151
|
BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc Natl Acad Sci U S A 2016; 113:7655-60. [PMID: 27325768 DOI: 10.1073/pnas.1607687113] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX)-containing protein, has been previously identified as a positive regulator of light signaling; however, the precise role of BBX21 in regulating seedling photomorphogenesis remains largely unclear. In this study, we report that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) interacts with BBX21 in vivo and is able to ubiquitinate BBX21 in vitro. Thus, BBX21 is targeted for 26S proteasome-mediated degradation in dark-grown Arabidopsis seedlings in a COP1-dependent manner. Moreover, we show that BBX21 binds to the T/G-box in the ELONGATED HYPOCOTYL 5 (HY5) promoter and directly activates HY5 expression in the light. Transgenic seedlings overexpressing BBX21 exhibit dramatically shortened hypocotyls in the light, and this phenotype is dependent on a functional HY5. Taken together, our data suggest a molecular base underlying BBX21-mediated seedling photomorphogenesis, indicating that BBX21 is a pivotal component involved in the COP1-HY5 regulatory hub.
Collapse
|
152
|
Wei CQ, Chien CW, Ai LF, Zhao J, Zhang Z, Li KH, Burlingame AL, Sun Y, Wang ZY. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. J Genet Genomics 2016; 43:555-563. [PMID: 27523280 DOI: 10.1016/j.jgg.2016.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Chuang-Qi Wei
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Chih-Wei Chien
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Lian-Feng Ai
- Hebei Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shijiazhuang 050051, China
| | - Jun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhenzhen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Center of Basic Forestry and Proteomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
153
|
Bai B, Zhao J, Li Y, Zhang F, Zhou J, Chen F, Xie X. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:25-34. [PMID: 27095397 DOI: 10.1016/j.plantsci.2016.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 05/26/2023]
Abstract
B-box (BBX) proteins are zinc finger proteins containing B-box domains, which have roles in Arabidopsis growth and development. However, little is known concerning rice BBXs. Herein, we identified a rice BBX protein, Oryza sativa BBX14 (OsBBX14). OsBBX14 is highly expressed in flag leaf blades. OsBBX14 expression shows a diurnal rhythm under photoperiodic conditions and subsequent continuous white light. OsBBX14 is located in the nucleus and has transcriptional activation potential. OsBBX14-overexpression (OsBBX14-OX) lines exhibited delayed heading date under long-day (LD) and short-day (SD) conditions, whereas RNAi lines of OsBBX14 lines had similar heading dates to the WT. The florigen genes, Hd3a and RFT1, were downregulated in the OsBBX14-OX lines under LD and SD conditions. Under LD conditions, Hd1 was expressed higher in the OsBBX14-OX lines than in the wild type (WT), and the rhythmic expression of circadian clock genes, OsLHY and OsPRR1, was changed in OsBBX14-OX lines. Thus, OsBBX14 acts as a floral repressor by promoting Hd1 expression under LD conditions, probably because of crosstalk with the circadian clock. Under SD conditions, Ehd1 expression was reduced in OsBBX14-OX lines, but Hd1 and circadian clock gene expressions were unaffected, indicating that OsBBX14 acts as a repressor of Ehd1. Our findings suggested that OsBBX14 regulates heading date differently under LD and SD conditions.
Collapse
Affiliation(s)
- Bo Bai
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Jie Zhao
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Yaping Li
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| | - Fang Zhang
- Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Jinjun Zhou
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Fan Chen
- Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| |
Collapse
|
154
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016. [PMID: 27030359 DOI: 10.1186/s12864-016-2593-2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. RESULTS In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. CONCLUSIONS The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
155
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016; 17:269. [PMID: 27030359 PMCID: PMC4815114 DOI: 10.1186/s12864-016-2593-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Results In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. Conclusions The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
156
|
Gallemí M, Galstyan A, Paulišić S, Then C, Ferrández-Ayela A, Lorenzo-Orts L, Roig-Villanova I, Wang X, Micol JL, Ponce MR, Devlin PF, Martínez-García JF. DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis. Development 2016; 143:1623-31. [PMID: 26989173 DOI: 10.1242/dev.130211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling.
Collapse
Affiliation(s)
- Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Sandi Paulišić
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Christiane Then
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Laura Lorenzo-Orts
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Irma Roig-Villanova
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Xuewen Wang
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jose Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Maria Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Ps. Lluís Companys 10, 08010 Barcelona, Spain
| |
Collapse
|
157
|
Moreau F, Thévenon E, Blanvillain R, Lopez-Vidriero I, Franco-Zorrilla JM, Dumas R, Parcy F, Morel P, Trehin C, Carles CC. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development 2016; 143:1108-19. [PMID: 26903506 DOI: 10.1242/dev.127365] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
Abstract
Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.
