151
|
Martinez-Saito M. Discrete scaling and criticality in a chain of adaptive excitable integrators. CHAOS, SOLITONS & FRACTALS 2022; 163:112574. [DOI: 10.1016/j.chaos.2022.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
152
|
Bychkov R, Juhaszova M, Calvo-Rubio Barrera M, Donald LAH, Coletta C, Shumaker C, Moorman K, Sirenko ST, Maltsev AV, Sollott SJ, Lakatta EG. The Heart's Pacemaker Mimics Brain Cytoarchitecture and Function: Novel Interstitial Cells Expose Complexity of the SAN. JACC Clin Electrophysiol 2022; 8:1191-1215. [PMID: 36182566 DOI: 10.1016/j.jacep.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) of the heart produces rhythmic action potentials, generated via calcium signaling within and among pacemaker cells. Our previous work has described the SAN as composed of a hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4)-expressing pacemaker cell meshwork, which merges with a network of connexin 43+/F-actin+ cells. It is also known that sympathetic and parasympathetic innervation create an autonomic plexus in the SAN that modulates heart rate and rhythm. However, the anatomical details of the interaction of this plexus with the pacemaker cell meshwork have yet to be described. OBJECTIVES This study sought to describe the 3-dimensional cytoarchitecture of the mouse SAN, including autonomic innervation, peripheral glial cells, and pacemaker cells. METHODS The cytoarchitecture of SAN whole-mount preparations was examined by three-dimensional confocal laser-scanning microscopy of triple immunolabeled with combinations of antibodies for HCN4, S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), choline acetyltransferase, or vesicular acetylcholine transporter, and tyrosine hydroxylase, and transmission electron microscopy. RESULTS The SAN exhibited heterogeneous autonomic innervation, which was accompanied by a web of peripheral glial cells and a novel S100B+/GFAP- interstitial cell population, with a unique morphology and a distinct distribution pattern, creating complex interactions with other cell types in the node, particularly with HCN4-expressing cells. Transmission electron microscopy identified a similar population of interstitial cells as telocytes, which appeared to secrete vesicles toward pacemaker cells. Application of S100B to SAN preparations desynchronized Ca2+ signaling in HCN4-expressing cells and increased variability in SAN impulse rate and rhythm. CONCLUSIONS The autonomic plexus, peripheral glial cell web, and a novel S100B+/GFAP- interstitial cell type embedded within the HCN4+ cell meshwork increase the structural and functional complexity of the SAN and provide a new regulatory pathway of rhythmogenesis.
Collapse
Affiliation(s)
- Rostislav Bychkov
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Miguel Calvo-Rubio Barrera
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Lorenzo A H Donald
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Christopher Coletta
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Chad Shumaker
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kayla Moorman
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alexander V Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
| |
Collapse
|
153
|
Venegas-Aravena P, Cordaro EG, Laroze D. Natural Fractals as Irreversible Disorder: Entropy Approach from Cracks in the Semi Brittle-Ductile Lithosphere and Generalization. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1337. [PMID: 37420357 DOI: 10.3390/e24101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 07/09/2023]
Abstract
The seismo-electromagnetic theory describes the growth of fractally distributed cracks within the lithosphere that generate the emission of magnetic anomalies prior to large earthquakes. One of the main physical properties of this theory is their consistency regarding the second law of thermodynamics. That is, the crack generation of the lithosphere corresponds to the manifestation of an irreversible process evolving from one steady state to another. Nevertheless, there is still not a proper thermodynamic description of lithospheric crack generation. That is why this work presents the derivation of the entropy changes generated by the lithospheric cracking. It is found that the growth of the fractal cracks increases the entropy prior impending earthquakes. As fractality is observed across different topics, our results are generalized by using the Onsager's coefficient for any system characterized by fractal volumes. It is found that the growth of fractality in nature corresponds to an irreversible process.
Collapse
Affiliation(s)
- Patricio Venegas-Aravena
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 8331150, Chile
| | - Enrique G Cordaro
- Observatorios de Radiación Cósmica y Geomagnetismo, Departamento de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago 8370415, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Pedro de Valdivia 425, Santiago 7500912, Chile
| | - David Laroze
- Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile
| |
Collapse
|
154
|
|
155
|
Feldman DP, Crutchfield JP. Discovering Noncritical Organization: Statistical Mechanical, Information Theoretic, and Computational Views of Patterns in One-Dimensional Spin Systems. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1282. [PMID: 36141168 PMCID: PMC9498276 DOI: 10.3390/e24091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
We compare and contrast three different, but complementary views of "structure" and "pattern" in spatial processes. For definiteness and analytical clarity, we apply all three approaches to the simplest class of spatial processes: one-dimensional Ising spin systems with finite-range interactions. These noncritical systems are well-suited for this study since the change in structure as a function of system parameters is more subtle than that found in critical systems where, at a phase transition, many observables diverge, thereby making the detection of change in structure obvious. This survey demonstrates that the measures of pattern from information theory and computational mechanics differ from known thermodynamic and statistical mechanical functions. Moreover, they capture important structural features that are otherwise missed. In particular, a type of mutual information called the excess entropy-an information theoretic measure of memory-serves to detect ordered, low entropy density patterns. It is superior in several respects to other functions used to probe structure, such as magnetization and structure factors. ϵ-Machines-the main objects of computational mechanics-are seen to be the most direct approach to revealing the (group and semigroup) symmetries possessed by the spatial patterns and to estimating the minimum amount of memory required to reproduce the configuration ensemble, a quantity known as the statistical complexity. Finally, we argue that the information theoretic and computational mechanical analyses of spatial patterns capture the intrinsic computational capabilities embedded in spin systems-how they store, transmit, and manipulate configurational information to produce spatial structure.
