151
|
Saad MA, Abdelsalam RM, Kenawy SA, Attia AS. Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats. Neurochem Res 2014; 40:139-50. [PMID: 25403620 DOI: 10.1007/s11064-014-1478-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/11/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory and immune modulating lipid mediators involved in inflammatory diseases and were boosted in human brain after acute phase of cerebral ischemia. The antagonism of CysLTs receptors may offer protection against ischemic damage. Therefore it seemed interesting to study the possible neuroprotective effect of Montelukast, a CysLTR1 antagonist in global cerebral ischemia/reperfusion (IR) injury in rats. Global cerebral ischemia-reperfusion was induced by bilateral carotid artery occlusion for 15 min followed by 60 min reperfusion period. Animals were randomly allocated into three groups (n = 30 per group): Sham operated, I/R control and rats treated with montelukast (0.5 mg/kg, po) daily for 7 days then I/R was induced 1 h after the last dose of montelukast. After reperfusion rats were killed by decapitation, brains were removed and both hippocampi separated and the following biochemical parameters were estimated; lactate dehydrogenase activity, oxidative stress markers (lipid peroxides, nitric oxide and reduced glutathione), inflammatory markers (myeloperoxidase, tumor necrosis factor-alpha, nuclear factor kappa-B, interleukin-6 and interleukin-10), apoptotic biomarkers (caspase 3 and cytochrome C), neurotransmitters (glutamate, gamma aminobutyric acid), Cys-LTs contents and CysLT1 receptor expression; as well as total brain infarct size and histopathological examination of the hippocampus were assessed. Montelukast protected hippocampal tissue by reducing oxidative stress, inflammatory and apoptotic markers. Furthermore, it reduced glutamate and lactate dehydrogenase activity as well as infarct size elevated by I/R. These results were consistent with the histopathological findings. Montelukast showed a neuroprotective effects through antioxidant, anti-inflammatory and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- M A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt,
| | | | | | | |
Collapse
|
152
|
LIU FAYUAN, LIU GUOZHONG, LIANG WENNA, YE HONGZHI, WENG XIAPING, LIN PINGDONG, LI HUITING, CHEN JIASHOU, LIU XIANXIANG, LI XIHAI. Duhuo Jisheng decoction treatment inhibits the sodium nitroprussiate-induced apoptosis of chondrocytes through the mitochondrial-dependent signaling pathway. Int J Mol Med 2014; 34:1573-80. [DOI: 10.3892/ijmm.2014.1962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
153
|
Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9211-22. [PMID: 25179496 DOI: 10.1021/jf502420h] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.
Collapse
Affiliation(s)
- Xiaodan Fan
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, China
| | | | | | | | | |
Collapse
|
154
|
Haslop A, Wells L, Gee A, Plisson C, Long N. One-Pot Multi-Tracer Synthesis of Novel 18F-Labeled PET Imaging Agents. Mol Pharm 2014; 11:3818-22. [DOI: 10.1021/mp500324n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anna Haslop
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K
| | - Lisa Wells
- Imanova,
Ltd., Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Antony Gee
- Division
of Imaging Sciences and Biomedical Engineering, St. Thomas’ Hospital, The Rayne Institute, King’s College London, London SE1 7EH, U.K
| | | | - Nicholas Long
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K
| |
Collapse
|
155
|
Deegan S, Saveljeva S, Gupta S, MacDonald DC, Samali A. ER stress responses in the absence of apoptosome: A comparative study in CASP9 proficient vs deficient mouse embryonic fibroblasts. Biochem Biophys Res Commun 2014; 451:367-73. [DOI: 10.1016/j.bbrc.2014.07.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/19/2023]
|
156
|
Chen LC, Wu JC, Tuan YF, Tseng YK, Hseu YC, Chen SC. Molecular mechanisms of 3,3'-dichlorobenzidine-mediated toxicity in HepG2 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:407-420. [PMID: 24604609 DOI: 10.1002/em.21858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
3,3'-Dichlorobenzidine (DCB) (CAS 91-94-1), a synthetic, chlorinated, primary aromatic amine, is typically used as an intermediate in the manufacturing of pigments for printing inks, textiles, paints, and plastics. In this study, we found that DCB could significantly inhibit the cell viability of HepG2 cells in a concentration-dependent manner. Flow cytometry revealed that DCB induced G2/M-phase arrest and apoptosis in HepG2 cells. DCB treatment dramatically induced the dissipation of mitochondrial membrane potential (Δψm ) and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that DCB-induced apoptosis was accompanied by the down-regulation of Bcl-2/Bax ratio. These results suggested that DCB led to cytotoxicity involving activation of mitochondrial-dependent apoptosis through Bax/Bcl-2 pathways in HepG2 cells. Furthermore, HepG2 cells treated with DCB showed significant DNA damage as supported by the concentration-dependent increase in olive tail moments as determined by the comet assay and by concentration- and time-dependent increase in histone H2AX phosphorylation (γ-H2AX). Two-dimensional-difference gel electrophoresis (2D-DIGE), combined with mass spectrometry (MS), was used to unveil the differences in protein expression between cells exposed to 25 µM or 100 µM of DCB for 24 hr and the control cells. Twenty-seven differentially expressed proteins involved in DNA repair, unfolded protein response, metabolism, cell signaling, and apoptosis were identified. Among these, 14-3-3 theta, CGI-46, and heat-shock 70 protein 4 were confirmed using Western blot assay. Taken together, these data suggest that DCB is capable of inducing DNA damage and some cellular stress responses in HepG2 cells, thus eventually leading to cell death by apoptosis.
