151
|
Moseley BD, Ghearing GR, Benarroch EE, Britton JW. Early seizure termination in ictal asystole. Epilepsy Res 2011; 97:220-4. [PMID: 21899987 DOI: 10.1016/j.eplepsyres.2011.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
To evaluate the association between cerebral hypoperfusion and seizure termination, we compared seizure duration in seven patients with syncopal ictal asystole (IA), seven with non-syncopal ictal bradycardia, and ten with non-bradycardic seizures. Mean seizure duration was 34.4±13 s in IA, 67±28.9 s in ictal bradycardia, and 82.1±31.1 in non-bradycardic seizures. These were significantly different (ANOVA, p<0.02). This suggests cerebral hypoxia-ischemia favors seizure termination.
Collapse
|
152
|
Claycomb RJ, Hewett SJ, Hewett JA. Neuromodulatory role of endogenous interleukin-1β in acute seizures: possible contribution of cyclooxygenase-2. Neurobiol Dis 2011; 45:234-42. [PMID: 21856425 DOI: 10.1016/j.nbd.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022] Open
Abstract
The function of endogenous interleukin-1β (IL-1β) signaling in acute seizure activity was examined using transgenic mice harboring targeted deletions in the genes for either IL-1β (Il1b) or its signaling receptor (Il1r1). Acute epileptic seizure activity was modeled using two mechanistically distinct chemoconvulsants, kainic acid (KA) and pentylenetetrazole (PTZ). KA-induced seizure activity was more severe in homozygous null (-/-) Il1b mice compared to their wild-type (+/+) littermate controls, as indicated by an increase in the incidence of sustained generalized convulsive seizure activity. In the PTZ seizure model, the incidence of acute convulsive seizures was increased in both Il1b and Il1r1-/- mice compared to their respective +/+ littermate controls. Interestingly, the selective cyclooxygenase (COX)-2 inhibitor, rofecoxib, mimicked the effect of IL-1β deficiency on PTZ-induced convulsions in Il1r1+/+ but not -/- mice. Together, these results suggest that endogenous IL-1β possesses anticonvulsive properties that may be mediated by arachidonic acid metabolites derived from the catalytic action of COX-2.
Collapse
Affiliation(s)
- Robert J Claycomb
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | | | | |
Collapse
|
153
|
Igelström KM, Shirley CH, Heyward PM. Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011; 106:2593-605. [PMID: 21832029 DOI: 10.1152/jn.00601.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Magnesium-free medium can be used in brain slice studies to enhance glutamate receptor function, but this manipulation causes seizure-like activity in many cortical areas. The rodent olfactory bulb (OB) slice is a popular preparation, and potentially ictogenic ionic conditions have often been used to study odor processing. We studied low Mg(2+)-induced epileptiform discharges in mouse OB slices using extracellular and whole cell electrophysiological recordings. Low-Mg(2+) medium induced two distinct types of epileptiform activity: an intraglomerular delta-frequency oscillation resembling slow sniff-induced activity and minute-long seizure-like events (SLEs) consisting of large negative-going field potentials accompanied by sustained depolarization of output neurons. SLEs were dependent on N-methyl-D-aspartate receptors and sodium currents and were facilitated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors. The events were initiated in the glomerular layer and propagated laterally through the external plexiform layer at a slow time scale. Our findings confirm that low-Mg(2+) medium should be used with caution in OB slices. Furthermore, the SLEs resembled the so-called slow direct current (DC) shift of clinical and experimental seizures, which has recently been recognized as being of great clinical importance. The OB slice may therefore provide a robust and unique in vitro model of acute seizures in which mechanisms of epileptiform DC shifts can be studied in isolation from fast oscillations.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Dept. of Physiology, Univ. of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
154
|
Koppert MMJ, Kalitzin S, Lopes da Silva FH, Viergever MA. Plasticity-modulated seizure dynamics for seizure termination in realistic neuronal models. J Neural Eng 2011; 8:046027. [DOI: 10.1088/1741-2560/8/4/046027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
155
|
Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy. Epilepsy Res 2011; 96:250-6. [PMID: 21733658 DOI: 10.1016/j.eplepsyres.2011.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 01/06/2023]
Abstract
