151
|
Brown RB. Hypertension, Anxiety and Obstructive Sleep Apnea in Cardiovascular Disease and COVID-19: Mediation by Dietary Salt. Diseases 2022; 10:diseases10040089. [PMID: 36278588 PMCID: PMC9590013 DOI: 10.3390/diseases10040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
This perspective paper used a grounded theory method to synthesize evidence proposing that sodium toxicity from excessive dietary salt intake is a potential common pathophysiological mechanism that mediates the association of hypertension, obstructive sleep apnea, and anxiety with cardiovascular disease and COVID-19. Increased anxiety in these conditions may be linked to a high-salt diet through stimulation of the sympathetic nervous system, which increases blood pressure while releasing catecholamines, causing a "fight or flight" response. A rostral shift of fluid overload from the lower to the upper body occurs in obstructive sleep apnea associated with COVID-19 and cardiovascular disease, and may be related to sodium and fluid retention triggered by hypertonic dehydration. Chronic activation of the renin-angiotensin-aldosterone system responds to salt-induced dehydration by increasing reabsorption of sodium and fluid, potentially exacerbating fluid overload. Anxiety may also be related to angiotensin II that stimulates the sympathetic nervous system to release catecholamines. More research is needed to investigate these proposed interrelated mechanisms mediated by dietary salt. Furthermore, dietary interventions should use a whole-food plant-based diet that eliminates foods processed with salt to test the effect of very low sodium intake levels on hypertension, anxiety, and obstructive sleep apnea in cardiovascular disease and COVID-19.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
152
|
Chen SY, Kong XQ, Zhang KF, Luo S, Wang F, Zhang JJ. DPP4 as a Potential Candidate in Cardiovascular Disease. J Inflamm Res 2022; 15:5457-5469. [PMID: 36147690 PMCID: PMC9488155 DOI: 10.2147/jir.s380285] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The rising prevalence of cardiovascular disease has become a global health concern. The occurrence of cardiovascular disease is the result of long-term interaction of many risk factors, one of which is diabetes. As a novel anti-diabetic drug, DPP4 inhibitor has been proven to be cardiovascular safe in five recently completed cardiovascular outcome trials. Accumulating studies suggest that DPP4 inhibitor has potential benefits in a variety of cardiovascular diseases, including hypertension, calcified aortic valve disease, coronary atherosclerosis, and heart failure. On the one hand, in addition to improving blood glucose control, DPP4 inhibitor is involved in controlling cardiovascular risk factors. On the other hand, DPP4 inhibitor directly regulates the occurrence and progression of cardiovascular diseases through a variety of mechanisms. In this review, we summarize the recent advances of DPP4 in cardiovascular disease, aiming to discuss DPP4 inhibitor as a potential option for cardiovascular therapy.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| | - Ke-Fan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, People's Republic of China
| |
Collapse
|
153
|
Cardiorenal benefits of mineralocorticoid antagonists in CKD and type 2 diabetes : Lessons from the FIGARO-DKD trial. Herz 2022; 47:401-409. [PMID: 36094559 DOI: 10.1007/s00059-022-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
Abstract
Diabetic kidney disease (DKD) develops in almost half of all patients with diabetes and is the most common cause of chronic kidney disease (CKD) worldwide. Despite the high risk of chronic renal failure in these patients, only few therapeutic strategies are available. The use of renin-angiotensin system blockers to reduce the incidence of kidney failure in patients with DKD was established years ago and remains the hallmark of therapy. The past 2 years have seen a dramatic change in our therapeutic arsenal for CKD. Sodium-glucose co-transporter‑2 inhibitors (SGLT2s) have been successfully introduced for the treatment of CKD. A further addition is a novel compound antagonizing the activation of the mineralocorticoid receptor: finerenone. Finerenone reduces albuminuria and surrogate markers of cardiovascular disease in patients who are already on optimal therapy. In the past, treatment with other mineralocorticoid receptor antagonists was hampered by a significantly increased risk of hyperkalemia. Finerenone had a much smaller effect on hyperkalemia. Together with a reduced effect on blood pressure and no signs of gynecomastia, this therapeutic strategy had a more specific anti-inflammatory effect and a smaller effect on the volume/electrolyte axis. In the FIDELIO-DKD study comparing the actions of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo, finerenone reduced the progression of DKD and the incidence of cardiovascular events, with a relatively safe adverse event profile. In this article, we summarize the available evidence on the cardioprotective and nephroprotective effects of finerenone and analyze the molecular mechanisms involved. In addition, we discuss the potential future role of mineralocorticoid receptor inhibition in the treatment of patients with diabetic CKD.
Collapse
|
154
|
Kusunose K, Yamada H, Saijo Y, Nishio S, Hirata Y, Ise T, Yamaguchi K, Fukuda D, Yagi S, Soeki T, Wakatsuki T, Sata M. Clinical course and decision-making in heart failure by preload stress echocardiography: a preliminary study. ESC Heart Fail 2022; 9:4020-4029. [PMID: 36017722 PMCID: PMC9773745 DOI: 10.1002/ehf2.14127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Abnormal left ventricular diastolic response to preload stress can be an early marker of heart failure (HF). The aim of this study was to assess clinical course in patients with HF with preserved ejection fraction (HFpEF) who underwent preload stress echocardiography. In the subgroup analysis, we assessed the prognosis of patients with unstable signs during preload stress classified by treatment strategies. METHODS AND RESULTS We prospectively conducted preload stress echocardiographic studies between January 2006 and December 2013 in 211 patients with HFpEF. Fifty-eight patients had abnormal diastolic reserve during preload stress (unstable impaired relaxation: unstable IR). Of 58 patients with unstable IR, 19 patients were assigned to additional therapy by increased or additional therapy and 39 patients were assigned to standard therapy. Composite outcomes were prespecified as the primary endpoint of death and hospitalization for deteriorating HF. During a median period of 6.9 years, 19 patients (33%) reached the composite outcome. Unstable group with standard therapy had significantly shorter event-free survival than stable group. Patients with uptitration of therapy had longer event-free survival than those with standard therapy group after adjustment of laboratory data (hazard ratio, 0.20, 95% confidence interval, 0.05-0.90; P = 0.036); the 10 year event-free survival in patients with and without uptitration of therapy was 93% and 51%, respectively (P = 0.023). CONCLUSIONS Patients with unstable sign had significantly shorter event-free survival than patients with stable sign. After additional therapy, the prognosis of patients with unstable signs improved. This technique may impact decision-making for improving their prognosis.
