151
|
Jiang JM, Zhou CF, Gao SL, Tian Y, Wang CY, Wang L, Gu HF, Tang XQ. BDNF-TrkB pathway mediates neuroprotection of hydrogen sulfide against formaldehyde-induced toxicity to PC12 cells. PLoS One 2015; 10:e0119478. [PMID: 25749582 PMCID: PMC4352058 DOI: 10.1371/journal.pone.0119478] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.
Collapse
Affiliation(s)
- Jia-Mei Jiang
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Cheng-Fang Zhou
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
| | - Sheng-Lan Gao
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ying Tian
- Department of Biochemistry, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
- * E-mail: (X-QT); (YT)
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Li Wang
- Department of Anthropotomy, Medical College, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Department of Physiology & Institute of Neuroscience, Medical College, University of South China, Hengyang, 42100, Hunan, P. R. China
- Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang, 421001, Hunan, P. R. China
- * E-mail: (X-QT); (YT)
| |
Collapse
|
152
|
Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res 2014; 40:2570-82. [PMID: 25428182 DOI: 10.1007/s11064-014-1481-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes.
Collapse
|
153
|
Shindyapina AV, Petrunia IV, Komarova TV, Sheshukova EV, Kosorukov VS, Kiryanov GI, Dorokhov YL. Dietary methanol regulates human gene activity. PLoS One 2014; 9:e102837. [PMID: 25033451 PMCID: PMC4102594 DOI: 10.1371/journal.pone.0102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/23/2014] [Indexed: 12/02/2022] Open
Abstract
Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.
Collapse
Affiliation(s)
- Anastasia V. Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Igor V. Petrunia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V. Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | | | | | - Gleb I. Kiryanov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|