Endocannabinoid system and its CB1 receptors are suggested to provide endogeneous protection against seizures. The present study examines whether CB1 receptors contribute to resistance to seizures and kindling epileptogenesis in a model of audiogenic epilepsy. Three groups of Wistar rats were used: rats unsusceptible to audiogenic seizures, rats with acquired resistance to audiogenic seizures and rats with reproducible audiogenic running seizures. Chronic treatment with the CB1 receptor antagonist SR141716 (5 daily dosing of 30mg/kg) did not change innate resistance to audiogenic seizures in non-epileptic rats but reverted acquired seizure resistance in rats which lost their epileptic sensitivity with repeated testing. In the latter rats, audiogenic running seizures reappeared for at least two weeks after the end of treatment. In rats with reproducible seizure response, acutely, SR lengthened audiogenic seizures due to prolongation or appearance, de novo, of post-running limbic clonus without any effect on running seizure per se. This limbic component mimicked audiogenic kindling and indicated propagation of sound-induced brainstem seizure to the limbic forebrain. After chronic SR administration the incidence of the limbic clonus remained to be increased for at least two weeks. The present study supports the hypothesis about a role of CB1 receptors in endogeneous anticonvulsive mechanisms of the brain.
Collapse
|
156
|
Batson NE, McCall WV, Rosenquist PB. Intraictal cessation of electroencephalographic activity during electroconvulsive therapy. J ECT 2011; 27:103-4. [PMID: 21602638 DOI: 10.1097/yct.0b013e31820365ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There have been a few reports of intraictal cessation of electroencephalographic (EEG) activity during electroconvulsive therapy. We present a case of a gentleman with recurrent severe major depressive disorder, who had a "start-stop-start" phenomenon of EEG activity during his electroconvulsive therapy treatment. This brief intraictal arrest of activity demonstrates the importance of continued EEG monitoring to confirm the postictal termination phase.
Collapse
Affiliation(s)
- Nicholas E Batson
- Department of Psychiatry and Behavioral Medicine, Wake Forest University Baptist Medical Center, Winston-Salem, NC.
| | | | | |
Collapse
|
157
|
|
158
|
Boison D, Masino SA, Geiger JD. Homeostatic bioenergetic network regulation - a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 2011; 6:713-724. [PMID: 21731576 DOI: 10.1517/17460441.2011.575777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: Despite epilepsy being one of the most prevalent neurological disorders, one third of all patients with epilepsy cannot adequately be treated with available antiepileptic drugs. One of the significant causes for the failure of conventional pharmacotherapeutic treatment is the development of pharmacoresistance in many forms of epilepsy. The problem of pharmacoresistance has called for the development of new conceptual strategies that improve future drug development efforts. AREAS COVERED: A thorough review of the recent literature on pharmacoresistance in epilepsy was completed and select examples were chosen to highlight the mechanisms of pharmacoresistance in epilepsy and to demonstrate how those mechanistic findings might lead to improved treatment of pharmacoresistant epilepsy. The reader will gain a thorough understanding of pharmacoresistance in epilepsy and an appreciation of the limitations of conventional drug development strategies. EXPERT OPINION: Conventional drug development efforts aim to achieve specificity of symptom control by enhancing the selectivity of drugs acting on specific downstream targets; this conceptual strategy bears the undue risk of development of pharmacoresistance. Modulation of homeostatic bioenergetic network regulation is a novel conceptual strategy to affect whole neuronal networks synergistically by mobilizing multiple endogenous biochemical and receptor-dependent molecular pathways. In our expert opinion we conclude that homeostatic bioenergetic network regulation might thus be used as an innovative strategy for the control of pharmacoresistant seizures. Recent focal adenosine augmentation strategies support the feasibility of this strategy.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | | | | |
Collapse
|
159
|
Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS. Single-neuron dynamics in human focal epilepsy. Nat Neurosci 2011; 14:635-41. [PMID: 21441925 DOI: 10.1038/nn.2782] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/15/2011] [Indexed: 11/09/2022]
Abstract
Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons.
