151
|
|
152
|
Zalucki MP, Cunningham JP, Downes S, Ward P, Lange C, Meissle M, Schellhorn NA, Zalucki JM. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:468-76. [PMID: 22314028 DOI: 10.1017/s0007485311000848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.
Collapse
Affiliation(s)
- M P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - J P Cunningham
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - S Downes
- CSIRO Ecosystem Sciences, Australian Cotton Research Institute, Narrabri, 2390, NSW
| | - P Ward
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - C Lange
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - M Meissle
- CSIRO Ecosystem Sciences, Brisbane, 4001, Australia
| | | | - J M Zalucki
- School of Environment, Griffith University, Nathan, Brisbane, 4111, Australia
| |
Collapse
|
153
|
Carter MJ, Simon JC, Nespolo RF. The effects of reproductive specialization on energy costs and fitness genetic variances in cyclical and obligate parthenogenetic aphids. Ecol Evol 2012; 2:1414-25. [PMID: 22957150 PMCID: PMC3434922 DOI: 10.1002/ece3.247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/16/2012] [Accepted: 02/24/2012] [Indexed: 11/11/2022] Open
Abstract
Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness. Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies.
Collapse
|
154
|
Abstract
In the past decade, there has been a resurgent interest in whether and how phenotypic plasticity might impact evolutionary processes. Of fundamental importance is how the environment influences individual phenotypic development while simultaneously selecting among phenotypic variants in a population. Conceptual and theoretical treatments of the evolutionary implications of plasticity are numerous, as are criticisms of the conclusions. As such, the time is ripe for empirical evidence to catch up with theoretical predictions. To this end, I provide a summary of eight hypotheses at the core of this issue, highlighting various approaches by which they can be tested. My goal is to provide practical guidance to those seeking to understand the complex ways by which phenotypic plasticity can influence evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Matthew A Wund
- Department of Biology, The College of New Jersey, PO Box 7718, Ewing, NJ, USA.
| |
Collapse
|
155
|
Bean DW, Dalin P, Dudley TL. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 2012; 5:511-23. [PMID: 22949926 PMCID: PMC3407869 DOI: 10.1111/j.1752-4571.2012.00262.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 03/06/2012] [Indexed: 12/30/2022] Open
Abstract
In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control.
Collapse
|
156
|
Fabbrini F, Gaudet M, Bastien C, Zaina G, Harfouche A, Beritognolo I, Marron N, Morgante M, Scarascia-Mugnozza G, Sabatti M. Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC PLANT BIOLOGY 2012; 12:47. [PMID: 22471289 PMCID: PMC3378457 DOI: 10.1186/1471-2229-12-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/03/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. RESULTS Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes.Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set. CONCLUSIONS This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding.
Collapse
Affiliation(s)
- Francesco Fabbrini
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Muriel Gaudet
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Catherine Bastien
- INRA, UR 0588, National Institute for Agricultural Research, Orléans 2 F-45075, France
| | - Giusi Zaina
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze, Udine 33100, Italy
| | - Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Isacco Beritognolo
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
- Institute for Mediterranean Agriculture and Forest Systems, National Research Council, Via Madonna Alta, Perugia 06128, Italy
| | - Nicolas Marron
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
- INRA, UMR 1137, INRA-Nancy University, Champenoux F-54280, France
| | - Michele Morgante
- Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze, Udine 33100, Italy
- Istituto di Genomica Applicata, Via J. Linussio 51, Udine 33100, Italy
| | - Giuseppe Scarascia-Mugnozza
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
- Department of Agronomy, Forestry and Land use, Agricultural Research Council, Via del Caravita, Roma 00186, Italy
| | - Maurizio Sabatti
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| |
Collapse
|
157
|
Monosson E. Evolution of the toxic response: how might ecotoxicology benefit by considering evolution? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2012; 8:379-380. [PMID: 22431352 DOI: 10.1002/ieam.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
158
|
Kuparinen A, Hutchings JA. Consequences of fisheries-induced evolution for population productivity and recovery potential. Proc Biol Sci 2012; 279:2571-9. [PMID: 22398166 DOI: 10.1098/rspb.2012.0120] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fisheries-induced evolution has become a major branch of the research on anthropogenic and contemporary evolution. Within the conservation context, fisheries-induced evolution has been hypothesized to negatively affect the persistence and recovery potential of depleted populations, but this has not been explicitly investigated. Here, we investigate how fisheries-induced evolution of Atlantic cod (Gadus morhua L.) life histories affects per capita population growth rate, a parameter negatively correlated with extinction risk. We simulate the evolutionary and ecological dynamics of a cod population for a 100 year period of size-selective harvesting, followed thereafter by 300 years of recovery. To evaluate the relative importance of harvest-induced evolution, we either allowed life histories to evolve during and after the fishing period, or we assumed that fisheries-induced evolution was absent. Population growth rates did not differ appreciably between the evolutionary and non-evolutionary simulation scenarios, despite the emergence of rather pronounced differences in life histories. The underlying reason was that in the absence of fishing the cumulative lifetime reproductive outputs were very similar among differing life histories. The results suggest that fisheries-induced evolution might not always have as clear-cut an effect on population growth rate as previously anticipated.