Collapse
Affiliation(s)
- Kenya Kusunose
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Hirotsugu Yamada
- Department of Community Medicine for CardiologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yoshihito Saijo
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Susumu Nishio
- Ultrasound Examination CenterTokushima University HospitalTokushimaJapan
| | - Yukina Hirata
- Ultrasound Examination CenterTokushima University HospitalTokushimaJapan
| | - Takayuki Ise
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Koji Yamaguchi
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Daiju Fukuda
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Shusuke Yagi
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Takeshi Soeki
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| | - Masataka Sata
- Department of Cardiovascular MedicineTokushima University Hospital2‐50‐1 KuramotoTokushimaJapan
| |
Collapse
|
155
|
Estrogen normalizes maternal HFD-induced vascular dysfunction in offspring by regulating ATR. Hypertens Res 2022; 45:1743-1753. [PMID: 35999282 DOI: 10.1038/s41440-022-01002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.
Collapse
|
156
|
Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal Antihypertensive Effect of Gedan Jiangya Decoction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3353464. [PMID: 36046450 PMCID: PMC9423997 DOI: 10.1155/2022/3353464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Primary hypertension is understood as a disease with diverse etiology, a complicated pathological mechanism, and progressive changes. Gedan Jiangya Decoction (GJD), with the patent publication number CN114246896A, was designed to treat primary hypertension. It contains six botanical drugs; however, the underlying mechanism is uncertain. We utilized network pharmacology to predict the active components, targets, and signaling pathways of GJD in the treatment of primary hypertension. We also investigated the potential molecular mechanism using molecular docking and animal experiments. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Protein Database (UniProt), and a literature review were used to identify the active components and related targets of GJD's pharmacological effects. The GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DrugBank databases were utilized to identify hypertension-related targets. Based on a Venn diagram of designed intersection targets, 214 intersection targets were obtained and 35 key targets for the treatment of hypertension were determined using the STRING data platform and Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of key targets revealed that the relevant molecular action pathways of GJD in the treatment of hypertension include the Toll-like receptor, MAPK, PI3K-Akt, and renin-angiotensin signaling pathways. A GJD active ingredient-key target-pathway connection diagram was created using Cytoscape software, and 11 essential active components were selected. Molecular docking was then used to verify the binding activity of key targets and key active ingredients in GJD to treat primary hypertension. The results of this study indicate that AGTR1, AKT1 with puerarin, EDNRA with tanshinone IIA, MAPK14 with daidzein, MAPK8 with ursolic acid, and CHRM2 with cryptotanshinone had high binding activity to the targets with active components, whereas AGTR1 was selected as target genes verified by our experiment. HPLC was utilized to identify the five active ingredients. Experiments in high-salt rats demonstrated that GJD might decrease the expression of AGTR1 in the kidney and thoracic aorta while increasing the expression of eNOS by preventing the activation of the renin-angiotensin pathway, thereby reducing lowering systolic and diastolic blood pressure.
Collapse
|
157
|
Miller M, Quimby J, Langston C, Ames M, Parker VJ. Effect of calcifediol supplementation on renin-angiotensin-aldosterone system mediators in dogs with chronic kidney disease. J Vet Intern Med 2022; 36:1693-1699. [PMID: 35962709 PMCID: PMC9511075 DOI: 10.1111/jvim.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Chronic kidney disease (CKD) leads to low serum concentrations of vitamin D metabolites. Thus, hypovitaminosis D associated with CKD might contribute to disease progression via increased concentration of renin angiotensin aldosterone system (RAAS) mediators. Objectives To evaluate whether supplementation with calcifediol affects equilibrium concentrations of selected mediators of the RAAS. We hypothesized that vitamin D supplementation will decrease concentration of circulating RAAS mediators in dogs with CKD. Animals Six client‐owned adult dogs with IRIS Stage 2 and 3 CKD. Methods Prospective study. Serum 25‐hydroxyvitamin D (25[OH]D), 1,25‐dihydroxyvitamin D (1,25[OH]2D), 24,25‐dihydroxyvitamin D (24,25[OH]2D), RAAS mediators (angiotensin I/II/III/IV/1‐5/1‐7, and aldosterone), and surrogate angiotensin converting enzyme (ACE) activity (calculated by the ratio of angiotensin II to angiotensin I) were evaluated at baseline, after 3 months of calcifediol supplementation, and 2 months after discontinuing administration of supplement. Results All serum vitamin D metabolite concentrations increased significantly by month 3 (P < .001): 25(OH)D (median 250 ng/mL; range, 204‐310), compared to baseline (median 43.2 ng/mL; range, 33.8‐58.3 ng/mL); 1,25(OH)2D (median 66.1 pg/mL; range, 57.3‐88.1 pg/mL) compared to baseline (median 35.2 pg/mL; range, 29.3‐56.7 pg/mL); 24,25(OH)2D (median 68.4 ng/mL; range, 22.1‐142.0 ng/mL) compared to baseline (median 14.4 ng/mL; range, 9.0‐21.3 ng/mL). Calculated ACE activity was significantly lower at month 3 (median 0.5; range, 0.4‐1.0) compared to baseline (median 0.7; range, 0.6‐1.3; P = .01). There were no significant differences in any of the evaluated RAAS variables at any other time‐point. Conclusions and Clinical Importance Short‐term calcifediol supplementation in this small group of CKD dogs appeared to decrease ACE activity.
Collapse
Affiliation(s)
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH
| | - Catherine Langston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH
| | - Marisa Ames
- Department of Medicine & Epidemiology, University of California Davis, Davis, CA
| | - Valerie J Parker
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH
| |
Collapse
|
158
|
Nagraj S, Peppas S, Rubianes Guerrero MG, Kokkinidis DG, Contreras-Yametti FI, Murthy S, Jorde UP. Cardiac risk stratification of the liver transplant candidate: A comprehensive review. World J Transplant 2022; 12:142-156. [PMID: 36051452 PMCID: PMC9331410 DOI: 10.5500/wjt.v12.i7.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) form a principal consideration in patients with end-stage liver disease (ESLD) undergoing evaluation for liver transplant (LT) with prognostic implications in the peri- and post-transplant periods. As the predominant etiology of ESLD continues to evolve, addressing CVD in these patients has become increasingly relevant. Likewise, as the number of LTs increase by the year, the proportion of older adults on the waiting list with competing comorbidities increase, and the demographics of LT candidates evolve with parallel increases in their CVD risk profiles. The primary goal of cardiac risk assessment is to preemptively reduce the risk of cardiovascular morbidity and mortality that may arise from hemodynamic stress in the peri- and post-transplant periods. The complex hemodynamics shared by ESLD patients in the pre-transplant period with adverse cardiovascular events occurring in only some of these recipients continue to challenge currently available guidelines and their uniform applicability. This review focusses on cardiac assessment of LT candidates in a stepwise manner with special emphasis on preoperative patient optimization. We hope that this will reinforce the importance of cardiovascular optimization prior to LT, prevent futile LT in those with advanced CVD beyond the stage of optimization, and thereby use the finite resources prudently.
