151
|
'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list--and how to find it. Biochem J 2009; 425:1-11. [PMID: 20001958 DOI: 10.1042/bj20091328] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Like other forms of engineering, metabolic engineering requires knowledge of the components (the 'parts list') of the target system. Lack of such knowledge impairs both rational engineering design and diagnosis of the reasons for failures; it also poses problems for the related field of metabolic reconstruction, which uses a cell's parts list to recreate its metabolic activities in silico. Despite spectacular progress in genome sequencing, the parts lists for most organisms that we seek to manipulate remain highly incomplete, due to the dual problem of 'unknown' proteins and 'orphan' enzymes. The former are all the proteins deduced from genome sequence that have no known function, and the latter are all the enzymes described in the literature (and often catalogued in the EC database) for which no corresponding gene has been reported. Unknown proteins constitute up to about half of the proteins in prokaryotic genomes, and much more than this in higher plants and animals. Orphan enzymes make up more than a third of the EC database. Attacking the 'missing parts list' problem is accordingly one of the great challenges for post-genomic biology, and a tremendous opportunity to discover new facets of life's machinery. Success will require a co-ordinated community-wide attack, sustained over years. In this attack, comparative genomics is probably the single most effective strategy, for it can reliably predict functions for unknown proteins and genes for orphan enzymes. Furthermore, it is cost-efficient and increasingly straightforward to deploy owing to a proliferation of databases and associated tools.
Collapse
|
152
|
Pérez-Pantoja D, Donoso RA, Sánchez MA, González B. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Microbiology (Reading) 2009; 155:3641-3651. [DOI: 10.1099/mic.0.032086-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maleylacetate reductases (MAR) are required for biodegradation of several substituted aromatic compounds. To date, the functionality of two MAR-encoding genes (tfdF
I and tfdF
II) has been reported in Cupriavidus necator JMP134(pJP4), a known degrader of aromatic compounds. These two genes are located in tfd gene clusters involved in the turnover of 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-CB). The C. necator JMP134 genome comprises at least three other genes that putatively encode MAR (tcpD, hqoD and hxqD), but confirmation of their functionality and their role in the catabolism of haloaromatic compounds has not been assessed. RT-PCR expression analyses of C. necator JMP134 cells exposed to 2,4-D, 3-CB, 2,4,6-trichlorophenol (2,4,6-TCP) or 4-fluorobenzoate (4-FB) showed that tfdF
I and tfdF
II are induced by haloaromatics channelled to halocatechols as intermediates. In contrast, 2,4,6-TCP only induces tcpD, and any haloaromatic compounds tested did not induce hxqD and hqoD. However, the tcpD, hxqD and hqoD gene products showed MAR activity in cell extracts and provided the MAR function for 2,4-D catabolism when heterologously expressed in MAR-lacking strains. Growth tests for mutants of the five MAR-encoding genes in strain JMP134 showed that none of these genes is essential for degradation of the tested compounds. However, the role of tfdF
I/tfdF
II and tcpD genes in the expression of MAR activity during catabolism of 2,4-D and 2,4,6-TCP, respectively, was confirmed by enzyme activity tests in mutants. These results reveal a striking example of genetic redundancy in the degradation of aromatic compounds.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| | - Raúl A. Donoso
- Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miguel A. Sánchez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencia, Universidad Adolfo Ibáñez, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Millennium Nucleus on Microbial Ecology and Environmental Microbiology and Biotechnology, NM-EMBA, Center for Advanced Studies in Ecology and Biodiversity, CASEB, Santiago, Chile
| |
Collapse
|
153
|
3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134. Microbiology (Reading) 2009; 155:2757-2765. [DOI: 10.1099/mic.0.029207-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus necator JMP134(pJP4) is able to grow on 3-chlorobenzoate (3-CB), a model chloroaromatic pollutant. Catabolism of 3-CB is achieved via the expression of the chromosomally encoded benABCD genes and the tfd genes from plasmid pJP4. Since passive diffusion of benzoic acid derivatives at physiological pH is negligible, the uptake of this compound should be facilitated by a transport system. However, no transporter has so far been described to perform this function, and identification of chloroaromatic compound transporters has been limited. In this work, uptake experiments using 3-[ring-UL-14C]CB showed an inducible transport system in strain JMP134, whose expression is activated by 3-CB and benzoate. A similar level of 3-CB uptake was found for a mutant strain of JMP134, defective in chlorobenzoate degradation, indicating that metabolic drag is not an important component of the measured uptake rate. Competitive inhibitor assays showed that uptake of 3-CB was inhibited by benzoate and, to a lesser degree, by 3-CB and 3,5-dichlorobenzoate, but not by any of 12 other substituted benzoates tested. The expression of several gene candidates for this transport function was analysed by RT-PCR, including both permease-type and ABC-type ATP-dependent transporters. Induction of a chromosomally encoded putative permease transporter (benP gene) was found specifically in the presence of 3-CB or benzoate. A benP knockout mutant of strain JMP134 displayed an almost complete loss of 3-CB transport activity. This is to our knowledge the first report of a 3-CB transporter.
Collapse
|