Collapse
Affiliation(s)
- Wilson Truccolo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Fukuda M, Suzuki Y, Hino H, Morimoto T, Ishii E. Activation of central adenosine A2A receptors lowers the seizure threshold of hyperthermia-induced seizure in childhood rats. Seizure 2011; 20:156-9. [DOI: 10.1016/j.seizure.2010.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/04/2010] [Accepted: 11/12/2010] [Indexed: 01/05/2023] Open
|
161
|
Abstract
Clinical evidence, in particular the wide use of theophylline as a bronchodilator, suggests that methylxanthines can cause seizures in patients without known underlying epilepsy. Theophylline is also known to be an added risk factor for seizure exacerbation in patients with epilepsy. The proconvulsant activity of methylxanthines can best be explained by their antagonizing the brain's own anticonvulsant adenosine. Recent evidence suggests that adenosine dysfunction is a pathological hallmark of epilepsy contributing to seizure generation and seizure spread. Conversely, adenosine augmentation therapies are effective in seizure suppression and prevention, whereas adenosine receptor antagonists such as methylxanthines generally exacerbate seizures. The impact of the methylxanthines caffeine and theophylline on seizures and excitotoxicity depends on timing, dose, and acute versus chronic use. New findings suggest a role of free radicals in theophylline-induced seizures, and adenosine-independent mechanisms for seizure generation have been proposed.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA
| |
Collapse
|
162
|
Abstract
PURPOSE Seizures are associated with a reduction in extracellular Ca²(+) concentration ([Ca²(+) ](o) ) and an increase in extracellular K(+) concentration ([K(+) ](o) ). The long-range synchrony observed between distant electrodes during seizures is weak. We hypothesized that changes in extracellular ionic conditions during seizures are sufficient to alter synaptic neuronal responses and synchrony in the neocortex. METHODS We obtained in vivo and in vitro electrophysiologic recordings combined with microstimulation from cat/rat neocortical neurons during seizures and seizure-like ionic conditions. In vitro the [K(+) ](o) was 2.8, 6.25, 8.0, and 12 mm and the [Ca²(+) ](o) was 1.2 and 0.6 mm. KEY FINDINGS During seizures recorded in vivo, we observed abolition of evoked synaptic responses. In vitro, the membrane potential of both regular-spiking and fast-spiking neurons was depolarized in high [K(+) ](o) conditions and hyperpolarized in high [Ca²(+) ](o) conditions. During high [K(+) ](o) conditions, changes in [Ca²(+) ](o) did not affect membrane potential. The synaptic responsiveness of both regular-spiking and fast-spiking neurons was reduced during seizure-like ionic conditions. A reduction in [Ca²(+) ](o) to 0.6 mm increased failure rates but did not abolish responses. However, an increase in [K(+) ](o) to 12 mm abolished postsynaptic responses, which depended on a blockade in axonal spike propagation. SIGNIFICANCE We conclude that concomitant changes in [K(+) ](o) and [Ca²(+) ](o) observed during seizures contribute largely to the alterations of synaptic neuronal responses and to the decrease in long-range synchrony during neocortical seizures.
