} and dynamic viscosity ratios of up to an order of 10^{4}, which is a much wider range compared with that of existing pseudopotential models. Furthermore, the results showed that the parallel processing on GPU significantly accelerated computations. The present parallel performance evaluation shows that the cuda parallel can achieve about 41 times improvement than the CPU serial implementation. The aforementioned enhancement increases the flexibility of the multicomponent lattice Boltzmann method and its applicability to a broader spectrum of engineering applications.
Collapse
Affiliation(s)
- Farshad Gharibi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156, Iran
| | - Mahmud Ashrafizaadeh
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156, Iran
| |
Collapse
|
175
|
Mino Y, Shinto H. Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity. Phys Rev E 2020; 101:033304. [PMID: 32290019 DOI: 10.1103/physreve.101.033304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/15/2020] [Indexed: 11/07/2022]
Abstract
A computational technique was developed to simulate wettable particles trapped at a fluid-fluid interface under gravity. The proposed technique combines the improved smoothed profile-lattice Boltzmann method (iSP-LBM) for the treatment of moving solid-fluid boundaries and the free-energy LBM for the description of isodensity immiscible two-phase flows. We considered five benchmark problems in two-dimensional systems, including a stationary drop, a wettable particle trapped at a fluid-fluid interface in the absence or presence of gravity, two freely moving particles at a fluid-fluid interface in the presence of gravity (i.e., capillary floatation forces), and two vertically constrained particles at a fluid-fluid interface (i.e., capillary immersion forces). The simulation results agreed well with theoretical estimations, demonstrating the efficacy of the proposed technique.
Collapse
Affiliation(s)
- Yasushi Mino
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroyuki Shinto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
176
|
Yang J, Ma X, Fei L, Zhang X, Luo KH, Shuai S. Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number. J Colloid Interface Sci 2020; 566:327-337. [PMID: 32014676 DOI: 10.1016/j.jcis.2020.01.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/01/2022]
Abstract
Contact angle hysteresis, defined as the difference between advancing and receding contact angles, is an important phenomenon in multiphase flow on a wetting surface. In this study, a modified pseudo-potential lattice Boltzmann (LB) multiphase model with tunable surface tension is proposed, which is further coupled with the geometrical formulation contact angle scheme to investigate the motion of droplets invoking the contact angle hysteresis. We focus on the dynamic behaviour of droplets driven by a body force at the Bond number ranging from 1 to 6, which is defined as the ratio of the body force to the capillary force. The droplet morphology change is examined by varying (i) the Bond number and (ii) the hysteresis window. Results show the droplet morphology evolution can be classified into different stages, including stretch, relaxation, and equilibrium. The droplet oscillation phenomenon at large Bond numbers at the equilibrium stage is observed for the first time. In addition, it is found that such oscillation can lead to the breakup and/or coalescence of droplets when the surface waves spread on the top of the droplet. Furthermore, there is slight oscillation of the normalized length, width and height at the equilibrium stage for the neutral hysteresis window while more dramatic oscillation will appear for the hydrophobic hysteresis window.
Collapse
Affiliation(s)
- Jiapei Yang
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Xiao Ma
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Linlin Fei
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Zhang
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| | - Shijin Shuai
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| |
Collapse
|
177
|
Peter T, Malgaretti P, Rivas N, Scagliarini A, Harting J, Dietrich S. Numerical simulations of self-diffusiophoretic colloids at fluid interfaces. SOFT MATTER 2020; 16:3536-3547. [PMID: 32215402 DOI: 10.1039/c9sm02247c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesoscopic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids. In particular, we study the dependence of this torque on the contact angle of the colloid with the fluid-fluid interface and on its surface properties. We rationalize our results via an approximate approach which accounts for the appearance of a local friction coefficient. By providing insight into the dynamics of active colloids adsorbed at fluid interfaces, our results are relevant for two-dimensional self assembly and emulsion stabilization by means of active colloids.