Collapse
Affiliation(s)
- Fanny Moreau
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Emmanuel Thévenon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Robert Blanvillain
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Irene Lopez-Vidriero
- Genomics Unit, Centro Nacional de Biotecnologia CNB- CSIC, Darwin 3, Madrid 28049, Spain
| | | | - Renaud Dumas
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - François Parcy
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Cristel C Carles
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| |
Collapse
|
158
|
Fan G, Li X, Deng M, Zhao Z, Yang L. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings. PLoS One 2016; 11:e0149617. [PMID: 26894691 PMCID: PMC4764520 DOI: 10.1371/journal.pone.0149617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a global environmental problem that affects plant growth and development. Paulownia fortunei is an adaptable and fast-growing deciduous tree native to China that is environmentally and economically important. MicroRNAs (miRNAs) play important regulatory roles in growth, development, and stress responses in plants. MiRNAs that respond to biotic stresses have been identified; however, how miRNAs in P. fortunei respond to salt stress has not yet been reported. To identify salt-stress-responsive miRNAs and predict their target genes, four small RNA and four degradome libraries were constructed from NaCl-treated and NaCl-free leaves of P. fortunei seedlings. The results indicated that salt stress had different physiological effects on diploid and tetraploid P. fortunei. We detected 53 conserved miRNAs belonging to 17 miRNA families and 134 novel miRNAs in P. fortunei. Comparing their expression levels in diploid and tetraploid P. fortunei, we found 10 conserved and 10 novel miRNAs that were significantly differentially expressed under salt treatment, among them eight were identified as miRNAs probably associated with higher salt tolerance in tetraploid P. fortunei than in diploid P. fortunei. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the target genes of the conserved and novel miRNAs. The expressions of 10 differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on P. fortunei miRNAs and their target genes under salt stress. The results provided information at the physiological and molecular levels for further research into the response mechanisms of P. fortunei to salt stress.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
- * E-mail:
| | - Xiaoyu Li
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| |
Collapse
|
159
|
Roig-Villanova I, Martínez-García JF. Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade. FRONTIERS IN PLANT SCIENCE 2016; 7:236. [PMID: 26973679 PMCID: PMC4770057 DOI: 10.3389/fpls.2016.00236] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/12/2016] [Indexed: 05/20/2023]
Abstract
In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade. Shade-avoiding species generally adapt their development by inducing hypocotyl, stem, and petiole elongation, apical dominance and flowering, and decreasing leaf expansion and yield, a set of responses collectively known as the shade avoidance syndrome (SAS). The SAS responses have been mostly studied at the seedling stage, centered on the increase of hypocotyl elongation. After compiling the main findings about SAS responses in seedlings, this review is focused on the response to shade at adult stages of development, such as petioles of adult leaves, and the little information available on the SAS responses in reproductive tissues. We discuss these responses based on the knowledge about the molecular mechanisms and components with a role in regulating the SAS response of the hypocotyls of Arabidopsis thaliana. The transcriptional networks involved in this process, as well as the communication among the tissues that perceive the shade and the ones that respond to this stimulus will also be briefly commented.