Collapse
|
156
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
157
|
How do soldier crabs behave when seeing vibrating robots? Biosystems 2022; 222:104776. [DOI: 10.1016/j.biosystems.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
|
158
|
Ódor G, Deng S, Hartmann B, Kelling J. Synchronization dynamics on power grids in Europe and the United States. Phys Rev E 2022; 106:034311. [PMID: 36266845 DOI: 10.1103/physreve.106.034311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Dynamical simulation of the cascade failures on the Europe and United States (U.S.) high-voltage power grids has been done via solving the second-order Kuramoto equation. We show that synchronization transition happens by increasing the global coupling parameter K with metasatble states depending on the initial conditions so that hysteresis loops occur. We provide analytic results for the time dependence of frequency spread in the large-K approximation and by comparing it with numerics of d=2,3 lattices, we find agreement in the case of ordered initial conditions. However, different power-law (PL) tails occur, when the fluctuations are strong. After thermalizing the systems we allow a single line cut failure and follow the subsequent overloads with respect to threshold values T. The PDFs p(N_{f}) of the cascade failures exhibit PL tails near the synchronization transition point K_{c}. Near K_{c} the exponents of the PLs for the U.S. power grid vary with T as 1.4≤τ≤2.1, in agreement with the empirical blackout statistics, while on the Europe power grid we find somewhat steeper PLs characterized by 1.4≤τ≤2.4. Below K_{c}, we find signatures of T-dependent PLs, caused by frustrated synchronization, reminiscent of Griffiths effects. Here we also observe stability growth following the blackout cascades, similar to intentional islanding, but for K>K_{c} this does not happen. For T<T_{c}, bumps appear in the PDFs with large mean values, known as "dragon king" blackout events. We also analyze the delaying or stabilizing effects of instantaneous feedback or increased dissipation and show how local synchronization behaves on geographic maps.
Collapse
Affiliation(s)
- Géza Ódor
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1525 Budapest, Hungary
| | - Shengfeng Deng
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1525 Budapest, Hungary
| | - Bálint Hartmann
- Centre for Energy Research, Institute for Energy Security and Environmental Safety, H-1525 Budapest, Hungary
| | - Jeffrey Kelling
- Faculty of Natural Sciences, Technische Universität Chemnitz, 09111 Chemnitz, Germany
- Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| |
Collapse
|
159
|
Moosavi SA, Jirsa VK, Truccolo W. Critical dynamics in the spread of focal epileptic seizures: Network connectivity, neural excitability and phase transitions. PLoS One 2022; 17:e0272902. [PMID: 35998146 PMCID: PMC9397939 DOI: 10.1371/journal.pone.0272902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Focal epileptic seizures can remain localized or, alternatively, spread across brain areas, often resulting in impairment of cognitive function and loss of consciousness. Understanding the factors that promote spread is important for developing better therapeutic approaches. Here, we show that: (1) seizure spread undergoes “critical” phase transitions in models (epileptor-networks) that capture the neural dynamics of spontaneous seizures while incorporating patient-specific brain network connectivity, axonal delays and identified epileptogenic zones (EZs). We define a collective variable for the spreading dynamics as the spread size, i.e. the number of areas or nodes in the network to which a seizure has spread. Global connectivity strength and excitability in the surrounding non-epileptic areas work as phase-transition control parameters for this collective variable. (2) Phase diagrams are predicted by stability analysis of the network dynamics. (3) In addition, the components of the Jacobian’s leading eigenvector, which tend to reflect the connectivity strength and path lengths from the EZ to surrounding areas, predict the temporal order of network-node recruitment into seizure. (4) However, stochastic fluctuations in spread size in a near-criticality region make predictability more challenging. Overall, our findings support the view that within-patient seizure-spread variability can be characterized by phase-transition dynamics under transient variations in network connectivity strength and excitability across brain areas. Furthermore, they point to the potential use and limitations of model-based prediction of seizure spread in closed-loop interventions for seizure control.
Collapse
Affiliation(s)
- S. Amin Moosavi
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Viktor K. Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences de Système, Marseille, France
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
160
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
161
|
Ivanov VA, Michmizos KP. Astrocytes Learn to Detect and Signal Deviations from Critical Brain Dynamics. Neural Comput 2022; 34:2047-2074. [PMID: 36027803 DOI: 10.1162/neco_a_01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Astrocytes are nonneuronal brain cells that were recently shown to actively communicate with neurons and are implicated in memory, learning, and regulation of cognitive states. Interestingly, these information processing functions are also closely linked to the brain's ability to self-organize at a critical phase transition. Investigating the mechanistic link between astrocytes and critical brain dynamics remains beyond the reach of cellular experiments, but it becomes increasingly approachable through computational studies. We developed a biologically plausible computational model of astrocytes to analyze how astrocyte calcium waves can respond to changes in underlying network dynamics. Our results suggest that astrocytes detect synaptic activity and signal directional changes in neuronal network dynamics using the frequency of their calcium waves. We show that this function may be facilitated by receptor scaling plasticity by enabling astrocytes to learn the approximate information content of input synaptic activity. This resulted in a computationally simple, information-theoretic model, which we demonstrate replicating the signaling functionality of the biophysical astrocyte model with receptor scaling. Our findings provide several experimentally testable hypotheses that offer insight into the regulatory role of astrocytes in brain information processing.
Collapse
Affiliation(s)
- Vladimir A Ivanov
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| |
Collapse
|
162
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
163
|
Maria Pani S, Saba L, Fraschini M. Clinical applications of EEG power spectra aperiodic component analysis: a mini-review. Clin Neurophysiol 2022; 143:1-13. [DOI: 10.1016/j.clinph.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
|
164
|
Nandi MK, Sarracino A, Herrmann HJ, de Arcangelis L. Scaling of avalanche shape and activity power spectrum in neuronal networks. Phys Rev E 2022; 106:024304. [PMID: 36109993 DOI: 10.1103/physreve.106.024304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of the power spectrum scaling under the same conditions was not performed. The puzzling observation is that in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/f, rather than Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/f noise is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to determine how close neuronal activity is to criticality.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 Quai Saint Bernard, Paris 75005, France
- Departamento de Fisica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
| | - Lucilla de Arcangelis
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| |
Collapse
|
165
|
Shapoval A, Savostianova D, Shnirman M. Universal predictability of large avalanches in the Manna sandpile model. CHAOS (WOODBURY, N.Y.) 2022; 32:083130. [PMID: 36049908 DOI: 10.1063/5.0102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Substantiated explanations of the unpredictability regarding sandpile models of self-organized criticality (SOC) gave way to efficient forecasts of extremes in a few models. The appearance of extremes requires a preparation phase that ends with general overloading of the system and spatial clustering of the local stress. Here, we relate the predictability of large events to the system volume in the Manna and Bak-Tang-Wiesenfeld sandpiles, which are basic models of SOC. We establish that in the Manna model, the events located to the right of the power-law segment of the size-frequency relationship are predictable and the prediction efficiency is described by the universal linear dependence on the event size scaled by a power-law function of the lattice volume. Our scaling-based approach to predictability contributes to the theory of SOC and may elucidate the forecast of extremes in the dynamics of such systems with SOC as neuronal networks and earthquakes.