Collapse
Affiliation(s)
- Josée Seigneur
- Robert-Giffard Research Center, Laval University, Québec, Canada
| | | |
Collapse
|
163
|
Mejía-Toiber J, Márquez-Ramos JA, Díaz-Muñoz M, Peña F, Aguilar MB, Giordano M. Glutamatergic Excitation and GABA Release from a Transplantable Cell Line. Cell Transplant 2010; 19:1307-23. [DOI: 10.3727/096368910x509059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell line M213-2O CL-4 was derived from cell line M213-2O and further modified to express human glutamate decarboxylase (hGAD-67), the enzyme that synthesizes GABA. Brain transplants of this cell line in animal models of epilepsy have been shown to modulate seizures. However, the mechanisms that underlie such actions are unknown. The purpose of the present study was to characterize this cell line and its responsiveness to several depolarizing conditions, in order to better understand how these cells exert their effects. Intracellular GABA levels were 34-fold higher and GAD activity was 16-fold higher in clone M213-2O CL-4 than in M213-2O. Both cell lines could take up [3H]GABA in vitro, and this uptake was prevented by nipecotic acid. By combining GABA release measurements and calcium imaging in vitro, we found that high extracellular K+, zero Mg2+, or glutamate activated M213-2O CL-4 cells and resulted in GABA release. The response to glutamate appeared to be mediated by AMPA/NMDA-like receptors. High KCl-induced GABA release was prevented when a Ca2+-free Krebs solution was used, suggesting an exocytotic-like mechanism. These results indicate that the cell line M213-2O CL-4 synthesizes, releases, and takes up GABA in vitro, and can be activated by depolarizing stimuli.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Fernando Peña
- Departamento de Farmacobiología, CINVESTAV-Sur. Calzada de los Tenorios 235, Delegación Tlalpan, México
| | - Manuel B. Aguilar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
164
|
Tuchman R, Alessandri M, Cuccaro M. Autism spectrum disorders and epilepsy: moving towards a comprehensive approach to treatment. Brain Dev 2010; 32:719-30. [PMID: 20558021 DOI: 10.1016/j.braindev.2010.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/15/2010] [Accepted: 05/17/2010] [Indexed: 11/29/2022]
Abstract
The biological and phenotypic heterogeneity of children with autism spectrum disorders (ASD) and epilepsy presents a significant challenge to the development of effective treatment protocols. There is no single treatment or treatment protocol for children with ASD or epilepsy. Children with co-occurring ASD and epilepsy should undergo a comprehensive assessment that includes investigation of underlying biological etiologies as well assessment of cognitive, language, affective, social and behavioral function prior to initiating treatment. The comprehensive treatment of children with ASD is based on a combination of therapeutic psychosocial interventions in combination with pharmacological agents. A process-oriented approach to assessment and intervention allows careful analysis of the child's response to treatment such that treatment protocols may be revised secondary to any changes in developmental trajectory of the child with ASD and epilepsy. The possibility of developing pharmacological interventions that target both ASD and epilepsy awaits definitive evidence. The best hope for good developmental outcomes in children with ASD and epilepsy is early recognition and comprehensive treatment of both the ASD and epilepsy.
Collapse
Affiliation(s)
- Roberto Tuchman
- Department of Neurology, Miami Children's Hospital, Dan Marino Center, Weston, FL, USA.
| | | | | |
Collapse
|
165
|
Abstract
Postictal headache (PIH) is defined by the International Classification of Headache Disorders as "headache with features of tension-type headache or, in a patient with migraine, of migraine headache, which develops within 3 hours following a partial or generalized seizure and resolves within 72 hours after the seizure." PIHs are prevalent, moderate to severe in intensity, last many hours, and frequently have characteristics of migraine. Young adults with a history of interictal headaches are at increased risk of developing PIH. Young age at onset and long duration of epilepsy, drug-resistant seizures, generalized tonic-clonic seizures, and possibly an occipital epileptic focus are additional risk factors. Although PIH is estimated to have a significant impact on the quality of life of people with epilepsy, it is frequently undertreated. Simple analgesics may prove beneficial. Epilepsy and headache share common pathophysiological mechanisms, as suggested by clinical and investigational findings, although the exact processes underlying these conditions are still largely unknown.
Collapse
Affiliation(s)
- Dana Ekstein
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
166
|
Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav 2010; 19:105-13. [PMID: 20705520 DOI: 10.1016/j.yebeh.2010.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/11/2023]
Abstract
Little is known about how the brain limits seizure duration and terminates seizures. Depending on severity and duration, a single seizure is followed by various functional, metabolic, and synaptic changes that may form targets for novel therapeutic strategies. It is long known that most seizures are followed by a period of postictal refractoriness during which the threshold for induction of additional seizures is increased. The endogenous anticonvulsant mechanisms involved in this phenomenon may be relevant for both spontaneous seizure arrest and increase of seizure threshold after seizure arrest. Postictal refractoriness has been extensively studied in various seizure and epilepsy models, including electrically and chemically induced seizures, kindling, and genetic animal models of epilepsy. During kindling development, two antagonistic processes occur simultaneously, one responsible for kindling-like events and the other for terminating ictus and postictal refractoriness. Frequently occurring seizures may lead to an accumulation of postictal refractoriness that may last weeks. The mechanisms involved in seizure termination and postictal refractoriness include changes in ionic microenvironment, in pH, and in various endogenous neuromodulators such as adenosine and neuropeptides. In animal models, the anticonvulsant efficacy of several antiepileptic drugs (AEDs) is increased during postictal refractoriness, which is a logical consequence of the interaction between endogenous anticonvulsant processes and the mechanism of AEDs. As discussed in this review, enhanced understanding of these endogenous processes may lead to novel targets for AED development.