Collapse
Affiliation(s)
- T Peter
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
178
|
Asadi MB, De Rosis A, Zendehboudi S. Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach. J Phys Chem B 2020; 124:2900-2913. [PMID: 32017560 DOI: 10.1021/acs.jpcb.9b10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic and thermodynamic behaviors of associating fluids play a crucial role in various science and engineering disciplines. Cubic plus association equation of state (CPA EOS) is implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model the multiphase thermodynamic characteristics such as reduced density of associating fluids. The priority of central-moments-based approach over multiple-relaxation-time collision operator is highlighted by performing double shear layers. The integration of central-moments-based LBM and CPA EOS is useful to simulate the dynamic and thermodynamic characteristics of associating fluids at high flow rate conditions, which is extended to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to increase the stability of the model, a higher anisotropy order of the gradient operator is implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type of gradient operator considerably affects the model thermodynamic consistency. Finally, the model is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic behaviors of associating fluids is of significance in various applications including biological processes as well as fluid flow in porous media.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Alessandro De Rosis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
179
|
Zheng L, Zheng S, Zhai Q. Reduction-consistent phase-field lattice Boltzmann equation for N immiscible incompressible fluids. Phys Rev E 2020; 101:043302. [PMID: 32422736 DOI: 10.1103/physreve.101.043302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/05/2020] [Indexed: 11/07/2022]
Abstract
In this paper, we develop a reduction-consistent conservative phase-field method for interface-capturing among N (N≥ 2) immiscible fluids, which is governed by conservative Allen-Cahn equation (CACE); here the reduction-consistent property is that if only M (1≤M≤N-1) immiscible fluids are present in a N-phase system, the governing equations for N immiscible fluids must reduce to the corresponding M immiscible fluids system. Then we propose a reduction-consistent lattice Boltzmann equation (LBE) method for solving N immiscible incompressible fluids with high density and viscosity contrasts. Some numerical simulations are carried out to validate the present LBE such as stationary droplets, spreading of a liquid lens, and spinodal decomposition together with the reduction-consistent property, and the numerical results predicted by present LBE are in good agreement with the analytical solutions/other numerical results, which also demonstrate the reduction-consistent property by present LBE.
Collapse
Affiliation(s)
- Lin Zheng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Song Zheng
- School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Qinglan Zhai
- School of Economics Management and Law, Chaohu University, Chaohu 238000, People's Republic of China
| |
Collapse
|
180
|
Numerical Investigation of the Effect of Viscoelasticity on Drop Retraction and the Evaluation of Interfacial Tension between Polymer Melts. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8405745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this paper is twofold. The first is to numerically investigate and reveal the effect of polymer viscoelasticity on the retraction of a deformed drop using the lattice Boltzmann (LB) method and polymer kinetic theory. More importantly, the second is to propose a novel method to evaluate the interfacial tension between polymer melts based on the numerical study. Compared with the conventional deformed drop retraction method (DDRM), the present method is designed to greatly reduce the impact of polymer viscoelasticity on measuring interfacial tension. To verify, the interfacial tension between molten PP and POE is evaluated using the proposed method and obviously closer result to the true value is shown.
Collapse
|
181
|
Wang Z, Pereira JM, Gan Y. Effect of Wetting Transition during Multiphase Displacement in Porous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2449-2458. [PMID: 32070092 DOI: 10.1021/acs.langmuir.9b03780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of wettability on multiphase displacement in porous media have been studied extensively in the past, and the contact angle is identified as an important factor influencing the displacement patterns. At the same time, it has been found that the effective contact angle can vary drastically in a time-dependent manner on rough surfaces due to the Cassie-Wenzel wetting transition. In this study, we develop a theoretical model at the pore scale describing the apparent contact angle on a rough interface as a function of time. The theory is then incorporated into the lattice Boltzmann method for simulation of multiphase displacement in disordered porous media. A dimensionless time ratio, Dy, describing the relative speed of the wetting transition and pore invasion is defined. We show that the displacement patterns can be significantly influenced by Dy, where more trapped defending ganglia are observed at large Dy values, leading to lower displacement efficiency. We investigate the mobilization of trapped ganglia through identifying different mobilization dynamics during displacement, including translation, coalescence, and fragmentation. Agreement is observed between the mobilization statistics and the total pressure gradient across a wide range of Dy values. Understanding the effect of the wetting transition during multiphase displacement in porous media is of importance for applications such as carbon geosequestration and oil recovery, especially for porous media where solid surface roughness cannot be neglected.