Collapse
Affiliation(s)
- Anna Kuparinen
- Department of Biosciences, Ecological Genetics Research Unit, University of Helsinki, Helsinki 00014, Finland.
| | | |
Collapse
|
159
|
Piffaretti J, Vanlerberghe-Masutti F, Tayeh A, Clamens AL, D’Acier AC, Jousselin E. Molecular phylogeny reveals the existence of two sibling species in the aphid pest Brachycaudus helichrysi (Hemiptera: Aphididae). ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00531.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
160
|
Palkovacs EP, Kinnison MT, Correa C, Dalton CM, Hendry AP. Fates beyond traits: ecological consequences of human-induced trait change. Evol Appl 2012. [PMID: 25568040 DOI: 10.1111/j.1752-4571.2011.00212.x/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Human-induced trait change has been documented in freshwater, marine, and terrestrial ecosystems worldwide. These trait changes are driven by phenotypic plasticity and contemporary evolution. While efforts to manage human-induced trait change are beginning to receive some attention, managing its ecological consequences has received virtually none. Recent work suggests that contemporary trait change can have important effects on the dynamics of populations, communities, and ecosystems. Therefore, trait changes caused by human activity may be shaping ecological dynamics on a global scale. We present evidence for important ecological effects associated with human-induced trait change in a variety of study systems. These effects can occur over large spatial scales and impact system-wide processes such as trophic cascades. Importantly, the magnitude of these effects can be on par with those of traditional ecological drivers such as species presence. However, phenotypic change is not always an agent of ecological change; it can also buffer ecosystems against change. Determining the conditions under which phenotypic change may promote vs prevent ecological change should be a top research priority.
Collapse
Affiliation(s)
- Eric P Palkovacs
- Duke University Marine Laboratory Beaufort, NC, USA ; Nicholas School of the Environment, Duke University Durham, NC, USA
| | | | - Cristian Correa
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| | - Christopher M Dalton
- Department of Ecology and Evolutionary Biology, Cornell University Ithaca, NY, USA
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|
161
|
Shine R. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol Appl 2012; 5:107-16. [PMID: 25568034 PMCID: PMC3353345 DOI: 10.1111/j.1752-4571.2011.00201.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
The arrival of an invasive species can have wide-ranging ecological impacts on native taxa, inducing rapid evolutionary responses in ways that either reduce the invader's impact or exploit the novel opportunity that it provides. The invasion process itself can cause substantial evolutionary shifts in traits that influence the invader's dispersal rate (via both adaptive and non-adaptive mechanisms) and its ability to establish new populations. I briefly review the nature of evolutionary changes likely to be set in train by a biological invasion, with special emphasis on recent results from my own research group on the invasion of cane toads (Rhinella marina) through tropical Australia. The toads' invasion has caused evolutionary changes both in the toads and in native taxa. Many of those changes are adaptive, but others may result from non-adaptive evolutionary processes: for example, the evolved acceleration in toad dispersal rates may be due to spatial sorting of dispersal-enhancing genes, rather than fitness advantages to faster-dispersing individuals. Managers need to incorporate evolutionary dynamics into their conservation planning, because biological invasions can affect both the rates and the trajectories of evolutionary change.