Collapse
Affiliation(s)
- Sanjana Nagraj
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, New York City, NY 10461, United States
| | - Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, Athens 115 21, Greece
| | | | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT 06510, United States
| | | | - Sandhya Murthy
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY 10467, United States
| | - Ulrich P Jorde
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY 10467, United States
| |
Collapse
|
159
|
Bioinformatics Analysis of Competing Endogenous RNA Network and Immune Infiltration in Atrial Fibrillation. Genet Res (Camb) 2022; 2022:1415140. [PMID: 35919038 PMCID: PMC9308555 DOI: 10.1155/2022/1415140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background There is still no clear understanding of the pathogenesis of atrial fibrillation (AF). For this purpose, we used integrated analysis to uncover immune infiltration characteristics and investigated their relationship with competing endogenous RNA (ceRNA) network in AF. Methods Three AF mRNA data sets (GSE14975, GSE79768, and GSE41177) were integrated using the SVA method from Gene Expression Omnibus (GEO). Together with AF circRNA data set (GSE129409) and miRNA data set (GSE70887) from GEO database, we built a ceRNA network. Then hub genes were screened by the Cytoscape plug-in cytoHubba from a protein-protein interaction (PPI) network. As well, CIBERSORT was employed to investigate immune infiltration, followed by Pearson correlation coefficients to unravel the correlation between AF-related infiltrating immune cells and hub genes. Ulteriorly, circRNA-miRNA-mRNA regulatory axises that could be immunologically related to AF were obtained. Results Ten hub genes were identified from the constructing PPI network. The immune infiltration analysis revealed that the number of monocytes and neutrophils was higher, as well as the number of dendritic cells activated and T cells regulatory (Tregs) was lower in AF. Seven hub genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated with those 4 immune cells (P < 0.05). We found that the circ_0005299–miR-1246–C5AR1 and circRNA_0079284-miR-623-HCK/CXCR4 regulatory axises may be associated with the immune mechanism of AF. Conclusion The findings of our study provide insights into immuno-related ceRNA networks as potential molecular regulators of AF progression.
Collapse
|
160
|
The Genetic Variants in the Renin-Angiotensin System and the Risk of Heart Failure in Polish Patients. Genes (Basel) 2022; 13:genes13071257. [PMID: 35886041 PMCID: PMC9319667 DOI: 10.3390/genes13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Heart failure (HF) is a complex disease and one of the major causes of morbidity and mortality in the world. The renin-angiotensin system (RAS) may contribute to the pathogenesis of HF. (2) Aim: To investigate the association of RAS key genetic variants, rs5051 (A-6G) in the gene encoding angiotensinogen (AGT), rs4646994 (I/D) in the gene for angiotensin I converting enzyme (ACE), and rs5186 (A1166C) in the gene encoding type 1 receptor for angiotensin II (AGTR1), with the HF risk in the cohort of Polish patients. (3) Methods: The study group consisted of 415 patients that were diagnosed with HF, while the control group comprised of 152 healthy individuals. Genomic DNA were extracted from blood and genotyping was carried out using either PCR or PCR-RFLP for ACE or AGT and AGTR1 variants, respectively. (4) Results: No association has been found between the I/D ACE and heart failure. The HF risk was significantly higher for AG AGT heterozygotes (overdominance: AG versus AA + GG) and for carriers of the G AGT allele in codominant and dominant modes of inheritance. However, the risk of HF was significantly lower in the carriers of at least one C AGTR1 allele (AC or CC genotypes) or in AC AGTR1 heterozygotes (overdominant mode). There was a significant relationship for AGT and HF patients in NYHA Class I-II for whom the risk was higher for the carriers of the G allele, and for the AG heterozygotes. There was also a significant interaction between heterozygote advantage of AGT and BMI increasing the risk for HF. (5) Conclusion: Our results suggest that the A(-6)G AGT polymorphism may be associated with HF in the Polish population and the HF risk seems to be modulated by the A1166C AGTR1 polymorphism.
Collapse
|
161
|
Saengsiwaritt W, Jittikoon J, Chaikledkaew U, Udomsinprasert W. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis. Rev Med Virol 2022; 32:e2323. [PMID: 34997794 DOI: 10.1002/rmv.2323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) poses a global threat, due to its fluctuating frequency and lethality. Published data revealed associations of COVID-19 susceptibility and severity with host genetic polymorphisms in renin-angiotensin-aldosterone system (RAAS)-related genes including angiotensin-converting enzyme (ACE)1, ACE2, and transmembrane protease (TMPRSS)2. However, the findings remain inconclusive. Accordingly, we aimed to clarify associations of genetic variants in those genes with COVID-19 susceptibility and severity using a systematic review with meta-analysis. From inception through 1 July 2021, a literature search was performed using PubMed, Scopus, Web of Science, and Cochrane Library databases. Allelic distributions for each polymorphism were calculated as pooled odds ratios (OR) with 95% confidence intervals (CI) to assess the strength of association. A total of 3333 COVID-19 patients and 5547 controls from 11 eligible studies were included. From a systematic review, ACE1 rs1799752, ACE1 rs4646994, ACE2 rs2285666, and TMPRSS2 rs12329760 were identified as common polymorphisms of RAAS-related genes. Meta-analysis showed a significant association between TMPRSS2 rs12329760 C-allele and an increased risk of developing severe COVID-19 (OR = 1.32, 95% CI: 1.01, 1.73). Likewise, additional meta-analyses uncovered that both ACE1 rs4646994 DD-genotype and ACE2 rs2285666 GG-genotype carriers had a significantly increased risk of developing severe COVID-19 (OR = 2.06, 95% CI: 1.45, 2.93; OR = 2.14, 95% CI: 1.26, 3.66; respectively). Genetic polymorphisms of ACE1 rs4646994 DD-genotype, ACE2 rs2285666 GG-genotype, and TMPRSS2 rs12329760 CC-genotype and C-allele may serve as predictive models of COVID-19 severity.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
162
|
Huang X, Huang B, He Y, Feng L, Shi J, Wang L, Peng J, Chen Y. Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived Cardiomyocytes. Adv Biol (Weinh) 2022; 6:e2101327. [PMID: 35523737 PMCID: PMC9347759 DOI: 10.1002/adbi.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
Sars-Cov-2 may trigger molecular and functional alterations of cardiomyocytes (CMs) of the heart due to the presence of receptor angiotensin-converting enzyme 2 (ACE2) of the host cells. While the endocytic itinerary of the virus via cleavage of the spike protein of Sars-Cov-2 is well understood, the role of the remaining part of the spike protein subunit and ACE2 complex is still elusive. Herein, the possible effects of this complex are investigated by using synthetic spike proteins of Sars-Cov-2, human-induced pluripotent stem cells (hiPSC), and a culture device made of an arrayed monolayer of cross-linked nanofibers. hiPSCs are first differentiated into CMs that form cardiac tissue-like constructs with regular beating and expression of both ACE2 and gap junction protein Connexin 43. When incubated with the spike proteins, the hiPSC-CMs undergo a rhythmic fluctuation with overstretched sarcomere structures and dispersed gap junction proteins. When incubated with the spike proteins and supplementary angiotensin II, the damage of the spike protein on hiPSC-CMs is enhanced due to downregulated ACE2, chromatin margination, altered Connexin 43 expression, sarcomere disruption, and beating break. This discovery may imply latent effects of the spike proteins on the heart.