Collapse
Affiliation(s)
- Irma Roig-Villanova
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas – Institut Recerca i Tecnologia Agroalimentaries – Universitat Autònoma de Barcelona – Universitat de BarcelonaBarcelona, Spain
- *Correspondence: Irma Roig-Villanova, ; Jaime F. Martínez-García,
| | - Jaime F. Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas – Institut Recerca i Tecnologia Agroalimentaries – Universitat Autònoma de Barcelona – Universitat de BarcelonaBarcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
- *Correspondence: Irma Roig-Villanova, ; Jaime F. Martínez-García,
| |
Collapse
|
160
|
Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B. Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 89:1-19. [PMID: 26253592 DOI: 10.1007/s11103-015-0347-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
The B-box (BBX) family is a subgroup of zinc finger transcription factors that regulate flowering time, light-regulated morphogenesis, and abiotic stress in Arabidopsis. Overexpression of CmBBX24, a zinc finger transcription factor gene in chrysanthemum, results in abiotic stress tolerance. We have investigated and characterized the promoter of CmBBX24, isolating a 2.7-kb CmBBX24 promoter sequence and annotating a number of abiotic stress-related cis-regulatory elements, such as DRE, MYB, MYC, as well as cis-elements which respond to plant hormones, such as GARE, ABRE, and CARE. We also observed a number of cis-elements related to light, such as TBOX and GBOX, and some tissue-specific cis-elements, such as those for guard cells (TAAAG). Expression of the CmBBX24 promoter produced a clear response in leaves and a lower response in roots, based on β-glucuronidase histochemical staining and fluorometric analysis. The CmBBX24 promoter was induced by abiotic stresses (mannitol, cold temperature), hormones (gibberellic acid, abscisic acid), and different light treatments (white, blue, red); activation was measured by fluorometric analysis in the leaves and roots. The deletion of fragments from the 5'-end of the promoter led to different responses under various stress conditions. Some CmBBX24 promoter segments were found to be more important than others for regulating all stresses, while other segments were relatively more specific to stress type. D0-, D1-, D2-, D3-, and D4-proCmBBX24::CmBBX24 transgenic Arabidopsis lines developed for further study were found to be more tolerant to the low temperature and drought stresses than the controls. We therefore speculate that CmBBX24 is of prime importance in the regulation of abiotic stress in Arabidopsis and that the CmBBX24 promoter is inductive in abiotic stress conditions. Consequently, we suggest that CmBBX24 is a potential candidate for the use in breeding programs of important ornamental plants.
Collapse
Affiliation(s)
- Muhammad Imtiaz
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yingjie Yang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ruixue Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
161
|
Botto JF. Plasticity to simulated shade is associated with altitude in structured populations of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:1321-32. [PMID: 25388923 DOI: 10.1111/pce.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 05/26/2023]
Abstract
Plants compete for photosynthesis light and induce a shade avoidance syndrome (SAS) that confers an important advantage in asymmetric competition for light at high canopy densities. Shade plasticity was studied in a greenhouse experiment cultivating Arabidopsis thaliana plants from 15 populations spread across an altitudinal gradient in the northeast area of Spain that contain a high genetic variation into a reduced geographical range. Plants were exposed to sunlight or simulated shade to identify the range of shade plasticity. Fourteen vegetative, flowering and reproductive traits were measured throughout the life cycle. Shade plasticity in flowering time and dry mass was significantly associated with the altitude of population origin. Plants from coastal populations showed higher shade plasticity indexes than those from mountains. The altitudinal variation in flowering leaf plasticity adjusted negatively with average and minimum temperatures, whereas dry mass plasticity was better explained by negative regressions with the average, maximum and minimum temperatures, and by a positive regression with average precipitation of the population origin. The lack of an altitudinal gradient for the widest number of traits suggests that shade light could be a driver explaining the distribution pattern of individuals in smaller geographical scales than those explored here.
Collapse
Affiliation(s)
- Javier F Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
162
|
Peng X, Wu Q, Teng L, Tang F, Pi Z, Shen S. Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2015; 15:108. [PMID: 25928853 PMCID: PMC4432934 DOI: 10.1186/s12870-015-0489-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/02/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Several studies have focused on cold tolerance in multiple regulated levels. However, a genome-scale molecular analysis of the regulated network under the control of transcription factors (TFs) is still lacking, especially for trees. To comprehensively identify the TFs that regulate cold stress response in the paper mulberry and understand their regulatory interactions, transcriptomic data was used to assess changes in gene expression induced by exposure to cold. RESULTS Results indicated that 794 TFs, belonging to 47 families and comprising more than 59% of the total TFs of this plant, were involved in the cold stress response. They were clustered into three groups, namely early, intermediate and late responsive groups which contained 95, 550 and 149 TFs, respectively. Among of these differentially expressed TFs, one bHLH, two ERFs and three CAMTAs were considered to be the key TFs functioning in the primary signal transduction. After that, at the intermediate stage of cold stress, there were mainly two biological processes that were regulated by TFs, namely cold stress resistance (including 5 bHLH, 14 ERFs, one HSF, 4 