Collapse
Affiliation(s)
- Alexander Shapoval
- Department of Mathematics and Computer Science of the University of Łódż, Banacha 22, Łódż 90-238, Poland
| | | | - Mikhail Shnirman
- Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, Profsoyuznaya 84/32, 117997 Moscow, Russia
| |
Collapse
|
166
|
Uthamacumaran A, Zenil H. A Review of Mathematical and Computational Methods in Cancer Dynamics. Front Oncol 2022; 12:850731. [PMID: 35957879 PMCID: PMC9359441 DOI: 10.3389/fonc.2022.850731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022] Open
Abstract
Cancers are complex adaptive diseases regulated by the nonlinear feedback systems between genetic instabilities, environmental signals, cellular protein flows, and gene regulatory networks. Understanding the cybernetics of cancer requires the integration of information dynamics across multidimensional spatiotemporal scales, including genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks. However, the time-series analysis of these complex networks remains vastly absent in cancer research. With longitudinal screening and time-series analysis of cellular dynamics, universally observed causal patterns pertaining to dynamical systems, may self-organize in the signaling or gene expression state-space of cancer triggering processes. A class of these patterns, strange attractors, may be mathematical biomarkers of cancer progression. The emergence of intracellular chaos and chaotic cell population dynamics remains a new paradigm in systems medicine. As such, chaotic and complex dynamics are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the assumption that time-resolved single-cell datasets are made available, a survey of interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude, the perspective cultivates an intuition for computational systems oncology in terms of nonlinear dynamics, information theory, inverse problems, and complexity. We highlight the limitations we see in the area of statistical machine learning but the opportunity at combining it with the symbolic computational power offered by the mathematical tools explored.
Collapse
Affiliation(s)
| | - Hector Zenil
- Machine Learning Group, Department of Chemical Engineering and Biotechnology, The University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
- Oxford Immune Algorithmics, Reading, United Kingdom
- Algorithmic Dynamics Lab, Karolinska Institute, Stockholm, Sweden
- Algorithmic Nature Group, LABORES, Paris, France
| |
Collapse
|
167
|
Mambretti F, Mirigliano M, Tentori E, Pedrani N, Martini G, Milani P, Galli DE. Dynamical stochastic simulation of complex electrical behavior in neuromorphic networks of metallic nanojunctions. Sci Rep 2022; 12:12234. [PMID: 35851078 PMCID: PMC9294002 DOI: 10.1038/s41598-022-15996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Nanostructured Au films fabricated by the assembling of nanoparticles produced in the gas phase have shown properties suitable for neuromorphic computing applications: they are characterized by a non-linear and non-local electrical behavior, featuring switches of the electric resistance whose activation is typically triggered by an applied voltage over a certain threshold. These systems can be considered as complex networks of metallic nanojunctions where thermal effects at the nanoscale cause the continuous rearrangement of regions with low and high electrical resistance. In order to gain a deeper understanding of the electrical properties of this nano granular system, we developed a model based on a large three dimensional regular resistor network with non-linear conduction mechanisms and stochastic updates of conductances. Remarkably, by increasing enough the number of nodes in the network, the features experimentally observed in the electrical conduction properties of nanostructured gold films are qualitatively reproduced in the dynamical behavior of the system. In the activated non-linear conduction regime, our model reproduces also the growing trend, as a function of the subsystem size, of quantities like Mutual and Integrated Information, which have been extracted from the experimental resistance series data via an information theoretic analysis. This indicates that nanostructured Au films (and our model) possess a certain degree of activated interconnection among different areas which, in principle, could be exploited for neuromorphic computing applications.
Collapse
Affiliation(s)
- F Mambretti
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
- Dipartimento di Fisica e Astronomia, and INFN - Sezione di Padova, Università degli Studi di Padova, via Marzolo 8, 35131, Padova, Italy
| | - M Mirigliano
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - E Tentori
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - N Pedrani
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - G Martini
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - P Milani
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy.
| | - D E Galli
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy.
| |
Collapse
|
168
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
169
|
Wei L, Bian H, Yu H, Feng Y. The Sandpile Group of Polygon Flower with Two Centers. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lina Wei
- School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang, P. R. China
| | - Hong Bian
- School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang, P. R. China
| | - Haizheng Yu
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, P. R. China
| | - Yuelong Feng
- School of Mathematical Sciences, Xinjiang Normal University, Urumqi, Xinjiang, P. R. China
| |
Collapse
|
170
|
Artime O, De Domenico M. From the origin of life to pandemics: emergent phenomena in complex systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200410. [PMID: 35599559 PMCID: PMC9125231 DOI: 10.1098/rsta.2020.0410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
When a large number of similar entities interact among each other and with their environment at a low scale, unexpected outcomes at higher spatio-temporal scales might spontaneously arise. This non-trivial phenomenon, known as emergence, characterizes a broad range of distinct complex systems-from physical to biological and social-and is often related to collective behaviour. It is ubiquitous, from non-living entities such as oscillators that under specific conditions synchronize, to living ones, such as birds flocking or fish schooling. Despite the ample phenomenological evidence of the existence of systems' emergent properties, central theoretical questions to the study of emergence remain unanswered, such as the lack of a widely accepted, rigorous definition of the phenomenon or the identification of the essential physical conditions that favour emergence. We offer here a general overview of the phenomenon of emergence and sketch current and future challenges on the topic. Our short review also serves as an introduction to the theme issue Emergent phenomena in complex physical and socio-technical systems: from cells to societies, where we provide a synthesis of the contents tackled in the issue and outline how they relate to these challenges, spanning from current advances in our understanding on the origin of life to the large-scale propagation of infectious diseases. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Oriol Artime
- Fondazione Bruno Kessler, Via Sommarive 18, Povo, TN 38123, Italy
| | - Manlio De Domenico
- Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Padova, Veneto, Italy
| |
Collapse
|
171
|
Electrical Methods for Sensing Damage in Cement Mortar Beams Combined with Acoustic Emissions. MATERIALS 2022; 15:ma15134682. [PMID: 35806806 PMCID: PMC9267928 DOI: 10.3390/ma15134682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
The temporal variation in terms of the “time-to-failure” parameter of the recordings of the electrical resistance and the acoustic emissions from concurrent measurements in three cement mortar specimens of prismatic shape that were subjected to a three-point bending test until fracture are studied. The novelty of the work at hand lies in the demonstration that the electrical resistance is described by a power law during the last stages of the loading protocols. The onset of the validity of the power law is indicative of the specimens’ imminent fracture, thus providing a useful pre-failure indicator. The above findings are supported by the analysis of the recorded acoustic signals in terms of the F-function and the Ib-value formulations.