Collapse
Affiliation(s)
- Xiaochen Huang
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| | - Boxin Huang
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| | - Yong He
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| | - Liang Feng
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint‐HonoréParis75001France
| | - Li Wang
- MesoBioTech, 231 Rue Saint‐HonoréParis75001France
| | - Juan Peng
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| | - Yong Chen
- École Normale Supérieure‐PSL Research University, Département de Chimie, Sorbonne Universités‐UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue LhomondParis75005France
| |
Collapse
|
163
|
Chiorescu RM, Lazar RD, Buksa SB, Mocan M, Blendea D. Biomarkers of Volume Overload and Edema in Heart Failure With Reduced Ejection Fraction. Front Cardiovasc Med 2022; 9:910100. [PMID: 35783848 PMCID: PMC9247259 DOI: 10.3389/fcvm.2022.910100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
From a pathogenetic point of view, heart failure (HF) is characterized by the activation of several neurohumoral pathways with a role in maintaining the cardiac output and the adequate perfusion pressure in target organs and tissues. Decreased cardiac output in HF with reduced ejection fraction causes activation of the sympathetic nervous system, the renin angiotensin aldosterone system, arginine-vasopressin system, natriuretic peptides, and endothelin, all of which cause water and salt retention in the body. As a result, patients will present clinically as the main symptoms: dyspnea and peripheral edema caused by fluid redistribution to the lungs and/or by fluid overload. By studying these pathophysiological mechanisms, biomarkers with a prognostic and therapeutic role in the management of edema were identified in patients with HF with low ejection fraction. This review aims to summarize the current data from the specialty literature of such biomarkers with a role in the pathogenesis of edema in HF with low ejection fraction. These biomarkers may be the basis for risk stratification and the development of new therapeutic means in the treatment of edema in these patients.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Roxana-Daiana Lazar
- Nicolae Stancioiu Heart Institute, Cluj-Napoca, Romania
- *Correspondence: Roxana-Daiana Lazar
| | - Sándor-Botond Buksa
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Mihaela Mocan
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Nicolae Stancioiu Heart Institute, Cluj-Napoca, Romania
| |
Collapse
|
164
|
Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
165
|
COUP-TFII in Kidneys, from Embryos to Sick Adults. Diagnostics (Basel) 2022; 12:diagnostics12051181. [PMID: 35626336 PMCID: PMC9139597 DOI: 10.3390/diagnostics12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear hormone receptor of unknown ligands. This molecule has two interesting features: (1) it is a developmental gene, and (2) it is a potential hormone receptor. Here, we describe the possible roles of COUP-TFII in the organogenesis of the kidneys and protection from adult renal diseases, primarily in mouse models. COUP-TFII is highly expressed in embryos, including primordial kidneys, and is essential for the formation of metanephric mesenchyme and the survival of renal precursor cells. Although the expression levels of COUP-TFII are low and its functions are unknown in healthy adults, it serves as a reno-protectant molecule against acute kidney injury. These are good examples of how developmental genes exhibit novel functions in the etiology of adult diseases. We also discuss the ongoing research on the roles of COUP-TFII in podocyte development and diabetic kidney disease. In addition, the identification of potential ligands suggests that COUP-TFII might be a novel therapeutic target for renal diseases in the future.
Collapse
|
166
|
Santa S, Doku DA, Olwal CO, Brown CA, Tagoe EA, Quaye O. Paradox of COVID-19 in pregnancy: are pregnant women more protected against or at elevated risk of severe COVID-19? Future Microbiol 2022; 17:803-812. [PMID: 35510478 PMCID: PMC9070559 DOI: 10.2217/fmb-2021-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many underlying medical conditions have been linked to worse COVID-19 prognosis. Based on reports on SARS-CoV-1 and Middle East respiratory syndrome infections, pregnancy has been considered a predisposing factor to severe COVID-19, with pregnant women being a high-risk group for several physiological reasons. Specifically, pregnant women undergo physiological adaptations that predispose them to severe respiratory viral diseases, including SARS-CoV-2. However, a significant amount of evidence suggests that the clinical outcome of COVID-19 among pregnant women is not different from the general population. In view of this, this report discusses the physiological conditions in pregnant women that adversely affect their immunity, cardiovascular homeostasis, and their endothelial and coagulopathic functions, thereby making them more prone to severe viral infections. We also discuss how these physiological adaptations appear to paradoxically offer protection against severe COVID-19 among pregnant women.
Collapse
Affiliation(s)
- Sheila Santa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Derek A Doku
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana.,West African Genetic Medicine Center, University of Ghana, Accra, Ghana
| | - Charles O Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles A Brown
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel A Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
167
|
Petty HJ, Barrett JE, Kosmowski EG, Amos DS, Ryan SM, Jones LD, Lassiter CS. Spironolactone affects cardiovascular and craniofacial development in zebrafish embryos (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103848. [PMID: 35288337 DOI: 10.1016/j.etap.2022.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Spironolactone, a potassium-sparing diuretic and aldosterone antagonist, is a mineralocorticoid hormone commonly prescribed to patients suffering from heart failure, hirsutism, dermatological afflictions, and hypertension. Interestingly, relatively little work has been done on the development of vertebrate embryos after exposure to this compound. Here, we treat zebrafish embryos with spironolactone at 10-6 M, 10-7 M, or 10-8 M, and observe them after three to seven days of exposure. While no effect was observed in mortality, we did detect differences in cardiovascular development at 3 dpf and craniofacial development at 5 dpf. At 10-6 M, smaller atria, ventricles, and blood vessels were observed. The highest concentrations also caused a longer ceratohyal/Meckel's distance, longer palatoquadrate, and smaller angles between the palatoquadrate and both the ceratohyal and Meckel's. Further research of spironolactone's effects on embryonic development could lead to a better understanding of the compound resulting in improved public and environmental health.