Collapse
Affiliation(s)
- Zhongzheng Wang
- School of Civil Engineering, The University of Sydney, Sydney, 2006, New South Wales , Australia
- Navier, Ecole des Ponts, Université Gustave Eiffel, CNRS, 77420, Marne-la-Vallée, France
| | - Jean-Michel Pereira
- Navier, Ecole des Ponts, Université Gustave Eiffel, CNRS, 77420, Marne-la-Vallée, France
| | - Yixiang Gan
- School of Civil Engineering, The University of Sydney, Sydney, 2006, New South Wales , Australia
| |
Collapse
|
182
|
From CS, Sauret E, Galindo-Torres SA, Gu YT. Application of high-order lattice Boltzmann pseudopotential models. Phys Rev E 2020; 101:033303. [PMID: 32290007 DOI: 10.1103/physreve.101.033303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/10/2020] [Indexed: 11/07/2022]
Abstract
Higher-order lattice Boltzmann (LB) pseudopotential models have great potential for solving complex fluid dynamics in various areas of modern science. The discreteness of the lattice discretization makes these models an attractive choice due to their flexibility, capacity to capture hydrodynamic details, and inherent adaptability to parallel computations. Despite those advantages, the discreteness makes high-order LB models difficult to apply due to the larger lattice structure, for which basic fundamental properties, namely diffusion coefficient and contact angle, remain unknown. This work addresses this by providing general continuum solutions for those two basic properties and demonstrating these solutions to compare favorably against known theory. Various high-order LB models are shown to reproduce the sinusoidal decay of a binary miscible mixture accurately and consistently. Furthermore, these models are shown to reproduce neutral, hydrophobic, and hydrophilic contact angles. Discrete differences are shown to exist, which are captured at the discrete level and confirmed through droplet shape analysis. This work provides practical tools that allow for high-order LB pseudopotential models to be used to simulate multicomponent flows.
Collapse
Affiliation(s)
- C S From
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| | - E Sauret
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| | - S A Galindo-Torres
- School of Engineering, Westlake University, Hangzhou Zhejiang Province 310024, China.,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou Zhejiang Province 310024, China
| | - Y T Gu
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| |
Collapse
|
183
|
Hu Y, Zhang B, Tan K, He Y, Zhu J. Regulation of natural convection heat transfer for SiO
2
–solar salt nanofluids by optimizing rectangular vessels design. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanwei Hu
- School of Energy Science and EngineeringHarbin Institute of Technology Harbin China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes Harbin China
| | - Borui Zhang
- School of Energy Science and EngineeringHarbin Institute of Technology Harbin China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes Harbin China
| | - Kaiyu Tan
- School of Energy Science and EngineeringHarbin Institute of Technology Harbin China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes Harbin China
| | - Yurong He
- School of Energy Science and EngineeringHarbin Institute of Technology Harbin China
- Heilongjiang Key Laboratory of New Energy Storage Materials and Processes Harbin China
| | - Jiaqi Zhu
- Center for Composite Materials and Structures, School of AstronauticsHarbin Institute of Technology Harbin China
| |
Collapse
|
184
|
Ghorbanpour-Arani A, Rahimian MH, Haghani-Hassan-Abadi R. Numerical simulation of dissolved air flotation using a lattice Boltzmann method. Phys Rev E 2020; 101:023105. [PMID: 32168708 DOI: 10.1103/physreve.101.023105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/24/2019] [Indexed: 11/07/2022]
Abstract
In this paper, the behavior of a bubble and droplet rising in a system, namely, a dissolved air flotation system, is investigated under different conditions. A lattice Boltzmann model which is based on the Cahn-Hilliard equations for ternary flows is implemented. This model can handle high density and viscosity ratios, remove parasitic currents, and capture partial and total spreading conditions. Two classical problems, such as spreading of a liquid lens and the Rayleigh-Taylor instability are used to determine the accuracy of the model. As a practical application, three-component flow in a tank is studied and the dynamics of bubble and droplet under different conditions is investigated. We then concentrate on the dimensionless average velocity and locations of bubble and droplet at different density ratios, viscosity ratios, and diameter ratios. Also, total spreading and partial spreading conditions are compared. The numerical results are justifiable physically and show the ability of this model to simulate three-component flows.