Collapse
|
172
|
Yadav AC, Quadir A, Jafri HH. Finite-size scaling of critical avalanches. Phys Rev E 2022; 106:014148. [PMID: 35974645 DOI: 10.1103/physreve.106.014148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may also decrease with increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for the train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1, which differs significantly from the previous estimate of 1.11.
Collapse
Affiliation(s)
- Avinash Chand Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abdul Quadir
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| | - Haider Hasan Jafri
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| |
Collapse
|
173
|
Self-Organized Criticality of Precipitation in the Rainy Season in East China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on daily precipitation data from 1960 to 2017 in the rainy season in east China, to a given percentile threshold of one observation station, the time that precipitation spends below threshold is defined as quiet time τ. The probability density functions τ in different thresholds follow power-law distributions with exponent β of approximately 1.2 in the day, pentad and ten-day period time scales, respectively. The probability density functions τ in different regions follow the same rules, too. Compared with sandpile model, Γ function describing the collapse behavior can effectively scale the quiet time distribution of precipitation events. These results confirm the assumption that for observation station data and low-resolution precipitation data, even in China, affected by complex weather and climate systems, precipitation is still a real world example of self-organized criticality in synoptic. Moreover, exponent β of the probability density function τ, mean quiet time τ¯q and hazard function Hq of quiet times can give sensitive regions of precipitation events in China. Usual intensity precipitation events (UPEs) easily occur and cluster mainly in the middle Yangtze River basin, east of the Sichuan Province and north of the Gansu Province. Extreme intensity precipitation events (EPEs) more easily occur in northern China in the rainy season. UPEs in the Hubei Province and the Hunan Province are more likely to occur in the future. EPEs in the eastern Sichuan Province, the Guizhou Province, the Guangxi Province and Northeast China are more likely to occur.
Collapse
|
174
|
Walter N, Hinterberger T. Determining states of consciousness in the electroencephalogram based on spectral, complexity, and criticality features. Neurosci Conscious 2022; 2022:niac008. [PMID: 35903410 PMCID: PMC9319002 DOI: 10.1093/nc/niac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
This study was based on the contemporary proposal that distinct states of consciousness are quantifiable by neural complexity and critical dynamics. To test this hypothesis, it was aimed at comparing the electrophysiological correlates of three meditation conditions using nonlinear techniques from the complexity and criticality framework as well as power spectral density. Thirty participants highly proficient in meditation were measured with 64-channel electroencephalography (EEG) during one session consisting of a task-free baseline resting (eyes closed and eyes open), a reading condition, and three meditation conditions (thoughtless emptiness, presence monitoring, and focused attention). The data were analyzed applying analytical tools from criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), complexity measures (multiscale entropy, Higuchi's fractal dimension), and power spectral density. Task conditions were contrasted, and effect sizes were compared. Partial least square regression and receiver operating characteristics analysis were applied to determine the discrimination accuracy of each measure. Compared to resting with eyes closed, the meditation categories emptiness and focused attention showed higher values of entropy and fractal dimension. Long-range temporal correlations were declined in all meditation conditions. The critical exponent yielded the lowest values for focused attention and reading. The highest discrimination accuracy was found for the gamma band (0.83-0.98), the global power spectral density (0.78-0.96), and the sample entropy (0.86-0.90). Electrophysiological correlates of distinct meditation states were identified and the relationship between nonlinear complexity, critical brain dynamics, and spectral features was determined. The meditation states could be discriminated with nonlinear measures and quantified by the degree of neuronal complexity, long-range temporal correlations, and power law distributions in neuronal avalanches.
Collapse
Affiliation(s)
- Nike Walter
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| | - Thilo Hinterberger
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| |
Collapse
|
175
|
Mellor NG, Graham ES, Unsworth CP. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes in Vitro. Front Physiol 2022; 13:808730. [PMID: 35784870 PMCID: PMC9247335 DOI: 10.3389/fphys.2022.808730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy. This work, for the first time, presents studies of the critical dynamics and shape collapse of calcium waves observed in cultures of healthy human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we demonstrate that avalanches of spontaneous calcium waves display strong critical dynamics, including power-laws in both the size and duration distributions. In addition, the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of the temporal profiles. These findings are significant as they suggest that cultured networks of healthy human hNT astrocytes self-organize to a critical point, implying that healthy astrocytic networks operate at a critical point to process and transmit information. Furthermore, this work can serve as a point of reference to which other astrocyte criticality studies can be compared.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Nicholas G. Mellor,
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
176
|
Shein-Lumbroso O, Liu J, Shastry A, Segal D, Tal O. Quantum Flicker Noise in Atomic and Molecular Junctions. PHYSICAL REVIEW LETTERS 2022; 128:237701. [PMID: 35749205 DOI: 10.1103/physrevlett.128.237701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot-noise, and flicker-noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.
Collapse
Affiliation(s)
- Ofir Shein-Lumbroso
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abhay Shastry
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
177
|
Fotaki EF, Christodoulakis J, Efstathiou M, Tsyganov AN, Mazei Y, Mazei NG, Saldaev D, Sarlis NV, Varotsos C, Voronova T. Scaling Behavior of Peat Properties during the Holocene: A Case Study from Central European Russia. LAND 2022; 11:862. [DOI: 10.3390/land11060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A better understanding of past climate change is vital to our ability to predict possible future environmental dynamics. This study attempts to investigate the dynamic features of the temporal variability of peat humification, water table depth and air temperature by analyzing palaeoecological data from the Valdai Uplands region (Central European Russia). The regression analysis revealed the presence of a periodicity of about 6000 years in the reconstructed peat humification timeseries. Nonlinear analysis showed that humification time variability, water table depth and air temperature exhibit persistent long-range correlations of 1/f type. This indicates that a fluctuation in these variables in the past is very likely to be followed by a similar one in the future, but is magnified by 1/f power-law. In addition, it dictates that humification, water table depth and temperature are key parameters of a system that implies the existence of a special structure, such as self-organized criticality, operating close to a minimum stability configuration, and achieves it without any fine adjustment by external forcing. These conclusions point to new avenues for modeling future ecosystem disturbances and, in particular, for predicting relevant extreme events.