Collapse
Affiliation(s)
- Hannah J Petty
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Jacob E Barrett
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Erin G Kosmowski
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Dandre S Amos
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Sean M Ryan
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Lucas D Jones
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | | |
Collapse
|
168
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
169
|
Low-grade inflammation, CoVID-19, and obesity: clinical aspect and molecular insights in childhood and adulthood. Int J Obes (Lond) 2022; 46:1254-1261. [PMID: 35393519 PMCID: PMC8988546 DOI: 10.1038/s41366-022-01111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The new 2019 coronavirus 19 disease (CoVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to health systems. As a global health problem, this pandemic poses a huge threat to people and is responsible for significant morbidity and mortality worldwide. On the other hand, obesity has also reached epidemic proportions and poses another challenge to the healthcare system. There is increasing evidence of a strong association between obesity and CoVID-19 disease, but the mechanisms underlying the link between the two remain unclear and the role of obesity also remains to be elucidated. In particular obesity-related low-grade inflammation has been hypothesized as the Achille's heel that could predispose subjects with obesity to a more severe CoVID-19 compared to subjects with normal weight. Hence, we summarized recent evidence on the role of low-grade inflammation in clinical aspects of CoVID-19 in subjects with obesity in both childhood and adulthood. Further, we provide molecular insights to explain this link.
Collapse
|
170
|
Braga CL, Acquarone M, Arona VDC, Osório BS, Barreto TG, Kian RM, Pereira JPAL, Silva MDMCD, Silva BA, de Oliveira GMM, Macedo Rocco PR, Silva PL, Alencar AKN. Can Epigenetics Help Solve the Puzzle Between Concomitant Cardiovascular Injury and Severity of Coronavirus Disease 2019? J Cardiovasc Pharmacol 2022; 79:431-443. [PMID: 34935698 DOI: 10.1097/fjc.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.
Collapse
Affiliation(s)
- Cássia L Braga
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor da C Arona
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Brenno S Osório
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Thiago G Barreto
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Ruan M Kian
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | | | - Marina de Moraes C da Silva
- Serviço de Radiologia do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bagnólia A Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Gláucia Maria M de Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan K N Alencar
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
171
|
Lee SB, Park B, Hong KW, Jung DH. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. J Cardiovasc Dev Dis 2022; 9:jcdd9040104. [PMID: 35448080 PMCID: PMC9025963 DOI: 10.3390/jcdd9040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a crucial regulator of vascular resistance and blood volume in the body. This study aimed to examine the genetic predisposition of the plasma renin concentration influencing future hypertension incidence. Based on the Korean Genome and Epidemiology Cohort dataset, 5211 normotensive individuals at enrollment were observed over 12 years, categorized into the low-renin and high-renin groups. We conducted genome-wide association studies for the total, low-renin, and high-renin groups. Among the significant SNPs, the lead SNPs of each locus were focused on for further interpretation. The effect of genotypes was determined by logistic regression analysis between controls and new-onset hypertension, after adjusting for potential confounding variables. During a mean follow-up period of 7.6 years, 1704 participants (32.7%) developed hypertension. The low-renin group showed more incidence rates of new-onset hypertension (35.3%) than the high-renin group (26.5%). Among 153 SNPs in renin-related gene regions, two SNPs (rs11726091 and rs8137145) showed an association in the high-renin group, four SNPs (rs17038966, rs145286444, rs2118663, and rs12336898) in the low-renin group, and three SNPs (rs1938859, rs7968218, and rs117246401) in the total population. Most significantly, the low-renin SNP rs12336898 in the SPTAN1 gene, closely related to vascular wall remodeling, was associated with the development of hypertension (p-value = 1.3 × 10−6). We found the candidate genetic polymorphisms according to blood renin concentration. Our results might be a valuable indicator for hypertension risk prediction and preventive measure, considering renin concentration with genetic susceptibility.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Severance Check-up, Yonsei University Health System, Yongin-si 16995, Korea;
- Department of Medicine, Graduate School, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea
| | - Byoungjin Park
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Ganggyo-ro 145, Suwon-si 16229, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| |
Collapse
|
172
|
Erichsen L, Thimm C, Bohndorf M, Rahman MS, Wruck W, Adjaye J. Activation of the Renin–Angiotensin System Disrupts the Cytoskeletal Architecture of Human Urine-Derived Podocytes. Cells 2022; 11:cells11071095. [PMID: 35406662 PMCID: PMC8997628 DOI: 10.3390/cells11071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin–angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin–angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.
Collapse
|
173
|
Haffke M, Freitag H, Rudolf G, Seifert M, Doehner W, Scherbakov N, Hanitsch L, Wittke K, Bauer S, Konietschke F, Paul F, Bellmann-Strobl J, Kedor C, Scheibenbogen C, Sotzny F. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med 2022; 20:138. [PMID: 35317812 PMCID: PMC8938726 DOI: 10.1186/s12967-022-03346-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS. Methods We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers. Results Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs. Conclusion A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03346-2.
Collapse
Affiliation(s)
- Milan Haffke
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.
| | - Helma Freitag
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Gordon Rudolf
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Martina Seifert
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfram Doehner
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Nadja Scherbakov
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Leif Hanitsch
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Kirsten Wittke
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Sandra Bauer
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Claudia Kedor
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Franziska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
174
|
Pioglitazone Synthetic Analogue Ameliorates Streptozotocin-Induced Diabetes Mellitus through Modulation of ACE 2/Angiotensin 1–7 via PI3K/AKT/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030341. [PMID: 35337139 PMCID: PMC8955304 DOI: 10.3390/ph15030341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
The renin angiotensin aldosterone system has a localized key regulatory action, especially in liver and body circulation. Furthermore, it accomplishes a significant role in the downregulation of the PI3K/AKT/mTOR signaling pathway that is involved in type II diabetes mellitus pathogenesis. The current study aimed to evaluate the effect of a synthetic pioglitazone analogue (benzenesulfonamide derivative) compared to the standard pioglitazone hypoglycemic drug on enhancing liver insulin sensitivity via ACE 2/Ang (1–7)/PI3K/AKT/mTOR in experimental STZ-induced diabetes. After the model was established, rats were distributed into the normal control group, diabetic group, pioglitazone group (20 mg/kg), and a benzenesulfonamide derivative group (20 mg/kg), with the last 2 groups receiving oral treatment for 14 consecutive days. Our results suggested enhancing liver insulin sensitivity against the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway. Moreover, the synthetic compound produced a reduction in blood glucose levels, restored hyperinsulinemia back to normal, and enhanced liver glycogen deposition. In addition, it up regulated the ACE2/Ang (1–7)/PI3K/AKT/mTOR signaling pathway via increasing insulin receptor substrate 1 and 2 sensitivity to insulin, while it increased glucose transporter 2 expression in the rat pancreas. The study findings imply that the hypoglycemic effect of the benzenesulfonamide derivative is due to enhancing liver sensitivity to regulate blood glucose level via the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway.