Collapse
|
185
|
Kolluru PK, Atif M, Namburi M, Ansumali S. Lattice Boltzmann model for weakly compressible flows. Phys Rev E 2020; 101:013309. [PMID: 32069676 DOI: 10.1103/physreve.101.013309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Indexed: 11/07/2022]
Abstract
We present an energy conserving lattice Boltzmann model based on a crystallographic lattice for simulation of weakly compressible flows. The theoretical requirements and the methodology to construct such a model are discussed. We demonstrate that the model recovers the isentropic sound speed in addition to the effects of viscous heating and heat flux dynamics. Several test cases for acoustics and thermal and thermoacoustic flows are simulated to show the accuracy of the proposed model.
Collapse
Affiliation(s)
- Praveen Kumar Kolluru
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohammad Atif
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Manjusha Namburi
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Santosh Ansumali
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
186
|
Rashidian H, Broom M, Willmott GR, Sellier M. Effects of a microscale ridge on dynamic wetting during drop impact. J R Soc N Z 2020. [DOI: 10.1080/03036758.2019.1706587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hossein Rashidian
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Matheu Broom
- Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Geoff R. Willmott
- Department of Physics, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Mathieu Sellier
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
187
|
Fei L, Scagliarini A, Luo KH, Succi S. Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels. SOFT MATTER 2020; 16:651-658. [PMID: 31802091 DOI: 10.1039/c9sm02331c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rheology of pressure-driven flows of two-dimensional dense monodisperse emulsions in neutral wetting microchannels is investigated by means of mesoscopic lattice Boltzmann simulations, capable of handling large collections of droplets, in the order of several hundreds. The simulations reveal that the fluidization of the emulsion proceeds through a sequence of discrete steps, characterized by yielding events whereby layers of droplets start rolling over each other, thus leading to sudden drops of the relative effective viscosity. It is shown that such discrete fluidization is robust against loss of confinement, namely it persists also in the regime of small ratios of the droplet diameter over the microchannel width. We also develop a simple phenomenological model which predicts a linear relation between the relative effective viscosity of the emulsion and the product of the confinement parameter (global size of the device over droplet radius) and the viscosity ratio between the disperse and continuous phases. The model shows excellent agreement with the numerical simulations. The present work offers new insights to enable the design of microfluidic scaffolds for tissue engineering applications and paves the way to detailed rheological studies of soft-glassy materials in complex geometries.