Collapse
Affiliation(s)
- Eleni-Foteini Fotaki
- Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Campus Bldg. Phys. V, 15784 Athens, Greece
| | - John Christodoulakis
- Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Campus Bldg. Phys. V, 15784 Athens, Greece
- General Lyceum of Kapandriti, Tsemperlidi Ayathagelou 5, 19014 Kapandriti, Greece
| | - Maria Efstathiou
- Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Campus Bldg. Phys. V, 15784 Athens, Greece
| | - Andrey N. Tsyganov
- Department of General Ecology and Hydrobiology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, 199991 Moscow, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Avenue, 33, 119071 Moscow, Russia
| | - Yuri Mazei
- Department of General Ecology and Hydrobiology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, 199991 Moscow, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Avenue, 33, 119071 Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518100, China
| | - Natalia G. Mazei
- Department of General Ecology and Hydrobiology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, 199991 Moscow, Russia
| | - Damir Saldaev
- Department of General Ecology and Hydrobiology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, 199991 Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518100, China
| | - Nicholas V. Sarlis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 15784 Athens, Greece
| | - Costas Varotsos
- Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Campus Bldg. Phys. V, 15784 Athens, Greece
- Department of General Ecology and Hydrobiology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, 199991 Moscow, Russia
| | - Tatiana Voronova
- Division of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Campus Bldg. Phys. V, 15784 Athens, Greece
| |
Collapse
|
178
|
Rahimi-Majd M, Shirzad T, Najafi MN. A self-organized critical model and multifractal analysis for earthquakes in Central Alborz, Iran. Sci Rep 2022; 12:8364. [PMID: 35589782 PMCID: PMC9120491 DOI: 10.1038/s41598-022-12362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
This paper is devoted to a phenomenological study of the earthquakes in central Alborz, Iran. Using three observational quantities, namely the weight function, the quality factor, and the velocity model in this region, we develop a modified dissipative sandpile model which captures the main features of the system, especially the average activity field over the region of study. The model is based on external stimuli, the location of which is chosen (I) randomly, (II) on the faults, (III) on the low active points, (IV) on the moderately active points, and (V) on the highly active points in the region. We uncover some universal behaviors depending slightly on the method of external stimuli. A multi-fractal detrended fluctuation analysis is exploited to extract the spectrum of the Hurst exponent of the time series obtained by each of these schemes. Although the average Hurst exponent depends slightly on the method of stimuli, we numerically show that in all cases it is lower than 0.5, reflecting the anti-correlated nature of the system. The lowest average Hurst exponent is found to be associated with the case (V), in such a way that the more active the stimulated sites are, the lower the average Hurst exponent is obtained, i.e. the large earthquakes are more anticorrelated. Moreover, we find that the activity field achieved in this study provide information about the depth and topography of the basement, and also the area that can potentially be the location of the future large events. We successfully determine a high activity zone on the Mosha Fault, where the mainshock occurred on May 7th, 2020 (M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_W$$\end{document}W 4.9).
Collapse
Affiliation(s)
- M Rahimi-Majd
- Department of Physics, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - T Shirzad
- Institute of Geophysics, Polish Academy of Sciences - 01-452, Warsaw, Poland
| | - M N Najafi
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| |
Collapse
|
179
|
A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenomenon of rock movement in mining areas has always been a difficult problem in mining engineering, especially under complicated geological conditions. Although the backfilling method mitigates the destruction of the surrounding rock, deformation can still exist in the mining area. In order to ensure the safety of under-sea mining, it is necessary to study the rock movement laws and the mechanisms. This paper focuses on a settlement analysis of the monitoring data of the No. 55 prospecting profile. By analyzing the shape of the settlement curves, the spatial distribution characteristics of settlements of different mining sublevels are summarized. Additionally, the fractal characteristics of the settlement rate under different space–time conditions are studied. We also discuss the relationship between the fractal phenomenon and the self-organized criticality (SOC) theory. The findings are of great theoretical value for the further study of mining settlements to better understand the physical mechanisms of internal movement and rock mass failures through the fractal law of the settlement. Furthermore, elucidating the rock movement law is an urgent task for the safety of seabed mining.
Collapse
|
180
|
Hasselman F. Early Warning Signals in Phase Space: Geometric Resilience Loss Indicators From Multiplex Cumulative Recurrence Networks. Front Physiol 2022; 13:859127. [PMID: 35600293 PMCID: PMC9114511 DOI: 10.3389/fphys.2022.859127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The detection of Early Warning Signals (EWS) of imminent phase transitions, such as sudden changes in symptom severity could be an important innovation in the treatment or prevention of disease or psychopathology. Recurrence-based analyses are known for their ability to detect differences in behavioral modes and order transitions in extremely noisy data. As a proof of principle, the present paper provides an example of a recurrence network based analysis strategy which can be implemented in a clinical setting in which data from an individual is continuously monitored for the purpose of making decisions about diagnosis and intervention. Specifically, it is demonstrated that measures based on the geometry of the phase space can serve as Early Warning Signals of imminent phase transitions. A publicly available multivariate time series is analyzed using so-called cumulative Recurrence Networks (cRN), which are recurrence networks with edges weighted by recurrence time and directed towards previously observed data points. The results are compared to previous analyses of the same data set, benefits, limitations and future directions of the analysis approach are discussed.
Collapse
Affiliation(s)
- Fred Hasselman
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
181
|
Savolainen J, Laurson L, Alava M. Effect of thresholding on avalanches and their clustering for interfaces with long-range elasticity. Phys Rev E 2022; 105:054152. [PMID: 35706318 DOI: 10.1103/physreve.105.054152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Avalanches are often defined as signals higher than some detection level in bursty systems. The choice of the detection threshold affects the number of avalanches, but it can also affect their temporal correlations. We simulated the depinning of a long-range elastic interface and applied different thresholds including a zero one on the data to see how the sizes and durations of events change and how this affects temporal avalanche clustering. Higher thresholds result in steeper size and duration distributions and cause the avalanches to cluster temporally. Using methods from seismology, the frequency of the events in the clusters was found to decrease as a power-law of time, and the size of an event in a cluster was found to help predict how many events it is followed by. The results bring closer theoretical studies of this class of models to real experiments, but also highlight how different phenomena can be obtained from the same set of data.