Collapse
MESH Headings
- 3,3'-Dichlorobenzidine/adverse effects
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinogens/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase 9/metabolism
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Membrane Potential, Mitochondrial/drug effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lei-Chin Chen
- Department of Nutrition, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
157
|
Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One 2014; 9:e91245. [PMID: 24618835 PMCID: PMC3949755 DOI: 10.1371/journal.pone.0091245] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022] Open
Abstract
We previously reported that calycosin, a natural phytoestrogen structurally similar to estrogen, successfully triggered apoptosis of estrogen receptor (ER)-positive breast cancer cell line, MCF-7. To better understand the antitumor activities of calycosin against breast cancer, besides MCF-7 cells, another ER-positive cell line T-47D was analyzed here, with ER-negative cell lines (MDA-231, MDA-435) as control. Notably, calycosin led to inhibited cell proliferation and apoptosis only in ER-positive cells, particularly in MCF-7 cells, whereas no such effect was observed in ER-negative cells. Then we investigated whether regulation of ERβ, a subtype of ER, contributed to calycosin-induced apoptosis in breast cancer cells. The results showed that incubation of calycosin resulted in enhanced expression ERβ in MCF-7 and T-47D cells, rather than MDA-231 and MDA-435 cells. Moreover, with the upregulation of ERβ, successive changes in downstream signaling pathways were found, including inactivation of insulin-like growth factor 1 receptor (IGF-1R), then stimulation of p38 MAPK and suppression of the serine/threonine kinase (Akt), and finally poly(ADP-ribose) polymerase 1 (PARP-1) cleavage. However, the other two members of the mitogen-activated protein kinase (MAPK) family, extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK), were not consequently regulated by downregulated IGF-1R, indicating ERK 1/2 and JNK pathways were not necessary to allow proliferation inhibition by calycosin. Taken together, our results indicate that calycosin tends to inhibit growth and induce apoptosis in ER-positive breast cancer cells, which is mediated by ERβ-induced inhibition of IGF-1R, along with the selective regulation of MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways.
Collapse
|
158
|
Park DK, Lim YH, Park HJ. Antrodia camphorata grown on germinated brown rice inhibits HT-29 human colon carcinoma proliferation through inducing G0/G1 phase arrest and apoptosis by targeting the β-catenin signaling. J Med Food 2014; 16:681-91. [PMID: 23957353 DOI: 10.1089/jmf.2012.2605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antrodia camphorata (AC) has been used as a traditional medicine to treat food and drug intoxication, diarrhea, abdominal pain, hypertension, pruritis (skin itch), and liver cancer in East Asia. In this study, we investigated anticancer activities of AC grown on germinated brown rice (CBR) in HT-29 human colon cancer cells. We found that the inhibitory efficacy of CBR 80% ethanol (EtOH) extract on HT-29 and CT-26 cell proliferation was more effective than ordinary AC EtOH 80% extract. Next, 80% EtOH extract of CBR was further separated into four fractions; hexane, ethyl acetate (EtOAc), butanol (BuOH), and water. Among them, CBR EtOAc fraction showed the strongest inhibitory activity against HT-29 cell proliferation. Therefore, CBR EtOAc fraction was chosen for further studies. Annexin V-fluorescein isothiocyanate staining data indicated that CBR EtOAc fraction induced apoptosis. Induction of G0/G1 cell cycle arrest on human colon carcinoma cell was observed in CBR EtOAc fraction-treated cells. We found that CBR decreased the level of proteins involved in G0/G1 cell cycle arrest and apoptosis. CBR EtOAc fraction inhibited the β-catenin signaling pathway, supporting its suppressive activity on the level of cyclin D1. High performance liquid chromatography analysis data indicated that CBR EtOAc fraction contained adenosine. This is the first investigation that CBR has a greater potential as a novel chemopreventive agent than AC against colon cancer. These data suggest that CBR might be useful as a chemopreventive agent against colorectal cancer.
Collapse
Affiliation(s)
- Dong Ki Park
- Cell Activation Research Institute, Konkuk University, Seoul, Korea
| | | | | |
Collapse
|
159
|
Enayat S, Ceyhan MŞ, Başaran AA, Gürsel M, Banerjee S. Anticarcinogenic effects of the ethanolic extract of Salix aegyptiaca in colon cancer cells: involvement of Akt/PKB and MAPK pathways. Nutr Cancer 2013; 65:1045-58. [PMID: 24168160 DOI: 10.1080/01635581.2013.850966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bark from Salix species of plants has been traditionally consumed for its antiinflammatory properties. Because inflammation frequently accompanies the progress of colorectal cancer (CRC), we have evaluated the anticancer properties of the ethanolic extract from the bark (EEB) of S. aegyptiaca, a Salix species endogenous to the Middle East, using HCT-116 and HT29 CRC cell lines. Fresh bark from S. aegyptiaca was extracted with ethanol, fractionated by solvent-solvent partitioning and the fractions were analyzed by tandem mass spectrometry. Catechin, catechol, and salicin were the most abundant constituents of the extract. Interestingly, EEB showed the highest anticancer effect in the colon cancer cells followed by its fractions in ethyl acetate and water, with catechin, catechol, and salicin showing the least efficacy. EEB could strongly reduce the proliferation of the cancer cells, but not of CCD-18Co, normal colon fibroblast cell line. Accompanying this was cell cycle arrest at G1/S independent of DNA damage in the cancer cells, induction of apoptosis through a p53 dependent pathway and an inhibition of PI3K/Akt and MAP Kinase pathways at levels comparable to known commercial inhibitors. We propose that the combination of the polyphenols and flavonoids in EEB contributes toward its potent anticarcinogenic effects. [Supplementary materials are available for this article. Go to the publisher's online edition of Nutrition and Cancer for the following free supplemental resource(s): Supplementary Figure 1 and Supplementary Figure 2.].
Collapse
Affiliation(s)
- Shabnam Enayat
- a Department of Biology , Middle East Technical University , Ankara , Turkey
| | | | | | | | | |
Collapse
|
160
|
Hudson SG, Halleran DR, Nevaldine B, Shapiro A, Hutchison RE, Hahn PJ. Microarray determination of Bcl-2 family protein inhibition sensitivity in breast cancer cells. Exp Biol Med (Maywood) 2013; 238:248-56. [PMID: 23576806 DOI: 10.1177/1535370212474582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study tests the hypothesis that reverse transcription polymerase chain reaction (RT-PCR) microarrays can be used to predict the relative sensitivity to induction of apoptosis in breast cancer cells exposed to inhibitors of antiapoptotic Bcl-2 family proteins. Four cell lines, MDA-MB-231 (MDA-231) and MDA-MB-468 (MDA-468), BT-20 and T47-D were screened for relative expression of Bcl-2 family members A1, Mcl-1, Bcl-2, Bcl-xL and Bcl-w mRNA by RT-PCR microarrays and Western analysis. The four cell lines were treated with 1 μmol/L obatoclax (GX15-070) and/or 2 Gy radiation (RT) and monitored for apoptosis after 48 h. Cell lines showing the highest total fold-increase of Bcl-2 family member mRNA, MDA-231 and MDA-468, also showed the highest levels of apoptosis induction (approximately 70% with obatoclax alone and 82% with obatoclax plus RT). Cell lines with little or no increase in Bcl-2 family mRNA (BT-20 and T47-D) showed less apoptosis (30% following treatment with obatoclax and 42% with obatoclax plus RT). RT-PCR arrays can predict the relative apoptosis response of breast cancer cells to the pan Bcl-2 inhibitor obatoclax alone or when combined with radiation.