MYBs, 3 NACs, 11 WRKYs and so on) and growth and development of lateral organ or apical meristem (including ARR-B, B3, 5 bHLHs, 2 C2H2, 4 CO-like, 2 ERF, 3 HD-ZIP, 3 YABBYs, G2-like, GATA, GRAS and TCP). In late responsive group, 3 ARR-B, C3H, 6 CO-like, 2 G2-like, 2 HSFs, 2 NACs and TCP. Most of them presented the up-regulated expression at 12 or 24 hours after cold stress implied their important roles for the new growth homeostasis under cold stress. CONCLUSIONS Our study identified the key TFs that function in the regulatory cascades mediating the activation of downstream genes during cold tress tolerance in the paper mulberry. Based on the analysis, we found that the AP2/ERF, bHLH, MYB, NAC and WRKY families might play the central and significant roles during cold stress response in the paper mulberry just as in other species. Meanwhile, many other TF families previously reported as involving in regulation of growth and development, including ARF, DBB, G2-like, GRF, GRAS, LBD, WOX and YAABY exhibited their important potential function in growth regulation under cold stress.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Qingqing Wu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Linhong Teng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
163
|
Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 153:538-54. [PMID: 25135325 DOI: 10.1111/ppl.12261] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 05/03/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factors (TFs) play vital roles in the response to abiotic stress. However, little is known about the function of bZIP genes in wheat abiotic stress. In this study, we report the isolation and functional characterization of the TabZIP60 gene. Three homologous genome sequences of TabZIP60 were isolated from hexaploid wheat and mapped to the wheat homoeologous group 6. A subcellular localization analysis indicated that TabZIP60 is a nuclear-localized protein that activates transcription. Furthermore, TabZIP60 gene transcripts were strongly induced by polyethylene glycol, salt, cold and exogenous abscisic acid (ABA) treatments. Further analysis showed that the overexpression of TabZIP60 in Arabidopsis resulted in significantly improved tolerances to drought, salt, freezing stresses and increased plant sensitivity to ABA in seedling growth. Meanwhile, the TabZIP60 was capable of binding ABA-responsive cis-elements that are present in promoters of many known ABA-responsive genes. A subsequent analysis showed that the overexpression of TabZIP60 led to enhanced expression levels of some stress-responsive genes and changes in several physiological parameters. Taken together, these results suggest that TabZIP60 enhances multiple abiotic stresses through the ABA signaling pathway and that modifications of its expression may improve multiple stress tolerances in crop plants.
Collapse
Affiliation(s)
- Lina Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
164
|
Wang CQ, Sarmast MK, Jiang J, Dehesh K. The Transcriptional Regulator BBX19 Promotes Hypocotyl Growth by Facilitating COP1-Mediated EARLY FLOWERING3 Degradation in Arabidopsis. THE PLANT CELL 2015; 27:1128-39. [PMID: 25841036 PMCID: PMC4558699 DOI: 10.1105/tpc.15.00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 05/18/2023]
Abstract
Hypocotyl elongation is a highly coordinated physiological response regulated by myriad internal and external cues. Here, we show that BBX19, a transcriptional regulator with two B-box motifs, is a positive regulator of growth; diminished BBX19 expression by RNA interference reduces hypocotyl length, and its constitutive expression promotes growth. This function of BBX19 is dependent on the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), EARLY FLOWERING3 (ELF3), and PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5. BBX19 is nucleus-colocalized and interacts physically with COP1 and ELF3, a component of the evening complex that represses the expression of PIF4 and PIF5. Moreover, ELF3 protein abundance inversely correlates with BBX19 expression levels in a COP1-dependent manner. By contrast, PIF expression, coinciding with the initiation of hypocotyl growth in the early evening, is positively correlated with the BBX19 transcript abundance. These results collectively establish BBX19 as an adaptor that binds to and recruits ELF3 for degradation by COP1 and, as such, dynamically gates the formation of the evening complex, resulting in derepression of PIF4/5. This finding refines our perspective on how plants grow by providing a molecular link between COP1, ELF3, and PIF4/5 as an underlying mechanism of photomorphogenic development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Chang-Quan Wang
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Jishan Jiang
- Department of Plant Biology, University of California, Davis, California 95616
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
165
|
Crocco CD, Locascio A, Escudero CM, Alabadí D, Blázquez MA, Botto JF. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat Commun 2015; 6:6202. [PMID: 25656233 DOI: 10.1038/ncomms7202] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/05/2015] [Indexed: 11/08/2022] Open
Abstract
In response to canopy shade, plant vegetative structures elongate to gain access to light. However, the mechanism that allows a plastic transcriptional response to canopy shade light is not fully elucidated. Here we propose that the activity of PIF4, a key transcription factor in the shade signalling network, is modulated by the interplay between the BBX24 transcriptional regulator and DELLA proteins, which are negative regulators of the gibberellin (GA) signalling pathway. We show that GA-related targets are enriched among genes responsive to BBX24 under shade and that the shade-response defect in bbx24 mutants is rescued by a GA treatment that promotes DELLA degradation. BBX24 physically interacts with DELLA proteins and alleviates DELLA-mediated repression of PIF4 activity. The proposed molecular mechanism provides reversible regulation of the activity of a key transcription factor that may prove especially relevant under fluctuating light conditions.