Collapse
Affiliation(s)
- Richard Shine
- Biological Sciences A08, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
162
|
Brady SP. Road to evolution? Local adaptation to road adjacency in an amphibian (Ambystoma maculatum). Sci Rep 2012; 2:235. [PMID: 22355748 PMCID: PMC3267261 DOI: 10.1038/srep00235] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/05/2012] [Indexed: 11/25/2022] Open
Abstract
The network of roads on the landscape is vast, and contributes a suite of negative ecological effects on adjacent habitats, ranging from fragmentation to contamination by runoff. In addition to the immediate consequences faced by biota living in roaded landscapes, road effects may further function as novel agents of selection, setting the stage for contemporary evolutionary changes in local populations. Though the ecological consequences of roads are well described, evolutionary outcomes remain largely unevaluated. To address these potential responses in tandem, I conducted a reciprocal transplant experiment on early life history stages of a pool-breeding salamander. My data show that despite a strong, negative effect of roadside pools on salamander performance, populations adjacent to roads are locally adapted. This suggests that the response of species to human-altered environments varies across local populations, and that adaptive processes may mediate this response.
Collapse
Affiliation(s)
- Steven P Brady
- School of Forestry & Environmental Studies, Yale University, 370 Prospect Street, New Haven , CT, USA.
| |
Collapse
|
163
|
Palkovacs EP, Kinnison MT, Correa C, Dalton CM, Hendry AP. Fates beyond traits: ecological consequences of human-induced trait change. Evol Appl 2011; 5:183-91. [PMID: 25568040 PMCID: PMC3353338 DOI: 10.1111/j.1752-4571.2011.00212.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/20/2011] [Indexed: 11/29/2022] Open
Abstract
Human-induced trait change has been documented in freshwater, marine, and terrestrial ecosystems worldwide. These trait changes are driven by phenotypic plasticity and contemporary evolution. While efforts to manage human-induced trait change are beginning to receive some attention, managing its ecological consequences has received virtually none. Recent work suggests that contemporary trait change can have important effects on the dynamics of populations, communities, and ecosystems. Therefore, trait changes caused by human activity may be shaping ecological dynamics on a global scale. We present evidence for important ecological effects associated with human-induced trait change in a variety of study systems. These effects can occur over large spatial scales and impact system-wide processes such as trophic cascades. Importantly, the magnitude of these effects can be on par with those of traditional ecological drivers such as species presence. However, phenotypic change is not always an agent of ecological change; it can also buffer ecosystems against change. Determining the conditions under which phenotypic change may promote vs prevent ecological change should be a top research priority.
Collapse
Affiliation(s)
- Eric P Palkovacs
- Duke University Marine Laboratory Beaufort, NC, USA ; Nicholas School of the Environment, Duke University Durham, NC, USA
| | | | - Cristian Correa
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| | - Christopher M Dalton
- Department of Ecology and Evolutionary Biology, Cornell University Ithaca, NY, USA
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| |
Collapse
|
164
|
Collin H, Fumagalli L. Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Mol Ecol 2011; 20:4490-502. [PMID: 21951706 DOI: 10.1111/j.1365-294x.2011.05284.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.
Collapse
Affiliation(s)
- Hélène Collin
- Laboratoire de Biologie de la Conservation, Département d'Ecologie et Evolution, Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
165
|
Lankau R, Jørgensen PS, Harris DJ, Sih A. Incorporating evolutionary principles into environmental management and policy. Evol Appl 2011; 4:315-25. [PMID: 25567975 PMCID: PMC3352553 DOI: 10.1111/j.1752-4571.2010.00171.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/19/2010] [Indexed: 12/20/2022] Open
Abstract
As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms' responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary changes. Such evolution-based management has potential to be a highly efficient and consistent way to create greater ecological resilience to widespread, rapid, and multifaceted environmental change.
Collapse
Affiliation(s)
- Richard Lankau
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-ChampaignChampaign, IL, USA
| | - Peter Søgaard Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of CopenhagenUniversitetsparken 15, Copenhagen, Denmark
| | - David J Harris
- Department of Environmental Science and Policy, University of California DavisCA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California DavisCA, USA
| |
Collapse
|
166
|
Sih A, Ferrari MCO, Harris DJ. Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 2011; 4:367-87. [PMID: 25567979 PMCID: PMC3352552 DOI: 10.1111/j.1752-4571.2010.00166.x] [Citation(s) in RCA: 671] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022] Open
Abstract
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.
Collapse
Affiliation(s)
- Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Maud C O Ferrari
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - David J Harris
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| |
Collapse
|