Collapse
Affiliation(s)
- Sandra G Hudson
- Department of Radiation Oncology, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Eißmann M, Schwamb B, Melzer IM, Moser J, Siele D, Köhl U, Rieker RJ, Wachter DL, Agaimy A, Herpel E, Baumgarten P, Mittelbronn M, Rakel S, Kögel D, Böhm S, Gutschner T, Diederichs S, Zörnig M. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 2013; 8:e64873. [PMID: 23717670 PMCID: PMC3661464 DOI: 10.1371/journal.pone.0064873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.
Collapse
Affiliation(s)
- Moritz Eißmann
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bettina Schwamb
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Inga Maria Melzer
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Julia Moser
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Dagmar Siele
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany
| | | | | | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Baumgarten
- Institute of Neurology (Edinger Institute), Frankfurt/Main, Germany
| | | | - Stefanie Rakel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefanie Böhm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Tony Gutschner
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
162
|
Kalantari-Dehaghi M, Chen Y, Deng W, Chernyavsky A, Marchenko S, Wang PH, Grando SA. Mechanisms of mitochondrial damage in keratinocytes by pemphigus vulgaris antibodies. J Biol Chem 2013; 288:16916-16925. [PMID: 23599429 DOI: 10.1074/jbc.m113.472100] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease.
Collapse
Affiliation(s)
| | | | - Wu Deng
- Medicine, Irvine, California 92697
| | | | | | - Ping H Wang
- Medicine, Irvine, California 92697; Biological Chemistry, Irvine, California 92697.
| | - Sergei A Grando
- Departments of Dermatology, Irvine, California 92697; Biological Chemistry, Irvine, California 92697; Institute for Immunology, University of California, Irvine, California 92697.
| |
Collapse
|
163
|
Zheng L, Lin X, Wu N, Liu M, Zheng Y, Sheng J, Ji X, Sun M. Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta Rev Cancer 2013; 1836:42-8. [PMID: 23470652 DOI: 10.1016/j.bbcan.2013.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 01/15/2023]
Abstract
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents. Peptides from marine organisms have become important sources in the discovery of antitumor drugs, especially when modern technology makes it more and more feasible to collect organisms from seas. This primer summarizes several marine peptides, based on their effects on apoptotic signaling pathways, although most of these peptides have not yet been studied in depth for their mechanisms of action. Novel peptides that induce an apoptosis signal pathway are presented in association with their pharmacological properties.
Collapse
Affiliation(s)
- Lanhong Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Bravo-Cuellar A, Hernández-Flores G, Lerma-Díaz JM, Domínguez-Rodríguez JR, Jave-Suárez LF, De Célis-Carrillo R, Aguilar-Lemarroy A, Gómez-Lomeli P, Ortiz-Lazareno PC. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65. J Biomed Sci 2013; 20:13. [PMID: 23445492 PMCID: PMC3618339 DOI: 10.1186/1423-0127-20-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm antileukemic potential.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente CIBO, Instituto Mexicano del Seguro Social IMSS, Sierra Mojada 800, Col, Independencia, Guadalajara, Jalisco 44340, México
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Wang H, Zhang S, Zhong J, Zhang J, Luo Y, Pengfei G. The proteasome inhibitor lactacystin exerts its therapeutic effects on glioma via apoptosis: an in vitro and in vivo study. J Int Med Res 2013; 41:72-81. [PMID: 23569132 DOI: 10.1177/0300060513476992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To examine the effect and underlying mechanism of action of the proteasome inhibitor lactacystin on glioma, in vitro and in vivo. METHODS Rat C6 glioma cells were cultured with or without lactacystin. Cell proliferation, apoptosis and mitochondrial membrane potential were determined. A glioma xenograft model was established in mice and animals were treated with 0, 1 or 5 µg/20 g body weight lactacystin for 7 days. Animals were sacrificed on day 17 after completion of treatment. Apoptosis in tumour tissue was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Levels of B cell lymphoma 2 (Bcl-2), and Bcl2-associated X protein (Bax) protein and mRNA, were determined in C6 cells and tumour tissues. RESULTS Lactacystin significantly inhibited the proliferation of C6 cells, increased apoptosis and reduced mitochondrial membrane potential in vitro, and suppressed tumour growth in vivo. Lactacystin increased the ratio of Bax to Bcl-2 at the mRNA and protein levels, both in vitro and in vivo. CONCLUSIONS The effects of lactacystin are associated with apoptosis induction. Proteasome inhibition may represent an effective treatment option for glioma.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
166
|
Tomizawa A, Kanno SI, Osanai Y, Goto A, Sato C, Yomogida S, Ishikawa M. Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells. Oncol Rep 2012; 29:425-9. [PMID: 23229564 PMCID: PMC3583534 DOI: 10.3892/or.2012.2163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022] Open
Abstract
Caffeic acid esters have various biological activities, and we previously reported that undecyl caffeate (caffeic acid undecyl ester, CAUE), a new caffeic acid derivative, has strong pharmacological activity. The present study investigated the cytotoxicity of both CAUE and its parent compound, caffeic acid phenethyl ester (CAPE), and characterized the mechanisms by which they induce apoptosis in the human B cell leukemia cell line NALM-6. Treatment with CAUE reduced cell survival in NALM-6 cells but had no significant effect on the survival of normal lymphocytes. When assessing the 50% inhibitory concentration (IC(50)) for cytotoxicity, CAUE had 10-fold higher activity than CAPE in NALM-6 cells. CAUE treatment resulted in induction of apoptotic features in NALM-6 cells, including cleaved poly (ADP-ribose) polymerase and activated caspase-3. A caspase inhibitor completely blocked CAUE-induced apoptosis. CAUE treatment resulted in a concentration- and time-dependent decrease in both mitochondrial membrane potential and downregulation of Bcl-2 expression. Moreover, CAUE-induced apoptosis was enhanced in the Bcl-2 knockdown condition induced by small interfering RNA. These data suggest that CAUE-induced apoptosis was mediated via an apoptotic intrinsic pathway including mitochondrial damage and was caspase-dependent. These data also suggest that CAUE is a powerful anti-leukemic agent that acts via induction of apoptosis by mitochondrial damage and selective action in leukemia cells.