Collapse
Affiliation(s)
- Carlos D Crocco
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Antonella Locascio
- 1] Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain [2] Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Padova University, Viale dell'Universitá 16, Legnaro 35020, Italy
| | - Cristian M Escudero
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Javier F Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenue San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
166
|
Next-generation sequencing of genomic DNA fragments bound to a transcription factor in vitro reveals its regulatory potential. Genes (Basel) 2014; 5:1115-31. [PMID: 25534860 PMCID: PMC4276929 DOI: 10.3390/genes5041115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors (TFs) coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated by TFs in order to understand the complete picture of a plant’s transcriptome profile. Here, we investigate the role of the LONG HYPOCOTYL5 (HY5) transcription factor that acts as a regulator of photomorphogenesis. We used an in vitro genomic DNA binding assay coupled with immunoprecipitation and next-generation sequencing (gDB-seq) instead of the in vivo chromatin immunoprecipitation (ChIP)-based methods. The results demonstrate that the HY5-binding motif predicted here was similar to the motif reported previously and that in vitro HY5-binding loci largely overlapped with the HY5-targeted candidate genes identified in previous ChIP-chip analysis. By combining these results with microarray analysis, we identified hundreds of HY5-binding genes that were differentially expressed in hy5. We also observed delayed induction of some transcripts of HY5-binding genes in hy5 mutants in response to blue-light exposure after dark treatment. Thus, an in vitro gDNA-binding assay coupled with sequencing is a convenient and powerful method to bridge the gap between identifying TF binding potential and establishing function.
Collapse
|
167
|
HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 2014; 111:16172-7. [PMID: 25352668 DOI: 10.1073/pnas.1418483111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.
Collapse
|
168
|
Martínez-García JF, Gallemí M, Molina-Contreras MJ, Llorente B, Bevilaqua MRR, Quail PH. The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade. PLoS One 2014; 9:e109275. [PMID: 25333270 PMCID: PMC4204825 DOI: 10.1371/journal.pone.0109275] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022] Open
Abstract
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.
Collapse
Affiliation(s)
- Jaime F. Martínez-García
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
- * E-mail:
| | - Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
| | | | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Maycon R. R. Bevilaqua
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Barcelona, Spain
- CAPES foundation, Ministry of Education of Brazil, Brasilia - DF, Brazil
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- US Department of Agriculture/Agriculture Research Service, Plant Gene Expression Center, Albany, California, United States of America
| |
Collapse
|
169
|
Binkert M, Kozma-Bognár L, Terecskei K, De Veylder L, Nagy F, Ulm R. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. THE PLANT CELL 2014; 26:4200-13. [PMID: 25351492 PMCID: PMC4247584 DOI: 10.1105/tpc.114.130716] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 05/18/2023]
Abstract
In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/G(HY5)-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B.
Collapse
Affiliation(s)
- Melanie Binkert
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary School of Biological Sciences, University of Edinburgh, EH9 3JR Edinburgh, United Kingdom
| | - Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
170
|
Wang CQ, Guthrie C, Sarmast MK, Dehesh K. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. THE PLANT CELL 2014; 26:3589-602. [PMID: 25228341 PMCID: PMC4213167 DOI: 10.1105/tpc.114.130252] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The timely transition of vegetative to reproductive development is coordinated through quantitative regulation of floral pathway genes in response to physiological and environmental cues. Here, we show that the circadian-controlled expression of the Arabidopsis thaliana floral transition regulators FLOWERING LOCUS T (FT) and CONSTANS (CO) is antiphasic to that of BBX19, a transcription factor with two B-Box motifs. Diminished expression of BBX19 by RNA interference accelerates flowering, and constitutive expression of BBX19 delays flowering under inductive photoperiods. This delay is not accompanied by the alteration of CO expression levels but rather by a reduction of transcript levels of FT and the FT-regulated genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1, LEAFY, and FRUITFUL. Similar to CO, BBX19 is expressed in vasculature. BBX19 and CO colocalize in the nucleus and interact physically in vivo. In transient assays, coinfiltration of 10-fold more CO overcomes the BBX19-mediated repression of FT activation. Substitution of the conserved Cys-25 to Ser in the BBX19 Box1 motif abolishes the BBX19-CO interaction and eliminates the negative regulation of flowering time, while the analogous C76S substitution in the Box2 motif is ineffective. Together, these results implicate BBX19 as a circadian clock output that depletes the active CO pool to accurately monitor daylength and precisely time FT expression.