Collapse
Affiliation(s)
- Linlin Fei
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | |
Collapse
|
188
|
Xu D, Ba Y, Sun J, Fu X. A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:340-353. [PMID: 31851519 DOI: 10.1021/acs.langmuir.9b02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wettability-confined tracks have been extensively used in open-surface microfluidic devices for their high capacity of transporting droplet pumplessly. Inspired by the experimental work of Sen et al. [ Langmuir 2018 , 34 , 1899 - 1907 ], in the present study, a three-dimensional phase-field lattice Boltzmann model is developed and used to investigate the spreading behaviors of microdroplet on a series of wettability-confined tracks. The experimental findings are successfully reproduced through our simulation, where three distinct stages of droplet spreading on the horizontal wettability-confined diverging track are fairly exhibited, that is, the initial stage with droplet front spreading quickly, the intermediate stage with both droplet front and bulge moving forward at a constant speed, and the final stage with droplet front decelerating gradually. Moreover, a parametric study of track divergence angle is further performed, and the influential mechanism of track divergence angle on droplet spreading is further revealed. It is demonstrated that track divergence is responsible for the Laplace pressure gradient and capillary force inside the droplet, which drives the droplet bulge to move forward on the diverging track. With an increase in divergence angle, the capillary force increases linearly, which increases the droplet spreading speed at the initial and intermediate stages, while the peak capillary force comes earlier, and consequently the final decelerating stage comes earlier. On the basis of the parametric study and droplet volume conservation rule, a power law relation between track divergence angle and droplet spreading is proposed, which helps to identify the start of final decelerating stage. Finally, the droplet spreading over various inclined tracks is explored, which can be achieved only when the capillary force at the beginning is larger than the droplet gravity component along the inclined track surface.
Collapse
Affiliation(s)
- Da Xu
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| | - Yan Ba
- School of Astronautics , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , China
| | - Jinju Sun
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| | - Xiaojin Fu
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| |
Collapse
|
189
|
Subhedar A, Reiter A, Selzer M, Varnik F, Nestler B. Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids. Phys Rev E 2020; 101:013313. [PMID: 32069649 DOI: 10.1103/physreve.101.013313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 06/10/2023]
Abstract
We study the interface tracking characteristics of a color-gradient-based lattice Boltzmann model for immiscible flows. Investigation of the local density change in one of the fluid phases, via a Taylor series expansion of the recursive lattice Boltzmann equation, leads to the evolution equation of the order parameter that differentiates the fluids. It turns out that this interface evolution follows a conservative Allen-Cahn equation with a mobility which is independent of the fluid viscosities and surface tension. The mobility of the interface, which solely depends upon lattice speed of sound, can have a crucial effect on the physical dynamics of the interface. Further, we find that, when the equivalent lattice weights inside the segregation operator are modified, the resulting differential operators have a discretization error that is anisotropic to the leading order. As a consequence, the discretization errors in the segregation operator, which ensures a finite interface width, can act as a source of the spurious currents. These findings are supported with the help of numerical simulations.
Collapse
Affiliation(s)
- A Subhedar
- Institute for Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| | - A Reiter
- Institute for Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| | - M Selzer
- Institute for Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany
| | - F Varnik
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - B Nestler
- Institute for Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany
| |
Collapse
|
190
|
Yazdi H, Rahimian MH, Safari H. A lattice Boltzmann model for computing compressible two-phase flows with high density ratio. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-019-1872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
191
|
Zheng L, Zheng S, Zhai Q. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method. Phys Rev E 2020; 101:013305. [PMID: 32069624 DOI: 10.1103/physreve.101.013305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
In this paper, we develop a conservative phase-field method for interface-capturing among N (N≥2) immiscible fluids, the evolution of the fluid-fluid interface is captured by conservative Allen-Cahn equation (CACE), and the interface force of N immiscible fluids is incorporated to Navier-Stokes equation (NSE) by chemical potential form. Accordingly, we propose a lattice Boltzmann equation (LBE) method for solving N (N≥2) immiscible incompressible NSE and CACE at high density and viscosity contrasts. Numerical simulations including stationary droplets, Rayleigh-Taylor instability, spreading of liquid lenses, and spinodal decompositions are carried out to show the accuracy and capability of present LBE, and the results show that the predictions by use of the present LBE agree well with the analytical solutions and/or other numerical results.