Collapse
Affiliation(s)
- Ayako Tomizawa
- Department of Clinical Pharmacotherapeutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
167
|
Lee RX, Li QQ, Reed E. β-elemene effectively suppresses the growth and survival of both platinum-sensitive and -resistant ovarian tumor cells. Anticancer Res 2012; 32:3103-3113. [PMID: 22843880 PMCID: PMC3737581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of cisplatin drug resistance remains a chief concern in ovarian cancer chemotherapy. β-Elemene is a natural plant product with broad-spectrum antitumor activity towards many types of carcinomas. This study aimed to define the biological and therapeutic significance of β-elemene in chemoresistant ovarian cancer. In the present study, β-elemene significantly inhibited cell growth and proliferation of both the cisplatin-sensitive human ovarian cancer cell line A2780 and its cisplatin-resistant counterpart A2780/CP. β-Elemene also suppressed the growth of several other chemosensitive and chemoresistant ovarian cancer cell lines, including ES-2, MCAS, OVCAR-3, and SKOV-3, with the half maximal inhibitory concentration (IC(50)) values ranging from 54 to 78 μg/ml. In contrast, the IC(50) values of β-elemene for the human ovarian epithelial cell lines IOSE-386 and IOSE-397 were 110 and 114 μg/ml, respectively, which are almost two-fold those for the ovarian cancer cell lines. Cell cycle analysis demonstrated that β-elemene induced a persistent block of cell cycle progression at the G(2)/M phase in A2780 and A2780/CP cells. This was mediated by alterations in cyclin and cyclin-dependent kinase expression, including the down-regulation of CDC2, cyclin A, and cyclin B1, and the up-regulation of p21(WAF1/CIP1) and p53 proteins. Moreover, β-elemene triggered apoptosis and irreversible cell death in both sensitive and resistant ovarian cancer cells via the activation of caspase-3, -8 and 9; the loss of mitochondrial membrane potential (δΨm); the release of cytochrome c into the cytosol; and changes in the expression of BCL-2 family proteins. All of these molecular changes were associated with β-elemene-induced growth inhibition and cell death of ovarian cancer cells. Our results demonstrate that β-elemene has antitumor activity against both platinum-sensitive and resistant ovarian cancer cells, and thus has the potential for development as a chemotherapeutic agent for cisplatin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Rebecca X Lee
- Department of Microbiology, Immunology and Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | |
Collapse
|
168
|
Singh V, Voss EV, Bénardais K, Stangel M. Effects of 2-Chlorodeoxyadenosine (Cladribine) on Primary Rat Microglia. J Neuroimmune Pharmacol 2012; 7:939-50. [DOI: 10.1007/s11481-012-9387-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022]
|
169
|
Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS NANO 2012; 6:4748-62. [PMID: 22587339 DOI: 10.1021/nn204886b] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The growing potential of quantum dots (QDs) in applications as diverse as biomedicine and energy has provoked much dialogue about their conceivable impact on human health and the environment at large. Consequently, there has been an urgent need to understand their interaction with biological systems. Parameters such as size, composition, surface charge, and functionalization can be modified in ways to either enhance biocompatibility or reduce their deleterious effects. In the current study, we simultaneously compared the impact of size, charge, and functionalization alone or in combination on biological responses using primary normal human bronchial epithelial cells. Using a suite of cellular end points and gene expression analysis, we determined the biological impact of each of these properties. Our results suggest that positively charged QDs are significantly more cytotoxic compared to negative QDs. Furthermore, while QDs functionalized with long ligands were found to be more cytotoxic than those functionalized with short ligands, negative QDs functionalized with long ligands also demonstrated size-dependent cytotoxicity. We conclude that QD-elicited cytotoxicity is not a function of a single property but a combination of factors. The mechanism of toxicity was found to be independent of reactive oxygen species formation, as cellular viability could not be rescued in the presence of the antioxidant n-acetyl cysteine. Further exploring these responses at the molecular level, we found that the relatively benign negative QDs increased gene expression of proinflammatory cytokines and those associated with DNA damage, while the highly toxic positive QDs induced changes in genes associated with mitochondrial function. In an attempt to tentatively "rank" the contribution of each property in the observed QD-induced responses, we concluded that QD charge and ligand length, and to a lesser extent, size, are key factors that should be considered when engineering nanomaterials with minimal bioimpact (charge > functionalization > size).
Collapse
Affiliation(s)
- Amber Nagy
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
170
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
171
|
Fecteau JF, Bharati IS, O'Hayre M, Handel TM, Kipps TJ, Messmer D. Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (Mcl-1). Mol Med 2012; 18:19-28. [PMID: 21979753 DOI: 10.2119/molmed.2011.00164] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/27/2011] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that sorafenib, a multikinase inhibitor, exhibits cytotoxic effects on chronic lymphocytic leukemia (CLL) cells. Because the cellular microenvironment can protect CLL cells from drug-induced apoptosis, it is important to evaluate the effect of novel drugs in this context. Here we characterized the in vitro cytotoxic effects of sorafenib on CLL cells and the underlying mechanism in the presence of marrow stromal cells (MSCs) and nurselike cells (NLCs). One single dose of 10 μmol/L or the repeated addition of 1 μmol/L sorafenib caused caspase-dependent apoptosis and reduced levels of phosphorylated B-RAF, C-RAF, extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3) and myeloid cell leukemia sequence 1 (Mcl-1) in CLL cells in the presence of the microenvironment. We show that the RAF/mitogen-activated protein kinase kinase (MEK)/ERK pathway can modulate Mcl-1 expression and contribute to CLL cell viability, thereby associating so-rafenib cytotoxicity to its impact on RAF and Mcl-1. To evaluate if the other targets of sorafenib can affect CLL cell viability and contribute to sorafenib-mediated cytotoxicity, we tested the sensitivity of CLL cells to several kinase inhibitors specific for these targets. Our data show that RAF and vascular endothelial growth factor receptor (VEGFR) but not KIT, platelet-derived growth factor receptor (PDGFR) and FMS-like tyrosine kinase 3 (FLT3) are critical for CLL cell viability. Taken together, our data suggest that sorafenib exerts its cytotoxic effect likely via inhibition of the VEGFR and RAF/MEK/ERK pathways, both of which can modulate Mcl-1 expression in CLL cells. Furthermore, sorafenib induced apoptosis of CLL cells from fludarabine refractory patients in the presence of NLCs or MSCs. Our results warrant further clinical exploration of sorafenib in CLL.