Collapse
Affiliation(s)
- Chang-Quan Wang
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cade Guthrie
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
171
|
Peng X, Wang Y, He R, Zhao M, Shen S. Global transcriptomics identification and analysis of transcriptional factors in different tissues of the paper mulberry. BMC PLANT BIOLOGY 2014; 14:194. [PMID: 25213425 PMCID: PMC4205299 DOI: 10.1186/s12870-014-0194-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/14/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND The paper mulberry (Broussonetia papyifera) is one of the multifunctional tree species in agroforestry system and is also commonly utilized in traditional medicine in China and other Asian countries. To identify the transcription factors (TFs) and comprehensively understand their regulatory roles in the growth of the paper mulberry, a global transcriptomics TF prediction and the differential expression analysis among root, shoot and leaf were performed by using RNA-seq. RESULTS Results indicate that there is 1, 337 TFs encoded by the paper mulberry and they belong to the 55 well-characterized TF families. Based on the phylogenetic analysis, the TFs exist extensively in all organisms are more conservative than those exclusively exist in plant and the paper mulberry has the closest relationship with the mulberry. According to the results of differential expression analysis, there are 627 TFs which exhibit the differential expression profiles in root, shoot and leaf. ARR-Bs, ARFs, NACs and bHLHs together with other root-specific and highly expressed TFs might account for the developed lateral root and unconspicuous taproot in the paper mulberry. Meanwhile, five TCPs highly expressed in shoot of the paper mulberry might negatively regulate the expression of 12 LBDs in shoot. Besides, LBDs, which could directly or indirectly cooperate with ARFs, bHLHs and NACs, seem to be the center knot involving in the regulation of the shoot development in the paper mulberry. CONCLUSIONS Our study provides the comprehensive transcriptomics identification of TFs in the paper mulberry without genome reference. A large number of lateral organ growth regulation related TFs exhibiting the tissue differential expression may entitle the paper mulberry the developed lateral roots, more branches and rapid growth. It will increase our knowledge of the structure and composition of TFs in tree plant and it will substantially contribute to the improving of this tree.
Collapse
Affiliation(s)
- Xianjun Peng
- />Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
| | - Yucheng Wang
- />Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
- />University of the Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
| | - Ruiping He
- />Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
- />University of the Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
| | - Meiling Zhao
- />Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
| | - Shihua Shen
- />Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, 100093 Beijing, People’s Republic of China
| |
Collapse
|
172
|
Gangappa SN, Botto JF. The BBX family of plant transcription factors. TRENDS IN PLANT SCIENCE 2014; 19:460-70. [PMID: 24582145 DOI: 10.1016/j.tplants.2014.01.010] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 05/04/2023]
Abstract
The B-box (BBX) proteins are a class of zinc-finger transcription factors containing a B-box domain with one or two B-box motifs, and sometimes also feature a CCT (CONSTANS, CO-like, and TOC1) domain. BBX proteins are key factors in regulatory networks controlling growth and developmental processes that include seedling photomorphogenesis, photoperiodic regulation of flowering, shade avoidance, and responses to biotic and abiotic stresses. In this review we discuss the functions of BBX proteins and the role of B-box motif in mediating transcriptional regulation and protein-protein interaction in plant signaling. In addition, we provide novel insights into the molecular mechanisms of their action and the evolutionary significance of their functional divergence.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg 40530, Sweden
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina.
| |
Collapse
|
173
|
The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proc Natl Acad Sci U S A 2014; 111:10365-70. [PMID: 24965366 DOI: 10.1073/pnas.1404829111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sugar beet (Beta vulgaris) is a biennial root crop that grows vegetatively in the first year and starts shoot elongation (bolting) and flowering after exposure to cold temperatures over winter. Early bolting before winter is controlled by the dominant allele of the B locus. Recently, the BOLTING time control 1 (BTC1) gene has been cloned from this locus. BTC1 promotes early bolting through repression of the downstream bolting repressor B. vulgaris flowering locus T1 (BvFT1) and activation of the downstream floral activator BvFT2. We have identified a new bolting locus B2 acting epistatically to B. B2 houses a transcription factor which is diurnally regulated and acts like BTC1 upstream of BvFT1 and BvFT2. It was termed BvBBX19 according to its closest homolog from Arabidopsis thaliana. The encoded protein has two conserved domains with homology to zinc finger B-boxes. Ethyl methanesulfonate-induced mutations within the second B-box caused up-regulation of BvFT1 and complete down-regulation of BvFT2. In Arabidopsis, the expression of FT is promoted by the B-box containing protein CONSTANS (CO). We performed a phylogenetic analysis with B-box genes from beet and A. thaliana but only BvCOL1 clustered with CO. However, BvCOL1 had been excluded as a CO ortholog by previous studies. Therefore, a new model for flowering induction in beet is proposed in which BTC1 and BvBBX19 complement each other and thus acquire a CO function to regulate their downstream targets BvFT1 and BvFT2.