Collapse
|
167
|
Lhatoo SD, Faulkner HJ, Dembny K, Trippick K, Johnson C, Bird JM. An electroclinical case-control study of sudden unexpected death in epilepsy. Ann Neurol 2010; 68:787-96. [DOI: 10.1002/ana.22101] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
168
|
Zawadzki L, Stafstrom CE. Status epilepticus treatment and outcome in children: what might the future hold? Semin Pediatr Neurol 2010; 17:201-5. [PMID: 20727491 DOI: 10.1016/j.spen.2010.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Status epilepticus is a life-threatening emergency that requires urgent treatment. Over the past decade, numerous advances have been made in the management of status epilepticus. Clinical studies have now established the benefit of early, aggressive treatment of status epilepticus with benzodiazepines in both prehospital and hospital settings. Neuroscientific advances are revealing mechanisms of status epilepticus that could translate into targets for treating acute status epilepticus and even reducing epileptogenesis. This article discusses future trends in the diagnosis, neurobiology, and treatment of status epilepticus.
Collapse
Affiliation(s)
- Lucyna Zawadzki
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
169
|
Involvement of histamine 1 receptor in seizure susceptibility and neuroprotection in immature mice. Epilepsy Res 2010; 90:8-15. [DOI: 10.1016/j.eplepsyres.2010.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 02/24/2010] [Accepted: 02/27/2010] [Indexed: 01/09/2023]
|
170
|
Granger causality relationships between local field potentials in an animal model of temporal lobe epilepsy. J Neurosci Methods 2010; 189:121-9. [PMID: 20304005 DOI: 10.1016/j.jneumeth.2010.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/29/2022]
Abstract
An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gyrus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures.
Collapse
|
171
|
Fukuda M, Suzuki Y, Hino H, Kuzume K, Morimoto T, Ishii E. Adenosine A1receptor blockage mediates theophylline-associated seizures. Epilepsia 2010; 51:483-7. [DOI: 10.1111/j.1528-1167.2009.02382.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
172
|
Musialowicz T, Mervaala E, Kälviäinen R, Uusaro A, Ruokonen E, Parviainen I. Can BIS monitoring be used to assess the depth of propofol anesthesia in the treatment of refractory status epilepticus? Epilepsia 2010; 51:1580-6. [DOI: 10.1111/j.1528-1167.2009.02514.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
173
|
|
174
|
Peri-ictal correlation dynamics of high-frequency (80-200 Hz) intracranial EEG. Epilepsy Res 2009; 89:72-81. [PMID: 20004556 DOI: 10.1016/j.eplepsyres.2009.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/29/2009] [Accepted: 11/15/2009] [Indexed: 01/21/2023]
Abstract
PURPOSE To assess (1) how large-scale correlation of intracranial EEG signals in the high-frequency range (80-200Hz) evolves from the pre-ictal, through the ictal into the postictal state and (2) whether the contribution of local neuronal activity to large-scale EEG correlation differentiates epileptogenic from non-epileptogenic brain tissue. METHODS Large-scale correlation of intracranial EEG was assessed by the total correlation strength (TCS), a measure derived from the eigenvalue spectra of zero-lag correlation matrices computed in a time-resolved manner by using a moving window approach. The relative change of total correlation strength (Delta(j)) resulting from leaving out EEG channel j ("leave-one-out approach") was used to quantify the contribution of local neuronal activity to large-scale EEG correlation. RESULTS 19 seizures of 3 patients were analyzed. On average, TCS increased significantly from the pre-ictal to the ictal, and from the ictal to the postictal state. In the pre-ictal state, Delta(j) was significantly more negative when EEG channels that recorded the electrical activity of brain tissue considered to be epileptogenic were left out; the identification of the epileptogenic area, that was subsequently surgically removed in two patients, was based on visual analysis. The spatio-temporal pattern of Delta(j) dramatically changed at seizure onsets and endings, revealing qualitative similarities between the seizures of different patients. DISCUSSION The evolution of large-scale EEG correlation in the high-frequency range is qualitatively similar to the one previously described for the low-frequency range. Because the two patients who underwent surgery became seizure free, our findings are consistent with the hypothesis that epileptogenic brain tissue may be characterized by its relatively increased contribution to pre-ictal large-scale correlation.