Collapse
Affiliation(s)
- Juha Savolainen
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33101 Tampere, Finland
| | - Mikko Alava
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock-Swierk, Poland
| |
Collapse
|
182
|
Mikaberidze G, D'Souza RM. Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. CHAOS (WOODBURY, N.Y.) 2022; 32:053121. [PMID: 35649989 DOI: 10.1063/5.0095094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Cascading failures abound in complex systems and the Bak-Tang-Weisenfeld (BTW) sandpile model provides a theoretical underpinning for their analysis. Yet, it does not account for the possibility of nodes having oscillatory dynamics, such as in power grids and brain networks. Here, we consider a network of Kuramoto oscillators upon which the BTW model is unfolding, enabling us to study how the feedback between the oscillatory and cascading dynamics can lead to new emergent behaviors. We assume that the more out-of-sync a node is with its neighbors, the more vulnerable it is and lower its load-carrying capacity accordingly. Also, when a node topples and sheds load, its oscillatory phase is reset at random. This leads to novel cyclic behavior at an emergent, long timescale. The system spends the bulk of its time in a synchronized state where load builds up with minimal cascades. Yet, eventually, the system reaches a tipping point where a large cascade triggers a "cascade of larger cascades," which can be classified as a dragon king event. The system then undergoes a short transient back to the synchronous, buildup phase. The coupling between capacity and synchronization gives rise to endogenous cascade seeds in addition to the standard exogenous ones, and we show their respective roles. We establish the phenomena from numerical studies and develop the accompanying mean-field theory to locate the tipping point, calculate the load in the system, determine the frequency of the long-time oscillations, and find the distribution of cascade sizes during the buildup phase.
Collapse
Affiliation(s)
- Guram Mikaberidze
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| | - Raissa M D'Souza
- Department of Computer Science and Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
183
|
Metrics and mechanisms: Measuring the unmeasurable in the science of science. J Informetr 2022. [DOI: 10.1016/j.joi.2022.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
184
|
Magnasco MO. Robustness and Flexibility of Neural Function through Dynamical Criticality. ENTROPY (BASEL, SWITZERLAND) 2022; 24:591. [PMID: 35626476 PMCID: PMC9141846 DOI: 10.3390/e24050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
In theoretical biology, robustness refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality, and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and "edge of chaos" criticality.
Collapse
Affiliation(s)
- Marcelo O Magnasco
- Laboratory of Integrative Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
185
|
Mangalam M, Kelty-Stephen DG. Ergodic descriptors of non-ergodic stochastic processes. J R Soc Interface 2022; 19:20220095. [PMID: 35414215 PMCID: PMC9006033 DOI: 10.1098/rsif.2022.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The stochastic processes underlying the growth and stability of biological and psychological systems reveal themselves when far-from-equilibrium. Far-from-equilibrium, non-ergodicity reigns. Non-ergodicity implies that the average outcome for a group/ensemble (i.e. of representative organisms/minds) is not necessarily a reliable estimate of the average outcome for an individual over time. However, the scientific interest in causal inference suggests that we somehow aim at stable estimates of the cause that will generalize to new individuals in the long run. Therefore, the valid analysis must extract an ergodic stationary measure from fluctuating physiological data. So the challenge is to extract statistical estimates that may describe or quantify some of this non-ergodicity (i.e. of the raw measured data) without themselves (i.e. the estimates) being non-ergodic. We show that traditional linear statistics such as the standard deviation, coefficient of variation and root mean square can break ergodicity. Time series of statistics addressing sequential structure and its potential nonlinearity: fractality and multi-fractality, change in a time-independent way and fulfil the ergodic assumption. Complementing traditional linear indices with fractal and multi-fractal indices would empower the study of stochastic far-from-equilibrium biological and psychological dynamics.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
186
|
Liu S, Liu X, Yan D, Chen S, Liu Y, Hao X, Ou W, Huang Z, Su F, He F, Ming D. Alterations in patients with first-episode depression in the eyes-open and eyes-closed conditions: A resting-state EEG study. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1019-1029. [PMID: 35412986 DOI: 10.1109/tnsre.2022.3166824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Altered resting-state EEG activity has been repeatedly reported in major depressive disorder (MDD), but no robust biomarkers have been identified until now. The poor consistency of EEG alterations may be due to inconsistent resting conditions; that is, the eyes-open (EO) and eyes-closed (EC) conditions. Here, we explored the effect of the EO and EC conditions on EEG biomarkers for discriminating MDD subjects and healthy control (HC) subjects. EEG data were recorded from 30 first-episode MDD and 26 HC subjects during an 8-min resting-state session. The features were extracted using spectral power, Lempel-Ziv complexity, and detrended fluctuation analysis. Significant features were further selected via the sequential backward feature selection algorithm. Support vector machine (SVM), logistic regression, and linear discriminate analysis were used to determine a better resting condition to provide more reliable estimates for identifying MDD. Compared with the HC group, we found that the MDD group exhibited widespread increased β and γ powers (p < 0.01) in both conditions. In the EO condition, the MDD group showed increased complexity and scaling exponents in the α band relative to HC subjects (p < 0.05). The best classification performance of the combined feature sets was found in the EO condition, with the leave-one-out classification accuracy of 89.29%, sensitivity of 90.00%, and specificity of 88.46% using SVM with the linear kernel classifier when the threshold was set to 0.7, followed by the β and γ spectral features with an average accuracy of 83.93%. Overall, EO and EC conditions indeed affected the between-group variance, and the EO condition is suggested as the more separable resting condition to identify depression. Specially, the β and γ powers are suggested as potential biomarkers for first-episode MDD.
Collapse
|
187
|
The Analysis of Mammalian Hearing Systems Supports the Hypothesis That Criticality Favors Neuronal Information Representation but Not Computation. ENTROPY 2022; 24:e24040540. [PMID: 35455203 PMCID: PMC9029204 DOI: 10.3390/e24040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
Abstract
In the neighborhood of critical states, distinct materials exhibit the same physical behavior, expressed by common simple laws among measurable observables, hence rendering a more detailed analysis of the individual systems obsolete. It is a widespread view that critical states are fundamental to neuroscience and directly favor computation. We argue here that from an evolutionary point of view, critical points seem indeed to be a natural phenomenon. Using mammalian hearing as our example, we show, however, explicitly that criticality does not describe the proper computational process and thus is only indirectly related to the computation in neural systems.