Collapse
|
174
|
Bou-Torrent J, Galstyan A, Gallemí M, Cifuentes-Esquivel N, Molina-Contreras MJ, Salla-Martret M, Jikumaru Y, Yamaguchi S, Kamiya Y, Martínez-García JF. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2937-47. [PMID: 24609653 PMCID: PMC4056540 DOI: 10.1093/jxb/eru083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.
Collapse
Affiliation(s)
- Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Marçal Gallemí
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Nicolás Cifuentes-Esquivel
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | | | - Mercè Salla-Martret
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193-Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010-Barcelona, Spain
| |
Collapse
|
175
|
Boron AK, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. PLANT CELL REPORTS 2014; 33:697-706. [PMID: 24633990 DOI: 10.1007/s00299-014-1591-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Plant Growth and Development, Biology Department, University of Antwerp, Groenenborgerlaan 122, 2020, Antwerp, Belgium
| | | |
Collapse
|
176
|
Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Jiang Y, Deng XW, Holm M. Convergence of Light and ABA signaling on the ABI5 promoter. PLoS Genet 2014; 10:e1004197. [PMID: 24586210 PMCID: PMC3937224 DOI: 10.1371/journal.pgen.1004197] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022] Open
Abstract
Light is one of the most important environmental cues regulating multiple aspects of plant growth and development, and abscisic acid (ABA) is a plant hormone that plays important roles during many phases of the plant life cycle and in plants' responses to various environmental stresses. How plants integrate the external light signal with endogenous ABA pathway for better adaptation and survival remains poorly understood. Here, we show that BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX) protein previously shown to positively regulate seedling photomorphogenesis, is also involved in ABA signaling. Our genetic data show that BBX21 may act upstream of several ABA INSENSITIVE (ABI) genes and ELONGATED HYPOCOTYL 5 (HY5) in ABA control of seed germination. Previous studies showed that HY5 acts as a direct activator of ABI5 expression, and that BBX21 interacts with HY5. We further demonstrate that BBX21 negatively regulates ABI5 expression by interfering with HY5 binding to the ABI5 promoter. In addition, ABI5 was shown to directly activate its own expression, whereas BBX21 negatively regulates this activity by directly interacting with ABI5. Together, our study indicates that BBX21 coordinates with HY5 and ABI5 on the ABI5 promoter and that these transcriptional regulators work in concert to integrate light and ABA signaling in Arabidopsis thaliana. Many factors such as light, phytohormone abscisic acid (ABA), etc., regulate multiple developmental processes throughout the plants' life cycle. Light promotes seed germination and ABA maintains seed dormancy. However, little is known about how light and ABA signaling pathways interact with each other. It was previously reported that Arabidopsis HY5, a well-known bZIP transcription factor involved in promoting seedling photomorphogenesis, is involved in ABA signaling by directly activating ABI5 expression. Here, we report that the B-box protein BBX21 negatively regulates ABI5 expression by interfering with HY5 binding to the ABI5 promoter. Interestingly, ABI5 was shown to directly bind to its own promoter and activate its expression, whereas BBX21 also negatively regulates this activity by interacting with ABI5. Together, our study shows that light and ABA signaling pathways converge on the ABI5 promoter, on which BBX21 acts as a negative regulator of ABI5 expression.
Collapse
Affiliation(s)
- Dongqing Xu
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Sreeramaiah N. Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Chamari Hettiarachchi
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Fang Lin
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mats X. Andersson
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Yan Jiang
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
177
|
Llorca CM, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. FRONTIERS IN PLANT SCIENCE 2014; 5:169. [PMID: 24817872 PMCID: PMC4012195 DOI: 10.3389/fpls.2014.00169] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/08/2014] [Indexed: 05/20/2023]
Abstract
bZIPs and WRKYs are two important plant transcription factor (TF) families regulating diverse developmental and stress-related processes. Since a partial overlap in these biological processes is obvious, it can be speculated that they fulfill non-redundant functions in a complex regulatory network. Here, we focus on the regulatory mechanisms that are so far described for bZIPs and WRKYs. bZIP factors need to heterodimerize for DNA-binding and regulation of transcription, and based on a bioinformatics approach, bZIPs can build up more than the double of protein interactions than WRKYs. In contrast, an enrichment of the WRKY DNA-binding motifs can be found in WRKY promoters, a phenomenon which is not observed for the bZIP family. Thus, the two TF families follow two different functional strategies in which WRKYs regulate each other's transcription in a transcriptional network whereas bZIP action relies on intensive heterodimerization.