Collapse
|
175
|
Zhao L, Xue J, Zhou Y, Dong X, Luo F, Jiang X, Du X, Zhou X, Meng X. Concurrent Primary Aldosteronism and Renal Artery Stenosis: An Overlooked Condition Inducing Resistant Hypertension. Front Cardiovasc Med 2022; 9:818872. [PMID: 35310978 PMCID: PMC8927285 DOI: 10.3389/fcvm.2022.818872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
To explore the clinical features of coexisting primary aldosteronism (PA) and renal artery stenosis (RAS), we retrospectively analyzed records from 71 patients with PA with RAS and a control group of 121 patients with PA without RAS. Aldosterone-to-renin concentration ratio tests and computerized tomography (CT) scanning of the adrenal and renal arteries were routinely conducted to screen for PA and RAS. Color Doppler flow and/or magnetic resonance imaging were used as substitute testing of patients for whom CT was contraindicated. Standard percutaneous renal arteriography (PTRA) was considered for patients with RAS exceeding 70% based on non-invasive tests and for those without PTRA contraindications. The patients with PA with RAS were further divided into severe (RAS>70%) and moderate (50% < RAS <70%) RAS groups. The prevalence of RAS among PA patients was 6.9% (71/1,033), including 3.2% (33/1,033) with severe RAS. Compared with the PA without RAS group, the severe RAS group showed higher levels of systolic blood pressure (SBP) (171.82 ± 18.24 vs. 154.11 ± 18.96 mmHg; P < 0.001) and diastolic BP(DBP) (110.76 ± 15.90 vs. 91.73 ± 12.85 mmHg; P < 0.001) and prevalence of resistant hypertension (RH) (90.9 vs. 66.9%; P = 0.008), whereas the moderate RAS group merely showed higher DBP (98.63 ± 14.90 vs. 91.73 ± 12.85 mmHg; P = 0.006). The direct renin concentrations (DRCs) (5.37 ± 3.94 vs. 3.71 ± 2.10 μU/mL; P < 0.001) and false-negative rate (33.8 vs. 3.3%; P < 0.01) of PA screening tests were significantly higher in the PA with RAS group than in the control group, but only in severe RAS group, in subgroup analysis. Among patients who underwent successful treatment for severe RAS, mean DRC decreased from 11.22 ± 9.10 to 3.24 ± 2.69 μIU/mL (P < 0.001). Overall, the prevalence of RH decreased from 81.7 to 2.8% (P < 0.001) when both PA and RAS were treated with standard methods. PA with concurrent severe RAS is a condition that induces RH. PA can be easily missed in patients with coexisting RAS. RAS patients with RH after successful revascularization for RAS should be evaluated for coexisting PA.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhong Xue
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Yi Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueqi Dong
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiongjing Jiang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinping Du
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
- Xinping Du
| | - Xianliang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xianliang Zhou
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xu Meng
| |
Collapse
|
176
|
Abdolahi S, Hosseini M, Rezaei R, Mohebbi SR, Rostami-Nejad M, Mojarad EN, Mirjalali H, Yadegar A, Asadzadeh Aghdaei H, Zali MR, Baghaei K. Evaluation of miR-200c-3p and miR-421-5p levels during immune responses in the admitted and recovered COVID-19 subjects. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105207. [PMID: 34999004 PMCID: PMC8730736 DOI: 10.1016/j.meegid.2022.105207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) acts as a key receptor for the spike of SARS-CoV-2. Two main microRNAs (miRs), miR-200c-3p and miR-421-5p, are considered to modulate the expression of ACE2 gene and alterations in the expression of these miRNAs may influence the outcomes of COVID-19 infection. Accordingly, we examined whether miRNAs directing ACE2 expression altered in the SARS-CoV-2 infection. 30 patients with COVID-19 included in the study. At the time of admission and discharge, the expression of miR-200c-3p and miR-421-5p, inflammatory cytokine IL-6, and regulatory T cells' expression profiles (CD4, CD25, and Foxp3) were examined using quantitative real-time PCR method. At the time of admission, the expression levels of miR-200c-3p and miR-421-5p as well as CD4, CD25, and Foxp3 significantly decreased while IL-6 expression notably enhanced. However, by the time of discharge, the expression levels of the genes were opposite to the time of admission. Moreover, Pearson correlation analysis indicated that IL-6 expression negatively correlated with Foxp3 and miR-200c-3p expressions despite miR-421-5p and miR-200c-3p positively correlated at admission time. By manipulating miR-200c-3p and miR-421-5p expressions and controlling the ACE2 level, it is plausible to modulate the inflammation by reducing IL-6 and maintenance tolerance hemostasis during COVID-19 infection.
Collapse
Affiliation(s)
- Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
177
|
Tanase DM, Apostol AG, Costea CF, Tarniceriu CC, Tudorancea I, Maranduca MA, Floria M, Serban IL. Oxidative Stress in Arterial Hypertension (HTN): The Nuclear Factor Erythroid Factor 2-Related Factor 2 (Nrf2) Pathway, Implications and Future Perspectives. Pharmaceutics 2022; 14:534. [PMID: 35335911 PMCID: PMC8949198 DOI: 10.3390/pharmaceutics14030534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Arterial hypertension (HTN) is one of the most prevalent entities globally, characterized by increased incidence and heterogeneous pathophysiology. Among possible etiologies, oxidative stress (OS) is currently extensively studied, with emerging evidence showing its involvement in endothelial dysfunction and in different cardiovascular diseases (CVD) such as HTN, as well as its potential as a therapeutic target. While there is a clear physiological equilibrium between reactive oxygen species (ROS) and antioxidants essential for many cellular functions, excessive levels of ROS lead to vascular cell impairment with decreased nitric oxide (NO) availability and vasoconstriction, which promotes HTN. On the other hand, transcription factors such as nuclear factor erythroid factor 2-related factor 2 (Nrf2) mediate antioxidant response pathways and maintain cellular reduction-oxidation homeostasis, exerting protective effects. In this review, we describe the relationship between OS and hypertension-induced endothelial dysfunction and the involvement and therapeutic potential of Nrf2 in HTN.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Alina Georgiana Apostol
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Neurology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.A.M.); (I.L.S.)
