151
|
Xie L, Lang-Mladek C, Richter J, Nigam N, Hauser MT. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:18-28. [PMID: 25817546 PMCID: PMC4503874 DOI: 10.1016/j.plaphy.2015.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/20/2015] [Indexed: 05/05/2023]
Abstract
The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV Resistance Locus 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is Constitutively Photomorphogenic 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B.
Collapse
Affiliation(s)
- Lisi Xie
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Christina Lang-Mladek
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Julia Richter
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Neha Nigam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
152
|
Kim JI, Dolan WL, Anderson NA, Chapple C. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. THE PLANT CELL 2015; 27:1529-46. [PMID: 25944103 PMCID: PMC4456644 DOI: 10.1105/tpc.15.00127] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/05/2015] [Accepted: 04/20/2015] [Indexed: 05/17/2023]
Abstract
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Whitney L Dolan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nickolas A Anderson
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
153
|
Zhang X, Gou M, Guo C, Yang H, Liu CJ. Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation. PLANT PHYSIOLOGY 2015; 167:337-50. [PMID: 25502410 PMCID: PMC4326750 DOI: 10.1104/pp.114.249136] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/12/2014] [Indexed: 05/17/2023]
Abstract
Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL's ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant's tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant's resistance to environmental stress.
Collapse
Affiliation(s)
- Xuebin Zhang
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
| | - Mingyue Gou
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
| | - Chunrong Guo
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
| | - Huijun Yang
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
| | - Chang-Jun Liu
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973 (X.Z., M.G., H.Y., C.-J.L.);College of Art and Science, Shanxi Agriculture University, Taigu, Shanxi 030801, People's Republic of China (C.G.); andBiochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11972 (H.Y.)
| |
Collapse
|
154
|
Zhang X, Liu CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. MOLECULAR PLANT 2015; 8:17-27. [PMID: 25578269 DOI: 10.1016/j.molp.2014.11.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/25/2014] [Indexed: 05/03/2023]
Abstract
Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from the primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, a current overview of our understanding of the complicated regulatory mechanisms governing the activity of PAL is presented; recent progress in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization is highlighted.
Collapse
Affiliation(s)
- Xuebin Zhang
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chang-Jun Liu
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
155
|
Naeem ul Hassan M, Zainal Z, Ismail I. Plant kelch containing F-box proteins: structure, evolution and functions. RSC Adv 2015. [DOI: 10.1039/c5ra01875g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kelch repeat containing F-box proteins; a review on the progress of the research on these plant specific signalling proteins.
Collapse
Affiliation(s)
- M. Naeem ul Hassan
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Zamri Zainal
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Ismanizan Ismail
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| |
Collapse
|
156
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
157
|
Liu CJ, Cai Y, Zhang X, Gou M, Yang H. Tailoring lignin biosynthesis for efficient and sustainable biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1154-62. [PMID: 25209835 DOI: 10.1111/pbi.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 05/03/2023]
Abstract
Increased global interest in a bio-based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio-based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost-competitive biofuel to meet our energy needs.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Biosciences Department, Brookhaven Nation Laboratory, Upton, NY, USA
| | | | | | | | | |
Collapse
|
158
|
Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories. Metab Eng 2014; 27:83-91. [PMID: 25461830 DOI: 10.1016/j.ymben.2014.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
Abstract
The promise of plants to serve as the green factories of the future is ever increasing. Plants have been used traditionally for construction, energy, food and feed. Bioactive compounds primarily derived from specialized plant metabolism continue to serve as important scaffold molecules for pharmaceutical drug production. Yet, the past few years have witnessed a growing interest on plants as the ultimate harvesters of carbon and energy from the sun, providing carbohydrate and lipid biofuels that would contribute to balancing atmospheric carbon. How can the metabolic output from plants be increased even further, and what are the bottlenecks? Here, we present what we perceive to be the main opportunities and challenges associated with increasing the efficiency of plants as chemical factories. We offer some perspectives on when it makes sense to use plants as production systems because the amount of biomass needed makes any other system unfeasible. However, there are other instances in which plants serve as great sources of biological catalysts, yet are not necessarily the best-suited systems for production. We also present emerging opportunities for manipulating plant genomes to make plant synthetic biology a reality.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, United States
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS), Department of Molecular Genetics and Department of Horticulture and Crop Science, The Ohio State University, 012 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, United States.
| |
Collapse
|
159
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|