Collapse
Affiliation(s)
| | | | - Ulrike Zentgraf
- *Correspondence: Ulrike Zentgraf, Department of General Genetics, Center of Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany e-mail:
| |
Collapse
|
178
|
Crocco CD, Botto JF. BBX proteins in green plants: insights into their evolution, structure, feature and functional diversification. Gene 2013; 531:44-52. [PMID: 23988504 DOI: 10.1016/j.gene.2013.08.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/02/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022]
Abstract
The B-box domain is conserved in a large number of proteins involved in cell growth control, differentiation and transcriptional regulation among animal and plant species. In Arabidopsis thaliana, some works have found that B-box proteins (BBX) play central developmental functions in flowering, light and abiotic stress signaling. Despite the functional importance of this protein family, evolutionary and structural relationships of BBX proteins have not been extensively investigated in the plant kingdom. Using a phylogenetic approach, we conducted a comprehensive evolutionary analysis of the BBX protein family in twelve plant species (four green algae, one moss, one lycophyte, three monocots and three dicots). The analysis classified 214 BBX proteins into five structure groups, which evolved independently at early stages of green plant evolution. We showed that the B-box consensus sequences of each structure groups retained a common and conserved domain topology. Furthermore, we identified seven novel motifs specific to each structure group and a valine-proline (VP) pair conserved at the C-terminus domain in some BBX proteins suggesting that they are required for protein-protein interactions. As it has been documented in mammalian systems, we also found monopartite and bipartite amino acid sequences at the C-terminus domain that could function as nuclear localization signals (NLSs). The five BBX structure groups evolved constrained by the conservation of amino acid sequences in the two B-boxes, but radiating variation into NLSs and novel motifs of each structural group. We suggest that these features are the functional basis for the BBX protein diversity in green plants.
Collapse
Affiliation(s)
- Carlos D Crocco
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | | |
Collapse
|
179
|
Gangappa SN, Holm M, Botto JF. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. PLANT SIGNALING & BEHAVIOR 2013; 8:25208. [PMID: 23733077 PMCID: PMC3999086 DOI: 10.4161/psb.25208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BBX24 and BBX25 are two important transcriptional regulators, which regulate seedling photomorphogenesis in Arabidopsis. Very recently, we have shown that BBX24 and BBX25 negatively regulate the expression of BBX22, reducing the function of HY5, by physically interacting with its bZIP domain. (1) Furthermore, HY5 HOMOLOG, HYH, has been reported to heterodimerize with HY5 and enhances its photomorphogenic function in seedling de-etiolation by serving as coactivator. (8) Here, we further report that BBX24 and BBX25 physically interact with HYH. The physical interactions of BBX24 and BBX25 with HYH could lead to depletion of HYH molecules from the active pool and, thus indirectly, reduce the function of HY5 in promoting photomorphogenesis. Hence, our results suggest another mode of regulation by which BBX24 and BBX25 exert their negative effects on HY5 indirectly through HYH for the fine-tuning of seedling photomorphogenesis.
Collapse
Affiliation(s)
- Sreeramaiah N. Gangappa
- Department of Biological and Environmental Sciences; Gothenburg University; Gothenburg, Sweden
- Current affiliation: Department of Biotechnology; National Institute of Technology; Durgapur, West Bengal, India
| | - Magnus Holm
- Department of Biological and Environmental Sciences; Gothenburg University; Gothenburg, Sweden
| | - Javier F. Botto
- Instituto de Investigaciones Fisiológicas y EcológicasVinculadas a la Agricultura; Facultad de Agronomía; Universidad de Buenos Aires y ConsejoNacional de InvestigacionesCientíficas y Técnicas; Buenos Aires, Argentina
- Correspondence to: Javier F. Botto,
| |
Collapse
|
180
|
Bowler C, Botto J, Deng XW. Photomorphogenesis, B-Box transcription factors, and the legacy of Magnus Holm. THE PLANT CELL 2013; 25:1192-5. [PMID: 23847786 PMCID: PMC3663261 DOI: 10.1105/tpc.113.250412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Chris Bowler
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l’Ecole, Normale Supérieure Paris, France.
| | | | | |
Collapse
|