151
|
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 2009; 5:e1000621. [PMID: 19714218 PMCID: PMC2726614 DOI: 10.1371/journal.pgen.1000621] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/29/2009] [Indexed: 12/03/2022] Open
Abstract
Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction. For successful reproduction in flowering plants, a single-celled pollen tube must rapidly extend through female pistil tissue, locate female gametes, and deliver sperm. Pollen tubes undergo a dramatic transformation while growing in the pistil; they grow faster compared to tubes grown in vitro and become competent to perceive and respond to navigation cues secreted by the pistil. The genes expressed by pollen tubes in response to growth in the pistil have not been characterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. Importantly, we identify a set of genes that are specifically expressed in pollen tubes in response to their growth in the pistil and are not expressed during other stages of pollen or plant development. We analyzed mutants in 33 pollen tube–expressed genes using a sensitive series of pollen function assays and demonstrate that seven of these genes are critical for pollen tube growth; two specifically disrupt growth in the pistil. By identifying pollen tube genes induced by the pistil and describing a mutant analysis scheme to understand their function, we lay the foundation for functional genomic analysis of pollen–pistil interactions.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Alexander R. Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Ann Manziello
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - Ritu Pandey
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - David Mount
- Arizona Cancer Center and Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona, United States of America
| | - Stojan Denic
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Bane Vasic
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Mark A. Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MAJ); (RP)
| | - Ravishankar Palanivelu
- Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (MAJ); (RP)
| |
Collapse
|