Collapse
Affiliation(s)
- Jessie-F Fecteau
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | | | | | | | | | | |
Collapse
|
172
|
Park JS, Shin DY, Lee YW, Cho CK, Kim GY, Kim WJ, Yoo HS, Choi YH. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells. Int J Oncol 2011; 40:1210-9. [PMID: 22200726 PMCID: PMC3584623 DOI: 10.3892/ijo.2011.1310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022] Open
Abstract
In the present study, the effects of the whole skin of Venenum bufonis on apoptotic and anti-invasive activity in A549 human lung cancer cells were investigated. Treatment with extract of the whole skin of V. bufonis (SVB) resulted in a significant decrease in cell growth of A549 cells, depending on dosage, which was associated with apoptosis induction, as proved by chromatin condensation and accumulation of apoptotic fraction. SVB treatment induced expression of death receptor-related proteins, such as death receptor 4, which further triggered activation of caspase-8 and cleavage of Bid. In addition, the increase in apoptosis by SVB treatment was correlated with dysfunction of mitochondria, activation of caspase-9 and -3, downregulation of IAP family proteins, such as XIAP, cIAP-1 and cIAP-2, and concomitant degradation of activated caspase-3-specific target proteins, such as poly (ADP-ribose) polymerase and β-catenin proteins. However, z-DEVD-fmk, a caspase-3-specific inhibitor, blocked SVB-induced apoptosis and increased the survival rate of SVB-treated cells, indicating that activation of caspase-3 plays a key role in SVB-induced apoptosis. In addition, within concentrations that were not cytotoxic to A549 cells, SVB induced marked inhibition of cell motility and invasiveness. Activities of matrix metalloproteinase (MMP)-2 and MMP-9 in AGS cells were dose-dependently inhibited by treatment with SVB, and this was also correlated with a decrease in expression of their mRNA and proteins, and upregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 mRNA expression. Further studies are needed; however, the results indicated that SVB induces apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways. Our data also demonstrated that MMPs are critical targets of SVB-induced anti-invasiveness in A549 cells.
Collapse
Affiliation(s)
- Jeong-Seok Park
- Department of East-West Cancer Center, College of Oriental Medicine, Daejeon University, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Chun HS, Low WC. Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells. Toxicology 2011; 292:105-12. [PMID: 22178905 DOI: 10.1016/j.tox.2011.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 02/06/2023]
Abstract
Although ursodeoxycholic acid (UDCA) and its highly water-soluble formula (Yoo's solution; YS) have been shown to prevent neuronal damage, the effects of UDCA or YS against Parkinson's disease (PD)-related dopaminergic cell death has not been studied. This study investigated the protective effects of UDCA and YS on sodium nitroprusside (SNP)-induced cytotoxicity in human dopaminergic SH-SY5Y cells. Both UDCA (50-200 μM) and YS (100-200 μM) dose-dependently prevented SNP (1mM)-induced cell death. Results showed that both UDCA and YS effectively attenuated the production of total reactive oxygen species (ROS), peroxynitrite (ONOO(-)) and nitric oxide (NO), and markedly inhibited the mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. SNP-induced programmed cell death events, such as nuclear fragmentation, caspase-3/7 and -9 activation, Bcl-2/Bax ratio decrease, and cytochrome c release, were significantly attenuated by both UDCA and YS. Furthermore, selective inhibitor of phosphatidylinositiol-3-kinase (PI3K), LY294002, and Akt/PKB inhibitor, triciribine, reversed the preventive effects of UDCA on the SNP-induced cytotoxicity and Bax translocation. These results suggest that UDCA can protect SH-SY5Y cells under programmed cell death process by regulating PI3K-Akt/PKB pathways.
Collapse
Affiliation(s)
- Hong Sung Chun
- Department of Biotechnology, Chosun University, Gwangju 501-759, Republic of Korea.
| | | |
Collapse
|
174
|
Ma S, Shan LQ, Xiao YH, Li F, Huang L, Shen L, Chen JH. The cytotoxicity of methacryloxylethyl cetyl ammonium chloride, a cationic antibacterial monomer, is related to oxidative stress and the intrinsic mitochondrial apoptotic pathway. Braz J Med Biol Res 2011; 44:1125-33. [PMID: 22002093 DOI: 10.1590/s0100-879x2011007500130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023] Open
Abstract
Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50% of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.
Collapse
Affiliation(s)
- Sai Ma
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University
| | | | | | | | | | | | | |
Collapse
|
175
|
Antitumor peptides from marine organisms. Mar Drugs 2011; 9:1840-1859. [PMID: 22072999 PMCID: PMC3210608 DOI: 10.3390/md9101840] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.
Collapse
|
176
|
Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P. The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 2011; 36:541-52. [PMID: 21798745 DOI: 10.1016/j.tibs.2011.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
The death-fold superfamily encompasses four structurally homologous subfamilies that engage in homotypic, subfamily-restricted interactions. The Death Domains (DDs), the Death Effector Domains (DEDs), the CAspase Recruitment Domains (CARDs) and the PYrin Domains (PYDs) constitute key building blocks involved in the assembly of multimeric complexes implicated in signaling cascades leading to inflammation and cell death. We review the molecular basis of these homotypic domain-domain interactions in light of their structure, function and evolution. In addition, we elaborate on three distinct types of asymmetric interactions that were recently identified from the crystal structures of three multimeric, death-fold complexes: the MyDDosome, the PIDDosome and the Fas/FADD-DISC. Insights into the mechanisms of interaction of death-fold domains will be useful to design strategies for specific modulation of complex formation and might lead to novel therapeutic applications.