Collapse
|
175
|
Sleigh JW, Vizuete JA, Voss L, Steyn-Ross A, Steyn-Ross M, Marcuccilli CJ, Hudetz AG. The electrocortical effects of enflurane: experiment and theory. Anesth Analg 2009; 109:1253-62. [PMID: 19762755 DOI: 10.1213/ane.0b013e3181add06b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field potential (LFP) data obtained from anesthetized rats. METHODS After implantation of a high-density 8 x 8 electrode array in the visual cortex, the patterns of LFP and multiunit spike activity were recorded in rats during 0.5, 1.0, 1.5, and 2.0 minimum alveolar anesthetic concentration (MAC) enflurane anesthesia. These recordings were compared with computer simulations from a mean field model of neocortical dynamics. The neuronal effect of increasing enflurane concentration was simulated by prolonging the decay time constant of the inhibitory postsynaptic potential (IPSP). The amplitude of the excitatory postsynaptic potential (EPSP) was modulated, inverse to the neocortical firing rate. RESULTS In the anesthetized rats, increasing enflurane concentrations consistently caused the appearance of suppression pattern (>1.5 MAC) in the LFP recordings. The mean rate of multiunit spike activity decreased from 2.54/s (0.5 MAC) to 0.19/s (2.0 MAC). At high MAC, the majority of the multiunit action potential events became synchronous with the PED. In the theoretical model, prolongation of the IPSP decay time and activity-dependent EPSP modulation resulted in output that was similar in morphology to that obtained from the experimental data. The propensity for rhythmic seizure-like activity in the model could be determined by analysis of the eigenvalues of the equations. CONCLUSION It is possible to use a mean field theory of neocortical dynamics to replicate the PED pattern observed in LFPs in rats under enflurane anesthesia. This pattern requires a combination of a moderately increased total area under the IPSP, prolonged IPSP decay time, and also activity-dependent modulation of EPSP amplitude.
Collapse
Affiliation(s)
- James W Sleigh
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
176
|
Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, Staniek M, Wagner T. Synchronization phenomena in human epileptic brain networks. J Neurosci Methods 2009; 183:42-8. [DOI: 10.1016/j.jneumeth.2009.05.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/21/2023]
|
177
|
Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. ACTA ACUST UNITED AC 2009; 4:91-9. [PMID: 19674507 DOI: 10.1017/s1740925x09990135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The astrocytic enzyme adenosine kinase (ADK) is a key negative regulator of the brain's endogenous anticonvulsant adenosine. Astrogliosis with concomitant upregulation of ADK is part of the epileptogenic cascade and contributes to seizure generation. To molecularly dissect the respective roles of astrogliosis and ADK-expression for seizure generation, we used a transgenic approach to uncouple ADK-expression from astrogliosis: in Adk-tg mice the endogenous Adk-gene was deleted and replaced by a ubiquitously expressed Adk-transgene with novel ectopic expression in pyramidal neurons, resulting in spontaneous seizures. Here, we followed a unique approach to selectively injure the CA3 of these Adk-tg mice. Using this strategy, we had the opportunity to study astrogliosis and epileptogenesis in the absence of the endogenous astrocytic Adk-gene. After triggering epileptogenesis we demonstrate astrogliosis without upregulation of ADK, but lack of seizures, whereas matching wild-type animals developed astrogliosis with upregulation of ADK and spontaneous recurrent seizures. By uncoupling ADK-expression from astrogliosis, we demonstrate that global expression levels of ADK rather than astrogliosis per se contribute to seizure generation.