| |
Collapse
|
178
|
Gray EA, Patel SN, Doris PA, Hussain T. Combining Neprilysin Inhibitor With AT2R Agonist Is Superior to Combination With AT1R Blocker in Providing Reno-Protection in Obese Rats. Front Pharmacol 2022; 12:778953. [PMID: 35197849 PMCID: PMC8859315 DOI: 10.3389/fphar.2021.778953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Clinical use of the combination therapy of the neprilysin inhibitor sacubitril and angiotensin II type 1 receptor blocker valsartan is known to be associated with albuminuria. Albuminuria is both a risk factor for and an indicator of kidney injury. Earlier work from our laboratory reported that the agonist of angiotensin II type 2 receptor Compound 21 (C21) prevents proteinuria, albuminuria, and is reno-protective in obese Zucker rats fed high salt diet (HSD). Thus, we hypothesized that sacubitril/C21 combination provides superior reno-protection compared to sacubitril/valsartan. Male obese Zucker rats 10–11 weeks old were treated daily with vehicle, sacubitril + C21, or sacubitril + valsartan while fed HSD for 16 days. HSD-feeding caused kidney dysfunction, evident by significant increases in urinary protein, osteopontin, and cystatin C. HSD-feeding lowered plasma cystatin C and creatinine concentrations suggestive of hyperfiltration, which was not affected by either treatment. Unlike sacubitril/valsartan, sacubitril/C21 treatment significantly decreases proteinuria, albuminuria, the expression of nephrin, and kidney weight, independent of hyperfiltration, compared with HSD alone. Moreover, sacubitril/valsartan therapy increased plasma renin and did not prevent HSD-induced increases in renal angiotensin II, while sacubitril/C21 completely prevented these changes. Together, this study suggests that sacubitril/C21 afforded superior reno-protection compared to sacubitril/valsartan therapy in high salt-fed obese Zucker rats.
Collapse
Affiliation(s)
- Elizabeth Alana Gray
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Sanket N. Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Peter A. Doris
- The Brown Foundation Institute of Molecular Medicine Center for Human Genetics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- *Correspondence: Tahir Hussain,
| |
Collapse
|
179
|
Chen JT, Zhang P, Kong XY, Ge YJ, Li XY, Yang S, He S, Chen GH. Changed Serum Levels of CD62E+, Angiotensin II and Copeptin in Patients with Chronic Insomnia Disorder: A Link Between Insomnia and Stroke? Sleep Med 2022; 91:96-104. [DOI: 10.1016/j.sleep.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022]
|
180
|
Wu F, Zhang L, Wang L, Zhang D. AGT May Serve as a Prognostic Biomarker and Correlated with Immune Infiltration in Gastric Cancer. Int J Gen Med 2022; 15:1865-1878. [PMID: 35264871 PMCID: PMC8899101 DOI: 10.2147/ijgm.s351662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Angiotensinogen (AGT), as a component of the renin–angiotensin system (RAS), is associated with multiple risk factors for gastric cancer (GC). However, the relationship between AGT and tumor-infiltrating lymphocytes in GC remains elusive. Methods AGT expression was analyzed based on the Cancer Genome Atlas (TCGA) dataset. Kaplan–Meier curve was employed to assess the role of AGT expression in gastric patients’ prognosis. The association between AGT expression and tumor immune infiltration was further evaluated via exploring Tumour Immune Estimation Resource (TIMER) and The Gene Expression Profiling Interactive Analysis (GEPIA). We also used multiple public databases to analyse the aberrant methylation of AGT, construct protein–protein interaction (PPI) and gene ontology (GO) analyses. Results AGT was overexpressed in GC tissues compared with normal gastric tissues (P<0.05). High AGT expression related with poorer overall survival of patients with GC, especially in advanced GC patients. Immune infiltration analysis revealed that AGT was associated with several immune cells (including B cells, CD4+ T cells, macrophages), and AGT expression was also associated with the markers of NK cells, TAMs, Tregs, and so on (all P<0.05). Methylation analysis indicated that hypomethylation may lead to abnormal upregulation of the AGT. GO analysis showed that AGT and its related genes were enriched in systemic arterial blood pressure by hormone, regulation of blood volume by renin-angiotensin, NIK/NF-kappaB signaling, ficolin-1-rich granule and so on. Conclusion AGT could act as a promising biomarker for prognosis and immune infiltration in GC.
Collapse
Affiliation(s)
- Fanqi Wu
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Longguo Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Li Wang
- Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
- Correspondence: Dekui Zhang, Department of Gastroenterology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Lanzhou, Gansu Province, People’s Republic of China, Tel +86 13919788616, Email
| |
Collapse
|
181
|
de Boer A, Villa G, Bane O, Bock M, Cox EF, Dekkers IA, Eckerbom P, Fernández‐Seara MA, Francis ST, Haddock B, Hall ME, Hall Barrientos P, Hermann I, Hockings PD, Lamb HJ, Laustsen C, Lim RP, Morris DM, Ringgaard S, Serai SD, Sharma K, Sourbron S, Takehara Y, Wentland AL, Wolf M, Zöllner FG, Nery F, Caroli A. Consensus-Based Technical Recommendations for Clinical Translation of Renal Phase Contrast MRI. J Magn Reson Imaging 2022; 55:323-335. [PMID: 33140551 PMCID: PMC9291014 DOI: 10.1002/jmri.27419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool. PURPOSE To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies. STUDY TYPE Systematic consensus process using a modified Delphi method. POPULATION Not applicable. SEQUENCE FIELD/STRENGTH Renal fast gradient echo-based 2D PC-MRI. ASSESSMENT An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated. STATISTICAL TESTS Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts. RESULTS Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting. DATA CONCLUSION These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Anneloes de Boer
- Department of RadiologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Giulia Villa
- Department of BioengineeringIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamoItaly
| | - Octavia Bane
- Biomedical Engineering and Imaging Institute/RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael Bock
- Department of Radiology ‐ Medical Physics, Medical CenterUniversity of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Eleanor F. Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ilona A. Dekkers
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Per Eckerbom
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | | | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Michael E. Hall
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | | | - Ingo Hermann
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | - Hildo J. Lamb
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research CentreAarhus UniversityAarhusDenmark
| | - Ruth P. Lim
- Departments of Radiology, Surgery and MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of RadiologyAustin HealthHeidelbergVictoriaAustralia
| | - David M. Morris
- Centre for Inflammation ResearchUniversity of Edinburgh, Edinburgh BioquarterEdinburghUK
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research CentreAarhus UniversityAarhusDenmark
| | - Suraj D. Serai
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular DiseaseThe University of SheffieldSheffieldUK
| | - Steven Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular DiseaseThe University of SheffieldSheffieldUK
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic ImagingNagoya University, Graduate School of MedicineNagoyaJapan
| | | | - Marcos Wolf
- High Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Frank G. Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Fabio Nery
- Developmental Imaging and Biophysics SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Anna Caroli