Collapse
Affiliation(s)
- Kristof Kersse
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | |
Collapse
|
177
|
Cillero-Pastor B, Martin MA, Arenas J, López-Armada MJ, Blanco FJ. Effect of nitric oxide on mitochondrial activity of human synovial cells. BMC Musculoskelet Disord 2011; 12:42. [PMID: 21303534 PMCID: PMC3045396 DOI: 10.1186/1471-2474-12-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/08/2011] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells. Methods Human OA synovia were obtained from eight patients undergoing hip joint replacement. Sodium nitroprusside (SNP) was used as a NO donor compound and cell viability was evaluated by MTT assays. Mitochondrial function was evaluated by analyzing the mitochondrial membrane potential (Δψm) with flow cytometry using the fluorofore DePsipher. ATP levels were measured by luminescence assays, and the activities of the respiratory chain complexes (complex I: NADH CoQ1 reductase, complex II: succinate dehydrogenase, complex III: ubiquinol-cytochrome c reductase, complex IV: cytochrome c oxidase) and citrate synthase (CS) were measured by enzymatic assay. Protein expression analyses were performed by western blot. Results SNP at a concentration of 0.5 mM induced cell death, shown by the MTT method at different time points. The percentages of viable cells at 24, 48 and 72 hours were 86.11 ± 4.9%, 74.31 ± 3.35%, and 43.88 ± 1.43%, respectively, compared to the basal level of 100% (*p < 0.05). SNP at 0.5 mM induced depolarization of the mitochondrial membrane at 12 hours with a decrease in the ratio of polarized cells (basal = 2.48 ± 0.28; SNP 0.5 mM = 1.57 ± 0.11; *p < 0.01). The time course analyses of treatment with SNP at 0.5 mM demonstrated that treatment reliably and significantly reduced intracellular ATP production (68.34 ± 14.3% vs. basal = 100% at 6 hours; *p < 0.05). The analysis of the MRC at 48 hours showed that SNP at 0.5 mM increased the activity of complexes I (basal = 36.47 ± 3.92 mol/min/mg protein, SNP 0.5 mM = 58.08 ± 6.46 mol/min/mg protein; *p < 0.05) and III (basal = 63.87 ± 6.93 mol/min/mg protein, SNP 0.5 mM = 109.15 ± 30.37 mol/min/mg protein; *p < 0.05) but reduced CS activity (basal = 105.06 ± 10.72 mol/min/mg protein, SNP at 0.5 mM = 66.88 ± 6.08 mol/min/mg protein.; *p < 0.05), indicating a decrease in mitochondrial mass. Finally, SNP regulated the expression of proteins related to the cellular cycle; the NO donor decreased bcl-2, mcl-1 and procaspase-3 protein expression. Conclusions This study suggests that NO reduces the survival of OA synoviocytes by regulating mitochondrial functionality, as well as the proteins controlling the cell cycle.
Collapse
Affiliation(s)
- Berta Cillero-Pastor
- Osteoarticular and Aging Research Unit, Biomedical Research Center, INIBIC, CH Universitario da Coruña, Xubias 84, 15006, A Coruña, Spain
| | | | | | | | | |
Collapse
|
178
|
Abstract
Heat shock protein 70 (Hsp70) is a potent antiapoptotic agent. Here, we tested whether it directly regulates renal cell survival and organ function in a model of transient renal ischemia using Hsp70 knockout, heterozygous, and wild-type mice. The kidney cortical Hsp70 content inversely correlated with tubular injury, apoptosis, and organ dysfunction after injury. In knockout mice, ischemia caused changes in the activity of Akt and glycogen synthase kinase 3-β (kinases that regulate the proapoptotic protein Bax), increased active Bax, and activated the proapoptotic protease caspase 3. As these changes were significantly reduced in the wild-type mice, we tested whether Hsp70 influences ischemia-induced apoptosis. An Hsp70 inducer, geranylgeranylacetone, increased Hsp70 expression in heterozygous and wild-type mice, and reduced both ischemic tubular injury and organ dysfunction. When administered after ischemia, this inducer also decreased tubular injury and organ failure in wild-type mice but did not protect the knockout mice. ATP depletion in vitro caused greater mitochondrial Bax accumulation and death in primary proximal tubule cells harvested from knockout compared with wild-type mice and altered serine phosphorylation of a Bax peptide at the Akt-specific target site. In contrast, lentiviral-mediated Hsp70 repletion decreased mitochondrial Bax accumulation and rescued Hsp70 knockout cells from death. Thus, increasing Hsp70 either before or after ischemic injury preserves renal function by attenuating acute kidney injury.
Collapse
|
179
|
Rommelaere G, Michel S, Mercy L, Fattaccioli A, Demazy C, Ninane N, Houbion A, Renard P, Arnould T. Hypersensitivity of mtDNA-depleted cells to staurosporine-induced apoptosis: roles of Bcl-2 downregulation and cathepsin B. Am J Physiol Cell Physiol 2010; 300:C1090-106. [PMID: 21068357 DOI: 10.1152/ajpcell.00037.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology, Faculty of Sciences, University of Namur, 61 rue de Bruxelles, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Tchernitsa O, Kasajima A, Schäfer R, Kuban RJ, Ungethüm U, Györffy B, Neumann U, Simon E, Weichert W, Ebert MPA, Röcken C. Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 2010; 222:310-9. [PMID: 20726036 DOI: 10.1002/path.2759] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated the differential expression of Dicer and Drosha, as well as that of microRNA (miRNA), in adjacent normal and tumour samples of patients with gastric cancer. The expression of Dicer and Drosha was studied by immunohistochemistry in 332 gastric cancers and correlated with clinico-pathological patient characteristics. Differential expression of miRNAs was studied using the Invitrogen NCode(™) Multi-Species miRNA Microarray Probe Set containing 857 mammalian probes in a test set of six primary gastric cancers (three with and three without lymph node metastases). Differential expression was validated by RT-PCR on an independent validation set of 20 patients with gastric cancer. Dicer and Drosha were differentially expressed in non-neoplastic and neoplastic gastric tissue. The expression of Drosha correlated with local tumour growth and was a significant independent prognosticator of patient survival. Twenty miRNAs were up- and two down-regulated in gastric carcinoma compared with non-neoplastic tissue. Six of these miRNAs separated node-positive from node-negative gastric cancers, ie miR-103, miR-21, miR-145, miR-106b, miR-146a, and miR-148a. Five miRNAs expressed differentially in node-positive cancers had conserved binding sites for mRNAs differentially expressed in the same set of tumour samples. Gastric cancer shows a complex derangement of the miRNA-ome, including Dicer and Drosha. These changes correlate independently with patient prognosis and probably influence local tumour growth and nodal spread.
Collapse
Affiliation(s)
- Oleg Tchernitsa
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
182
|
Chantarasriwong O, Batova A, Chavasiri W, Theodorakis EA. Chemistry and biology of the caged Garcinia xanthones. Chemistry 2010; 16:9944-62. [PMID: 20648491 PMCID: PMC3144150 DOI: 10.1002/chem.201000741] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70 % of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development.