Collapse
|
188
|
Review and Update on Some Connections between a Spring-Block SOC Model and Actual Seismicity in the Case of Subduction Zones. ENTROPY 2022; 24:e24040435. [PMID: 35455099 PMCID: PMC9024716 DOI: 10.3390/e24040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
The self-organized critical (SOC) spring-block models are accessible and powerful computational tools for the study of seismic subduction. This work aims to highlight some important findings through an integrative approach of several actual seismic properties, reproduced by using the Olami, Feder, and Christensen (OFC) SOC model and some variations of it. A few interesting updates are also included. These results encompass some properties of the power laws present in the model, such as the Gutenberg-Richter (GR) law, the correlation between the parameters a and b of the linear frequency-magnitude relationship, the stepped plots for cumulative seismicity, and the distribution of the recurrence times of large earthquakes. The spring-block model has been related to other relevant properties of seismic phenomena, such as the fractal distribution of fault sizes, and can be combined with the work of Aki, who established an interesting relationship between the fractal dimension and the b-value of the Gutenberg-Richter relationship. Also included is the work incorporating the idea of asperities, which allowed us to incorporate several inhomogeneous models in the spring-block automaton. Finally, the incorporation of a Ruff-Kanamori-type diagram for synthetic seismicity, which is in reasonable accordance with the original Ruff and Kanamori diagram for real seismicity, is discussed.
Collapse
|
189
|
Pouquet A, Yokoi N. Helical fluid and (Hall)-MHD turbulence: a brief review. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210087. [PMID: 35094555 PMCID: PMC8802037 DOI: 10.1098/rsta.2021.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Helicity, a measure of the breakage of reflectional symmetry representing the topology of turbulent flows, contributes in a crucial way to their dynamics and to their fundamental statistical properties. We review several of their main features, both new and old, such as the discovery of bi-directional cascades or the role of helical vortices in the enhancement of large-scale magnetic fields in the dynamo problem. The dynamical contribution in magnetohydrodynamic of the cross-correlation between velocity and induction is discussed as well. We consider next how turbulent transport is affected by helical constraints, in particular in the context of magnetic reconnection and fusion plasmas under one- and two-fluid approximations. Central issues on how to construct turbulence models for non-reflectionally symmetric helical flows are reviewed, including in the presence of shear, and we finally briefly mention the possible role of helicity in the development of strongly localized quasi-singular structures at small scale. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'.
Collapse
Affiliation(s)
- Annick Pouquet
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, 80303 CO, USA
| | - Nobumitsu Yokoi
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
190
|
Sarate PS, Murthy TG, Sharma P. Column to pile transition in quasi-static deposition of granular chains. SOFT MATTER 2022; 18:2054-2059. [PMID: 35195646 DOI: 10.1039/d1sm01539g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The repose angle is a key geometric property that characterises the inter-particle friction and thereby granular flows. One of the common methods to measure this property is to deposit a pile by extracting a pre-filled cylinder and letting the material flow out. While the repose angle of spherical beads is insensitive to the aspect ratio of this pre-filled column, we find that long flexible granular chains show a remarkable transition from stable vertical columns to conical piles depending on the aspect ratio. Below a critical aspect ratio, the cessation of flow of granular chains due to inter-chain entanglement stabilises the columns, while above the critical aspect ratio the conical piles of long granular chains arise not out of shear flow but instead through a series of column collapse instabilities during the deposition process. We also identify the critical chain length below which the granular chains flow and behave similar to spherical particles.
Collapse
Affiliation(s)
- Palash S Sarate
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Tejas G Murthy
- Department of Civil Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Prerna Sharma
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
191
|
Courcoubetis G, Xu C, Nuzhdin SV, Haas S. Avalanches during epithelial tissue growth; Uniform Growth and a drosophila eye disc model. PLoS Comput Biol 2022; 18:e1009952. [PMID: 35303738 PMCID: PMC8932575 DOI: 10.1371/journal.pcbi.1009952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Epithelial tissues constitute an exotic type of active matter with non-linear properties reminiscent of amorphous materials. In the context of a proliferating epithelium, modeled by the quasistatic vertex model, we identify novel discrete tissue scale rearrangements, i.e. cellular rearrangement avalanches, which are a form of collective cell movement. During the avalanches, the vast majority of cells retain their neighbors, and the resulting cellular trajectories are radial in the periphery, a vortex in the core. After the onset of these avalanches, the epithelial area grows discontinuously. The avalanches are found to be stochastic, and their strength is correlated with the density of cells in the tissue. Overall, avalanches redistribute accumulated local spatial pressure along the tissue. Furthermore, the distribution of avalanche magnitudes is found to obey a power law, with an exponent consistent with sheer induced avalanches in amorphous materials. To understand the role of avalanches in organ development, we simulate epithelial growth of the Drosophila eye disc during the third instar using a computational model, which includes both chemical and mechanistic signaling. During the third instar, the morphogenetic furrow (MF), a ~10 cell wide wave of apical area constriction propagates through the epithelium. These simulations are used to understand the details of the growth process, the effect of the MF on the growth dynamics on the tissue scale, and to make predictions for experimental observations. The avalanches are found to depend on the strength of the apical constriction of cells in the MF, with a stronger apical constriction leading to less frequent and more pronounced avalanches. The results herein highlight the dependence of simulated tissue growth dynamics on relaxation timescales, and serve as a guide for in vitro experiments.
Collapse
Affiliation(s)
- George Courcoubetis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Chi Xu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Sergey V. Nuzhdin
- Department of Biology, University of Southern California, Los Angeles, California, United States of America
| | - Stephan Haas
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
192
|
Zhang M, Gong T. Structural Variability Shows Power-Law Based Organization of Vowel Systems. Front Psychol 2022; 13:801908. [PMID: 35237211 PMCID: PMC8882920 DOI: 10.3389/fpsyg.2022.801908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Speech sounds are an essential vehicle of information exchange and meaning expression in approximately 7,000 spoken languages in the world. What functional constraints and evolutionary mechanisms lie behind linguistic diversity of sound systems is under ongoing debate; in particular, it remains conflicting whether there exists any universal relationship between these constraints despite of diverse sounds systems cross-linguistically. Here, we conducted cross-linguistic typological and phylogenetic analyses to address the characteristics of constraints on linguistic diversity of vowel systems. First, the typological analysis revealed a power-law based dependence between the global structural dispersion and the local focalization of vowel systems and validated that such dependence was independent of geographic region, language family, and linguistic affiliation. Second, the phylogenetic analysis further illustrated that the observed dependence resulted from correlated evolutions of these two structural properties, which proceeded in an adaptive process. These results provide empirical evidence that self-organization mechanisms helped shape vowel systems and common functional constraints took effect on the evolution of vowel systems in the world’s languages.