Collapse
|
178
|
Boison D, Stewart KA. Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 2009; 78:1428-37. [PMID: 19682439 DOI: 10.1016/j.bcp.2009.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 01/16/2023]
Abstract
Epilepsy is a common seizure disorder affecting approximately 70 million people worldwide. Current pharmacotherapy is neuron-centered, frequently accompanied by intolerable side effects, and fails to be effective in about one third of patients. Therefore, new therapeutic concepts are needed. Recent research suggests an astrocytic basis of epilepsy, presenting the possibility of novel therapeutic targets. In particular, dysfunction of the astrocyte-controlled, endogenous, adenosine-based seizure control system of the brain is implicated in seizure generation. Thus, astrogliosis - a pathological hallmark of the epileptic brain - is associated with upregulation of the adenosine-removing enzyme adenosine kinase (ADK), resulting in focal adenosine deficiency. Both astrogliotic upregulation of ADK in epilepsy and transgenic overexpression of ADK are associated with seizures, and inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. These findings link adenosine deficiency with seizures and predict that adenosine augmentation therapies (AATs) will likely be effective in preventing seizures. Given the wide-spread systemic and central side effects of systemically administered AATs, focal AATs (i.e., limited to the astrogliotic lesion) are a necessity. This Commentary will discuss the pharmacological rationale for the development of focal AATs. Additionally, several AAT strategies will be discussed: (1) adenosine released from silk-based brain implants; (2) adenosine released from locally implanted encapsulated cells; (3) adenosine released from stem cell-derived brain implants; and (4) adenosine augmenting gene therapies. Finally, new developments and therapeutic challenges in using focal AATs for epilepsy therapy will critically be evaluated.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| | | |
Collapse
|
179
|
Schuele SU, Bermeo AC, Alexopoulos AV, Burgess RC. Anoxia-ischemia: a mechanism of seizure termination in ictal asystole. Epilepsia 2009; 51:170-3. [PMID: 19490047 DOI: 10.1111/j.1528-1167.2009.02168.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral anoxia-ischemia (CAI) is a potent inhibitor of cerebral hyperactivity and a potential mechanism of seizure self-termination. Prolonged ictal asystole (IA) invariably leads to CAI and has been implicated as a potential cause of sudden unexplained death in epilepsy (SUDEP). IA was seen in eight consecutive patients (0.12% of all patients monitored). Ten of their seizures with IA had evidence of CAI on electroencephalography (EEG), manifested by bilateral hypersynchronous slowing (BHS), and were compared to 18 seizures without signs of CAI. The ictal EEG pattern resolved in all 10 CAI events with onset of the BHS. The period from IA onset to seizure end was reduced in events with BHS compared to events without BHS (10.5 s vs. 28.3 s, respectively; p = 0.005), and the total seizure duration tended to be shorter. Anoxia-ischemia as a result of IA may represent an effective endogenous mechanism for seizure termination and may explain why the hearts of patients with ictal asystole reported to date in the literature resumed beating spontaneously.
Collapse
|
180
|
Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 2009; 85:131-41. [PMID: 19428218 DOI: 10.1016/j.eplepsyres.2009.03.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 12/17/2022]
Abstract
Deficiencies in the brain's own adenosine-based seizure control system contribute to seizure generation. Consequently, reconstitution of adenosinergic neuromodulation constitutes a rational approach for seizure control. This review will critically discuss focal adenosine augmentation strategies and their potential for antiepileptic and disease modifying therapy. Due to systemic side effects of adenosine focal adenosine augmentation--ideally targeted to an epileptic focus--becomes a therapeutic necessity. This has experimentally been achieved in kindled seizure models as well as in post-status epilepticus models of spontaneous recurrent seizures using three different therapeutic strategies that will be discussed here: (i) polymer-based brain implants that were loaded with adenosine; (ii) brain implants comprised of cells engineered to release adenosine and embedded in a cell-encapsulation device; (iii) direct transplantation of stem cells engineered to release adenosine. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme adenosine kinase (ADK) in rodent and human cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. New developments and therapeutic challenges in using AATs for epilepsy therapy will critically be evaluated.
Collapse
|