Collapse
Affiliation(s)
- Oraphin Chantarasriwong
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1)858-822-0386
- Department of Chemistry, Natural Products Research Unit, Chulalongkorn University, Faculty of Science, Bangkok 10330 (Thailand)
| | - Ayse Batova
- Department of Pediatrics/Hematology-Oncology, University of California, San Diego, West Arbor Drive, San Diego, CA 92103-8447 (USA)
| | - Warinthorn Chavasiri
- Department of Chemistry, Natural Products Research Unit, Chulalongkorn University, Faculty of Science, Bangkok 10330 (Thailand)
| | - Emmanuel A. Theodorakis
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), Fax: (+1)858-822-0386
| |
Collapse
|
183
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
184
|
Pedrini S, Sau D, Guareschi S, Bogush M, Brown RH, Naniche N, Kia A, Trotti D, Pasinelli P. ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Hum Mol Genet 2010; 19:2974-86. [PMID: 20460269 PMCID: PMC2901139 DOI: 10.1093/hmg/ddq202] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/19/2010] [Accepted: 05/07/2010] [Indexed: 11/30/2022] Open
Abstract
In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner of mutant SOD1 specifically in spinal cord, but not in liver, mitochondria of SOD1 mice and patients. We now show that mutant SOD1 toxicity relies on this interaction. Mutant SOD1 induces mitochondrial morphological changes and compromises mitochondrial membrane integrity leading to release of Cytochrome C only in the presence of Bcl-2. In cells, mouse and human spinal cord with SOD1 mutations, the binding to mutant SOD1 triggers a conformational change in Bcl-2 that results in the uncovering of its toxic BH3 domain and conversion of Bcl-2 into a toxic protein. Bcl-2 carrying a mutagenized, non-toxic BH3 domain fails to support mutant SOD1 mitochondrial toxicity. The identification of Bcl-2 as a specific target and active partner in mutant SOD1 mitochondrial toxicity suggests new therapeutic strategies to inhibit the formation of the toxic mutant SOD1/Bcl-2 complex and to prevent mitochondrial damage in ALS.
Collapse
Affiliation(s)
- Steve Pedrini
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela Sau
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stefania Guareschi
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Neurological Institute IRCCS ‘C. Mondino’, Pavia, Italy and
| | - Marina Bogush
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Nicole Naniche
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Azadeh Kia
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
185
|
Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and beta-cell dysfunction. Pflugers Arch 2010; 460:703-18. [PMID: 20652307 DOI: 10.1007/s00424-010-0862-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus type 1 and 2 (T1DM and T2DM) are complex multifactorial diseases. Loss of beta-cell function caused by reduced secretory capacity and enhanced apoptosis is a key event in the pathogenesis of both diabetes types. Oxidative stress induced by reactive oxygen and nitrogen species is critically involved in the impairment of beta-cell function during the development of diabetes. Because of their low antioxidant capacity, beta-cells are extremely sensitive towards oxidative stress. In beta-cells, important targets for an oxidant insult are cell metabolism and K(ATP) channels. The oxidant-evoked alterations of K(ATP) channel activity seem to be critical for oxidant-induced dysfunction because genetic ablation of K(ATP) channels attenuates the effects of oxidative stress on beta-cell function. Besides the effects on metabolism, interference of oxidants with mitochondria induces key events in apoptosis. Consequently, increasing antioxidant defence is a promising strategy to delay beta cell failure in (pre)-diabetic patients or during islet transplantation. Knock-out of K(ATP) channels has beneficial effects on oxidant-induced inhibition of insulin secretion and cell death. Interestingly, these effects can be mimicked by sulfonylureas that have been used in the treatment of T2DM for many years. Loss of functional K(ATP) channels leads to up-regulation of antioxidant enzymes, a process that depends on cytosolic Ca(2+). These observations are of great importance for clinical intervention because they show a possibility to protect beta-cells at an early stage before dramatic changes of the secretory capacity and loss of cell mass become manifest and lead to glucose intolerance or even overt diabetes.
Collapse
Affiliation(s)
- Gisela Drews
- Department of Pharmacology and Clinical Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, Germany.
| | | | | |
Collapse
|
186
|
Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 2010; 8:e1000410. [PMID: 20625543 PMCID: PMC2897763 DOI: 10.1371/journal.pbio.1000410] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 05/20/2010] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Ayswaria Deepti
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Shane Deegan
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, NUI Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
187
|
Abu Bakar MF, Mohamad M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol 2010; 48:1688-97. [DOI: 10.1016/j.fct.2010.03.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/18/2010] [Accepted: 03/30/2010] [Indexed: 11/26/2022]
|
188
|
Ballot C, Kluza J, Martoriati A, Nyman U, Formstecher P, Joseph B, Bailly C, Marchetti P. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D. Mol Cancer Ther 2010; 8:3307-17. [PMID: 19952118 DOI: 10.1158/1535-7163.mct-09-0639] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lamellarin D, a potent cytotoxic marine alkaloid, exerts its antitumor action through two complementary pathways: a nuclear route via topoisomerase I inhibition and a mitochondrial targeting. The present study was designed to investigate the contribution of these two pathways for apoptosis in cancer cells. Lamellarin D promoted nuclear apoptosis in leukemia cells without prominent cell cycle arrest. Signals transmitted by lamellarin D initiated apoptosis via the intrinsic apoptotic pathway. The drug induced conformational activation of Bax and decreased the expression levels of antiapoptotic proteins Bcl-2 and cIAP2 in association with activation of caspase-9 and caspase-3. Upon lamellarin D exposure, Fas and Fas-L expression was not modified in leukemia cells. Moreover, leukemia cells deficient in caspase-8 or Fas-associated protein with death domain underwent apoptosis through the typical mitochondrial apoptotic cascade, indicating that cell death induced by lamellarin D was independent of the extrinsic apoptotic pathway. Lamellarin D also exerted a topoisomerase I-mediated DNA damage response resulting in H2AX phosphorylation, and the upregulation of the DNA repair protein Rad51 and of p53, as well as the phosphorylation of p53 at serine 15. However, lamellarin D killed efficiently mutated p53 or p53 null cancer cells, and sensitivity to lamellarin D was abrogated neither by cycloheximide nor in enucleated cells. Lamellarin D-induced cytochrome c release occurs independently of nuclear factors in a cell-free system. These results suggest that lamellarin D exerts its cytotoxic effects primarily by inducing mitochondrial apoptosis independently of nuclear signaling. Thus, lamellarin D constitutes a new proapoptotic agent that may bypass certain forms of apoptosis resistance that occur in tumor cells.