Collapse
Affiliation(s)
- Lin Zheng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Song Zheng
- School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Qinglan Zhai
- School of Economics Management and Law, Chaohu University, Chaohu 238000, People's Republic of China
| |
Collapse
|
192
|
Hoseinpour B, Sarreshtehdari A. Lattice Boltzmann simulation of droplets manipulation generated in lab-on-chip (LOC) microfluidic T-junction. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
193
|
Huang J, Yin X, Killough J. Thermodynamic consistency of a pseudopotential lattice Boltzmann fluid with interface curvature. Phys Rev E 2019; 100:053304. [PMID: 31869878 DOI: 10.1103/physreve.100.053304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/07/2022]
Abstract
Thermodynamic consistency of pseudopotential lattice Boltzmann models is a major topic that needs comprehensive evaluations. When interface is flat, pseudopotential models can give density-pressure isotherms in excellent agreement with those from equation of state. When interface is curved, thermodynamic equilibriums are affected by interface curvature, and consistency of pseudopotential models has not been systematically evaluated. In this study, we show that the effect of Laplace pressure on phase equilibrium is quantitatively consistent with Kelvin equation at high reduced temperatures (≥0.7). At low temperatures, inconsistency that can be attributed to the effect of orientation of the interface was noted, and it can be improved by tuning of the pseudopotential. By relating interfacial tension of a simulated fluid to that of a real fluid, the lattice spacing of pseudopotential model is found to be on the order of several molecular diameters, the typical range of intermolecular interactions. Interfacial thickness at different temperatures in pseudopotential model compared well with experiments and molecular dynamics simulations, which confirms that the calculated length scale is reasonable. Evaluation of a free energy lattice Boltzmann model indicate that it is consistent with Kelvin equation at high temperatures. The free energy model, however, is not as accurate as the tested pseudopotential model, and discrepancies may come from the relative inaccuracies in the predictions of vapor densities and the thinner interfaces.
Collapse
Affiliation(s)
- Jingwei Huang
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Xiaolong Yin
- Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - John Killough
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
194
|
Ambruş VE, Busuioc S, Wagner AJ, Paillusson F, Kusumaatmaja H. Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach. Phys Rev E 2019; 100:063306. [PMID: 31962535 DOI: 10.1103/physreve.100.063306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/07/2022]
Abstract
We develop and implement a finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focusing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of the torus. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries.
Collapse
Affiliation(s)
- Victor E Ambruş
- Department of Physics, West University of Timişoara, 300223 Timişoara, Romania
| | - Sergiu Busuioc
- Department of Physics, West University of Timişoara, 300223 Timişoara, Romania
| | - Alexander J Wagner
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Fabien Paillusson
- School of Mathematics and Physics, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Halim Kusumaatmaja
- Department of Physics, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
195
|
Salehi MS, Afshin H, Firoozabadi B. Numerical investigation of dynamics of drop motion using lattice Boltzmann method. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
196
|
Pore-scale study of the effects of surface roughness on relative permeability of rock fractures using lattice Boltzmann method. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
197
|
Asadi MB, Zendehboudi S. Hybridized method of pseudopotential lattice Boltzmann and cubic-plus-association equation of state assesses thermodynamic characteristics of associating fluids. Phys Rev E 2019; 100:043302. [PMID: 31770942 DOI: 10.1103/physreve.100.043302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/07/2022]
Abstract
It is crucial to properly describe the associating fluids in terms of phase equilibrium behaviors, which are needed for design, operation, and optimization of various chemical and energy processes. Pseudopotential lattice Boltzmann method (LBM) appears to be a reliable and efficient approach to study thermodynamic behaviors and phase transition of complex fluid systems. However, when cubic equations of state (EOSs) are incorporated into single-component multiphase LBM, simulation results are not well matched with experimental data. This study presents the utilization of cubic-plus-association (CPA) EOS in the LBM structure to obtain more accurate modeling results for associating fluids. An approach based on the global search optimization algorithm is introduced to find the optimal association parameters of CPA EOS for water and primary alcohols in the lattice units. The thermodynamic consistency is verified by the Maxwell construction and is also improved by the forcing scheme of [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)10.1103/PhysRevE.86.016709]. The spurious velocity is reduced with increasing isotropy in the gradient operator. Furthermore, an extended version of CPA EOS is introduced, which increases the system stability at low reduced temperatures. There is a very good match between the LBM results and experimental data, confirming the reliability of the model developed in the present study. The introduced approach has potential to be employed for simulating transport phenomena and interfacial characteristics of associating fluids in porous systems.