151
|
Tilsner J, Nicolas W, Rosado A, Bayer EM. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:337-64. [PMID: 26905652 DOI: 10.1146/annurev-arplant-043015-111840] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, United Kingdom;
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, 33883 Villenave d'Ornon Cedex, France; ,
| | - Abel Rosado
- Department of Botany, Faculty of Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, 33883 Villenave d'Ornon Cedex, France; ,
| |
Collapse
|
152
|
Otero S, Helariutta Y, Benitez-Alfonso Y. Symplastic communication in organ formation and tissue patterning. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:21-28. [PMID: 26658335 DOI: 10.1016/j.pbi.2015.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Communication between cells is a crucial step to coordinate organ formation and tissue patterning. In plants, the intercellular transport of metabolites and signalling molecules occur symplastically through membranous structures (named plasmodesmata) that traverse the cell wall to connect the cytoplasm and endoplasmic reticulum of neighbouring cells. This review aims to highlight the importance of symplastic communication in plant development. We revisit current literature reporting the effects of changing plasmodesmata in cell morphogenesis, organ initiation and meristem maintenance and comment on recent work involving the identification of novel plasmodesmata regulators and of mobile developmental proteins and RNA molecules. New opportunities for unravelling the dynamic regulation and function of plasmodesmata are also discussed.
Collapse
Affiliation(s)
- Sofia Otero
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Yrjo Helariutta
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki FIN-00014, Finland
| | | |
Collapse
|
153
|
Abstract
Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Athen N Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA.
| |
Collapse
|
154
|
Kriechbaumer V, Botchway SW, Slade SE, Knox K, Frigerio L, Oparka K, Hawes C. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane. PLANT PHYSIOLOGY 2015; 169:1933-45. [PMID: 26353761 PMCID: PMC4634090 DOI: 10.1104/pp.15.01153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/08/2015] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Stanley W Botchway
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Susan E Slade
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Kirsten Knox
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Lorenzo Frigerio
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Karl Oparka
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| | - Chris Hawes
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom (V.K., C.H.);Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom (S.W.B.);Warwickshire Private Hospital (WPH) Proteomics Facility Research Technology Platform (S.E.S.) and School of Life Sciences (S.E.S., L.F.), University of Warwick, Coventry CV4 7AL, United Kingdom; andInstitute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (K.K., K.O.)
| |
Collapse
|
155
|
Lee JY. Plasmodesmata: a signaling hub at the cellular boundary. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:133-40. [PMID: 26247123 PMCID: PMC4618179 DOI: 10.1016/j.pbi.2015.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 05/19/2023]
Abstract
Effective intercellular communication is crucial for the survival of plants. Because plant cells are encased in rigid cell walls, direct cell-to-cell exchange of cytoplasmic content is only possible through plasmodesmata (PD), membrane-lined nanotubes that connect the cytoplasm of adjacent cells. PD are highly dynamic communication channels that can undergo various structural and functional modifications. Recent findings in the field suggest that defense signaling pathways are tightly linked to the regulation of PD, and the restriction of PD-mediated cell-to-cell communication is an essential innate immune response to microbial pathogens. Moreover, several plasma membrane-bound signaling components, including receptor-like kinases that are known to have non-cell autonomous function or pathogen perception at the cell periphery, are found to also partition to PD. These findings hint at the novel role of PD as a signaling hub for both symplasmic and cross-membrane pathways.
Collapse
Affiliation(s)
- Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|