Collapse
Affiliation(s)
- Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Key Innovation Group of Digital Humanities Resource and Research, Shanghai Normal University, Shanghai, China
- *Correspondence: Menghan Zhang,
| | - Tao Gong
- School of Foreign Languages, Zhejiang University of Finance and Economics, Hangzhou, China
- Google LLC, New York, NY, United States
- Tao Gong,
| |
Collapse
|
193
|
Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV. Toward a theory of evolution as multilevel learning. Proc Natl Acad Sci U S A 2022; 119:e2120037119. [PMID: 35121666 PMCID: PMC8833143 DOI: 10.1073/pnas.2120037119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. It is shown that these cornerstone phenomena of biology emerge from the fundamental features of learning dynamics such as the existence of a loss function, which is minimized during learning. We then sketch the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back propagation) and predicting (forward propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution (in particular, the origin of life), have to be analyzed in the thermodynamic limit, which is described in detail in the paper by Vanchurin et al. [V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Proc. Natl. Acad. Sci. U.S.A. 119, 10.1073/pnas.2120042119 (2022)].
Collapse
Affiliation(s)
- Vitaly Vanchurin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
- Duluth Institute for Advanced Study, Duluth, MN 55804
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
194
|
|
195
|
Ueki T. Weierstrass function methodology for uncertainty analysis of random media criticality with spectrum range control. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2021.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
196
|
Kim JM, Lee SB. Alternative method for measuring characteristic lengths in absorbing phase transitions. Phys Rev E 2022; 105:025307. [PMID: 35291143 DOI: 10.1103/physreve.105.025307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
We applied an alternative method for measuring characteristic lengths reported recently by one of us [J. M. Kim, J. Stat. Mech. (2021) 03321310.1088/1742-5468/abe599] to the models in the Manna universality class, i.e., the stochastic Manna sandpile and conserved lattice gas models in various dimensions. The universality of the Manna model has been under long debate particularly in one dimension since the work of M. Basu et al. [Phys. Rev. Lett. 109, 015702 (2012)10.1103/PhysRevLett.109.015702], who claimed that the Manna model belongs to the directed percolation (DP) universality class and that the independent Manna universality class does not exist. We carried out Monte Carlo simulations for the stochastic Manna sandpile model in one, two, and three dimensions and the conserved lattice gas model in three dimensions, using both the natural initial states (NISs) and uniform initial states (UISs). In two and three dimensions, the results for R(t), defined by R(t)=L[〈ρ_{a}^{2}〉/〈ρ_{a}〉^{2}-1]^{1/d}, L and ρ_{a} being, respectively, the system size and activity density, yielded consistent results for the two initial states. R(t) is proportional to the correlation length following R(t)∼t^{1/z} at the critical point. In one dimension, the data of R(t) for the Manna model using NISs yielded anomalous behavior, suggesting that NISs require much longer prerun time steps to homogenize the distribution of particles and larger systems to eliminate the finite-size effect than those employed in the literature. On the other hand, data from UISs yielded a power-law behavior, and the estimated critical exponents differed from the values in the DP class.
Collapse
Affiliation(s)
- Jin Min Kim
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| | - Sang Bub Lee
- Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
197
|
Schirner M, Kong X, Yeo BTT, Deco G, Ritter P. Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome". Neuroimage 2022; 250:118928. [PMID: 35101596 DOI: 10.1016/j.neuroimage.2022.118928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| | - Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Clayton, Australia
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| |
Collapse
|
198
|
olde Scheper TV. Controlled bio-inspired self-organised criticality. PLoS One 2022; 17:e0260016. [PMID: 35073308 PMCID: PMC8786161 DOI: 10.1371/journal.pone.0260016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022] Open
Abstract
Complex biological systems are considered to be controlled using feedback mechanisms. Reduced systems modelling has been effective to describe these mechanisms, but this approach does not sufficiently encompass the required complexity that is needed to understand how localised control in a biological system can provide global stable states. Self-Organised Criticality (SOC) is a characteristic property of locally interacting physical systems, which readily emerges from changes to its dynamic state due to small nonlinear perturbations. These small changes in the local states, or in local interactions, can greatly affect the total system state of critical systems. It has long been conjectured that SOC is cardinal to biological systems, that show similar critical dynamics, and also may exhibit near power-law relations. Rate Control of Chaos (RCC) provides a suitable robust mechanism to generate SOC systems, which operates at the edge of chaos. The bio-inspired RCC method requires only local instantaneous knowledge of some of the variables of the system, and is capable of adapting to local perturbations. Importantly, connected RCC controlled oscillators can maintain global multi-stable states, and domains where power-law relations may emerge. The network of oscillators deterministically stabilises into different orbits for different perturbations, and the relation between the perturbation and amplitude can show exponential and power-law correlations. This can be considered to be representative of a basic mechanism of protein production and control, that underlies complex processes such as homeostasis. Providing feedback from the global state, the total system dynamic behaviour can be boosted or reduced. Controlled SOC can provide much greater understanding of biological control mechanisms, that are based on distributed local producers, with remote consumers of biological resources, and globally defined control.
Collapse
Affiliation(s)
- Tjeerd V. olde Scheper
- School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Oxford, United Kingdom
| |
Collapse
|
199
|
Safron A, Klimaj V, Hipólito I. On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances. Front Syst Neurosci 2022; 15:688424. [PMID: 35126062 PMCID: PMC8814434 DOI: 10.3389/fnsys.2021.688424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kinsey Institute, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Complex Networks and Systems, Informatics Department, Indiana University, Bloomington, IN, United States
| | - Inês Hipólito
- Department of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
200
|
de-Carvalho J, Tlili S, Hufnagel L, Saunders TE, Telley IA. Aster repulsion drives short-ranged ordering in the Drosophila syncytial blastoderm. Development 2022; 149:274085. [DOI: 10.1242/dev.199997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.
Collapse
Affiliation(s)
- Jorge de-Carvalho
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Lars Hufnagel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Timothy E. Saunders
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
- Department of Biological Sciences, National University of Singapore, 117411Singapore
- Institute of Molecular and Cellular Biology, A*Star, Proteos, 138632 Singapore
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - Ivo A. Telley
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|