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| |
Collapse
|
198
|
Huang R, Wu H, Adams NA. Density gradient calculation in a class of multiphase lattice Boltzmann models. Phys Rev E 2019; 100:043306. [PMID: 31771029 DOI: 10.1103/physreve.100.043306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 11/07/2022]
Abstract
The multiphase lattice Boltzmann (LB) models based on pairwise interactions show great potential for simulating multiphase flows due to the conceptual and computational simplicity. Although the dynamics of multiphase flows are reproduced by the pairwise interaction force, the gradient of density (or effective density, i.e., pseudopotential) is implicitly involved in these models via the specialized forcing scheme or the consistent scheme for ɛ^{3}-order term. This work focuses on the calculation of density gradient in this class of multiphase LB models. Theoretical analyses are first carried out to reveal the involvement and calculation of density gradient. On the basis of a low Mach number approximation, an improved scheme is then proposed to calculate the density gradient for the recent LB model with self-tuning equation of state. Analytical and numerical calculations show that the improved scheme is more accurate and can help to reduce the numerical error when the reduced temperature is relatively low.
Collapse
Affiliation(s)
- Rongzong Huang
- School of Energy Science and Engineering, Central South University, 410083 Changsha, China.,School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.,Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Huiying Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Nikolaus A Adams
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
199
|
Abstract
The hydrodynamics of droplets passing through metal foam is investigated using the lattice Boltzmann method (LBM). The accurate 3D porous structure for the simulation is generated by X-ray micro-computed tomography. The simulated results are in good agreement with the experimental ones using high-speed video. The simulated results show that for droplets passing metal foam, there is a critical capillary number, Cac (around 0.061), above which the droplet continues to deform until it breaks up. The simulated results show that the capillary number, droplet size, pores diameter, and thickness of metal foam have the significant effect of droplets deforming and breaking up when the droplets pass through the metal foam. To avoid the calescence of two droplets at the inlet zone of the metal foam, the distance between droplets should be larger than three times the diameter of the droplet.
Collapse
|
200
|
Toneian D, Kahl G, Gompper G, Winkler RG. Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations. J Chem Phys 2019; 151:194110. [PMID: 31757142 DOI: 10.1063/1.5126082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The emergent fluctuating hydrodynamics of a viscoelastic fluid modeled by the multiparticle collision dynamics (MPC) approach is studied. The fluid is composed of flexible, Gaussian phantom polymers that interact by local momentum-conserving stochastic MPCs. For comparison, the analytical solution of the linearized Navier-Stokes equation is calculated, where viscoelasticity is taken into account by a time-dependent shear relaxation modulus. The fluid properties are characterized by the transverse velocity autocorrelation function in Fourier space as well as in real space. Various polymer lengths are considered-from dumbbells to (near-)continuous polymers. Viscoelasticity affects the fluid properties and leads to strong correlations, which overall decay exponentially in Fourier space. In real space, the center-of-mass velocity autocorrelation function of individual polymers exhibits a long-time tail, independent of the polymer length, which decays as t-3/2, similar to a Newtonian fluid, in the asymptotic limit t → ∞. Moreover, for long polymers, an additional power-law decay appears at time scales shorter than the longest polymer relaxation time with the same time dependence, but negative correlations, and the polymer length dependence L-1/2. Good agreement is found between the analytical and simulation results.
Collapse
Affiliation(s)
- David Toneian
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Kahl
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|