Collapse
Affiliation(s)
- Caroline Ballot
- INSERM U 837 Faculté de médecine, 1, place Verdun F- 59045 Lille Cedex France
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010; 223:49-56. [PMID: 20039279 DOI: 10.1002/jcp.21999] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies have shown that microRNAs (miRNAs) can control steroidogenesis in cultured granulosa cells. In this study we wanted to determine if miRNAs can also affect proliferation and apoptosis in human ovarian cells. The effect of transfection of cultured primary ovarian granulosa cells with 80 different constructs encoding human pre-miRNAs on the expression of the proliferation marker, PCNA, and the apoptosis marker, Bax was evaluated by immunocytochemistry. Eleven out of 80 tested miRNA constructs resulted in stimulation, and 53 miRNAs inhibited expression of PCNA. Furthermore, 11 of the 80 miRNAs tested promoted accumulation of Bax, while 46 miRNAs caused a reduction in Bax in human ovarian cells. In addition, two selected antisense constructs that block the corresponding miRNAs mir-15a and mir-188 were evaluated for their effects on expression of PCNA. An antisense construct inhibiting mir-15a (which precursor suppressed PCNA) increased PCNA, whereas an antisense construct for mir-188 (which precursor did not change PCNA) did not affect PCNA expression. Verification of effects of selected pre-mir-10a, mir-105, and mir-182 by using other markers of proliferation (cyclin B1) and apoptosis (TdT and caspase 3) confirmed specificity of miRNAs effects on these processes. This is the first direct demonstration of the involvement of miRNAs in controlling both proliferation and apoptosis by ovarian granulose cells, as well as the identification of miRNAs promoting and suppressing these processes utilizing a genome-wide miRNA screen.
Collapse
|
190
|
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin-proteosome-autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, 'neuroinflammatory' processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse, Vienna, Austria.
| |
Collapse
|
191
|
Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization. Int J Cell Biol 2010; 2010:170215. [PMID: 20169117 PMCID: PMC2821636 DOI: 10.1155/2010/170215] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/06/2009] [Indexed: 11/28/2022] Open
Abstract
During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (ΔΨm). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of ΔΨm. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of ΔΨm. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of ΔΨm. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.
Collapse
|
192
|
Wilkins HR, Doucet K, Duke V, Morra A, Johnson N. Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. Tumour Biol 2009; 31:16-22. [PMID: 20237898 DOI: 10.1007/s13277-009-0003-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 11/04/2009] [Indexed: 12/13/2022] Open
Abstract
The proto-oncogene c-myb is overexpressed in human colon cancer cells. c-myb is known to be affected by estrogen in some breast cancers and leukemias. However, the mechanism of c-myb regulation via estrogen in colon cancer requires further investigation. Human COLO-205 colon cancer cells were cultured and treated with beta-estradiol for 24 h. Apoptosis was quantified using acridine orange/propidium iodide labeling and confirmed with DNA fragmentation gel electrophoresis. Expression of c-myb protein was assessed via SDS-PAGE and immunoblotting and RT-PCR was used to quantify bcl-2 RNA. Protein and RNA expression levels were also assayed after c-myb siRNA treatment for 24 h. We demonstrate an increase in apoptosis after 24 h of beta-estradiol treatment of human COLO-205 colon cancer cells. Estrogen treatment also decreases c-myb protein levels as well as expression of its transcriptional target bcl-2. Suppression of c-myb protein also results in increased apoptosis and decreases bcl-2 expression. These results indicate that estrogen has a protective effect from sustained colon cancer cell growth at least partly through suppression of c-myb and bcl-2.
Collapse
Affiliation(s)
- Heather R Wilkins
- Department of Natural Sciences, Assumption College, 500 Salisbury Street, Worcester, MA 01609, USA.
| | | | | | | | | |
Collapse
|
193
|
Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 2009; 17:737-45. [DOI: 10.1038/cdd.2009.177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
194
|
Misra UK, Pizzo SV. PFT-alpha inhibits antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Biochem Biophys Res Commun 2009; 391:272-6. [PMID: 19913499 DOI: 10.1016/j.bbrc.2009.11.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
Abstract
Antibodies against the COOH-terminal domain of cell surface GRP78 induce apoptosis in cancer cell lines via activation of p53 signaling. We now have studied the effects of PFT-alpha, an inhibitor of p53-mediated apoptotic pathways, on anti-GRP78 antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Pretreatment of 1-LN cancer cells with this agent significantly inhibited antibody or doxorubicin-induced upregulation of p53. Concomitantly, PFT-alpha treatment prevented down regulation of ERK1/2 activation by either antibody or doxorubicin. Likewise, PFT-alpha prevented increases in the pro-apoptotic proteins BAD, BAK, BAX, PUMA, and NOXA as well as activation of caspases-3, -7, and -9. We conclude that antibody-induced apoptosis in prostate cancer cells is mediated predominantly by p53 using the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
195
|
Koborova ON, Filimonov DA, Zakharov AV, Lagunin AA, Ivanov SM, Kel A, Poroikov VV. In silico method for identification of promising anticancer drug targets. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2009; 20:755-766. [PMID: 20024808 DOI: 10.1080/10629360903438628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, the accumulation of the genomics, proteomics, transcriptomics data for topological and functional organization of regulatory networks in a cell has provided the possibility of identifying the potential targets involved in pathological processes and of selecting the most promising targets for future drug development. We propose an approach for anticancer drug target identification, which, using microarray data, allows discrete modelling of regulatory network behaviour. The effect of drugs inhibiting a particular protein or a combination of proteins in a regulatory network is analysed by simulation of a blockade of single nodes or their combinations. The method was applied to the four groups of breast cancer, HER2/neu-positive breast carcinomas, ductal carcinoma, invasive ductal carcinoma and/or a nodal metastasis, and to generalized breast cancer. As a result, some promising specific molecular targets and their combinations were identified. Inhibitors of some identified targets are known as potential drugs for therapy of malignant diseases; for some other targets we identified hits in the commercially available sample databases.
Collapse
Affiliation(s)
- O N Koborova
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
196
|
Collier FM, Loving A, Baker AJ, McLeod J, Walder K, Kirkland MA. RTKN2 Induces NF-KappaB Dependent Resistance to Intrinsic Apoptosis in HEK Cells and Regulates BCL-2 Genes in Human CD4(+) Lymphocytes. J Cell Death 2009; 2:9-23. [PMID: 26124677 PMCID: PMC4474337 DOI: 10.4137/jcd.s2891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.
Collapse
Affiliation(s)
- Fiona M Collier
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia. ; Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Andrea Loving
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| | - Adele J Baker
- Department of Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Victoria, 3181, Australia
| | - Janet McLeod
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| |
Collapse
|