- Department of BioengineeringIstituto di Ricerche Farmacologiche Mario Negri IRCCSBergamoItaly
| |
Collapse
|
182
|
Zhao W, Li H, Li J, Xu B, Xu J. The mechanism of multiple organ dyfunction syndrome in patients with COVID-19. J Med Virol 2022; 94:1886-1892. [PMID: 35088424 PMCID: PMC9015222 DOI: 10.1002/jmv.27627] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 01/06/2023]
Abstract
In late 2019, an outbreak of coronavirus disease 2019 (COVID‐19) arose, caused by severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2). This disease rapidly became a public health event of international concern. In addition to the most typical symptoms of dyspnea, numerous patients with COVID‐19 exhibited systemic symptoms, such as cardiovascular disease, liver and kidney failure, and disorders in coagulation. At present, clinical data indicates that numerous patients who are critically ill die from multiple organ dysfunction syndromes (MODS). Moreover, the entry of SARS‐CoV‐2 into cells causing severe pathology and progressive organ failure is precisely mediated by the human angiotensin‐converting enzyme 2 protein. This plays a role in maintaining both fluid and electrolyte homeostasis, ensuring the stability of the internal environment. Therefore, the present review aimed to investigate the pathogenesis of MODS caused by SARS‐CoV‐2 infection based on the current clinical data and previous studies. Inflammatory factor storm, oxidative stress, and disseminated intravascular coagulation cause multiple organ dysfunction syndromes (MODS) in coronavirus disease 2019 patients. Angiotensin‐converting enzyme 2 (ACE2) protein, closely related to viral infection, mediates organ damage and causes MODS. Aging, underlying disease, and obesity downregulate ACE2 and may exacerbate MODS.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanmeng Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.,Cixi Maternity&Child Health Care Hospital, Ningbo, 315300, China
| | - Jianghua Li
- The First Afiliated Hospital of Shihezi University School of Medicine Xinjiang Shihezi
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
183
|
Bagardi M, Zamboni V, Locatelli C, Galizzi A, Ghilardi S, Brambilla PG. Management of Chronic Congestive Heart Failure Caused by Myxomatous Mitral Valve Disease in Dogs: A Narrative Review from 1970 to 2020. Animals (Basel) 2022; 12:ani12020209. [PMID: 35049831 PMCID: PMC8773235 DOI: 10.3390/ani12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myxomatous mitral valve disease (MMVD) is the most common acquired cardiovascular disease in dogs. The progression of the disease and the increasing severity of valvular regurgitation cause a volume overload of the left heart, leading to left atrial and ventricular remodeling and congestive heart failure (CHF). The treatment of chronic CHF secondary to MMVD in dogs has not always been the same over time. In the last fifty years, the drugs utilized have considerably changed, as well as the therapeutic protocols. Some drugs have also changed their intended use. An analysis of the literature concerning the therapy of chronic heart failure in dogs affected by this widespread degenerative disease is not available; a synthesis of the published literature on this topic and a description of its current state of art are needed. To the authors’ knowledge, a review of this topic has never been published in veterinary medicine; therefore, the aim of this study is to overview the treatments of chronic CHF secondary to MMVD in dogs from 1970 to 2020 using the general framework of narrative reviews. Abstract The treatment of chronic congestive heart failure (CHF), secondary to myxomatous mitral valve disease (MMVD) in dogs, has considerably changed in the last fifty years. An analysis of the literature concerning the therapy of chronic CHF in dogs affected by MMVD is not available, and it is needed. Narrative reviews (NRs) are aimed at identifying and summarizing what has been previously published, avoiding duplications, and seeking new study areas that have not yet been addressed. The most accessible open-access databases, PubMed, Embase, and Google Scholar, were chosen, and the searching time frame was set in five decades, from 1970 to 2020. The 384 selected studies were classified into categories depending on the aim of the study, the population target, the pathogenesis of MMVD (natural/induced), and the resulting CHF. Over the years, the types of studies have increased considerably in veterinary medicine. In particular, there have been 43 (24.29%) clinical trials, 41 (23.16%) randomized controlled trials, 10 (5.65%) cross-over trials, 40 (22.60%) reviews, 5 (2.82%) comparative studies, 17 (9.60%) case-control studies, 2 (1.13%) cohort studies, 2 (1.13%) experimental studies, 2 (1.13%) questionnaires, 6 (3.40%) case-reports, 7 (3.95%) retrospective studies, and 2 (1.13%) guidelines. The experimental studies on dogs with an induced form of the disease were less numerous (49–27.68%) than the studies on dogs affected by spontaneous MMVD (128–72.32%). The therapy of chronic CHF in dogs has considerably changed in the last fifty years: in the last century, some of the currently prescribed drugs did not exist yet, while others had different indications.
Collapse
|
184
|
Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic Advances in Diabetic Nephropathy. J Clin Med 2022; 11:jcm11020378. [PMID: 35054076 PMCID: PMC8781778 DOI: 10.3390/jcm11020378] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease (ESKD) in the United States. Risk factor modification, such as tight control of blood glucose, management of hypertension and hyperlipidemia, and the use of renin–angiotensin–aldosterone system (RAAS) blockade have been proven to help delay the progression of DKD. In recent years, new therapeutics including sodium-glucose transport protein 2 (SGLT2) inhibitors, endothelin antagonists, glucagon like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRA), have provided additional treatment options for patients with DKD. This review discusses the various treatment options available to treat patients with diabetic kidney disease.
Collapse
|
185
|
Grandt LM, Schweighauser A, Kovacevic A, Francey T. The circulating renin-angiotensin-aldosterone system is down-regulated in dogs with glomerular diseases compared to other chronic kidney diseases with low-grade proteinuria. PLoS One 2022; 17:e0262121. [PMID: 35007295 PMCID: PMC8746712 DOI: 10.1371/journal.pone.0262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Glomerular diseases (GD) lead to a variety of disorders of the vascular and the total body water volumes. Various pathomechanisms, including vascular underfill and overfill, have been suggested to explain these disturbances. Accordingly, the circulating renin-angiotensin-aldosterone system (cRAAS) is expected to be activated as either a cause or a result of these fluid disorders. The aim of this study was to characterize the activity of the cRAAS in dogs with GD and to evaluate its relationship with the vascular volume status. In a prospective study, we evaluated the plasma renin activity and the serum aldosterone concentration in 15 dogs with GD. Their fluid volume status was estimated with clinical variables reflecting volemia and hydration, echocardiographic volume assessment, N-terminal pro B-type natriuretic peptide, blood urea nitrogen:creatinine ratio, and the urinary fractional excretion of sodium. Ten dogs with chronic kidney disease (CKD) with matching degree of azotemia were recruited as controls. The activity of the cRAAS was low in 10 dogs, normal in 3 dogs, high in 1 dog and equivocal (high renin—low aldosterone) in 1 dog with GD. These dogs had a lower cRAAS activity than dogs with CKD (p = 0.01). The clinical evaluation showed 8 hypovolemic and 7 non-hypovolemic dogs; 3 dehydrated, 9 euhydrated and 3 overhydrated dogs. The cRAAS activity was not different between hypovolemic and non-hypovolemic dogs. The down-regulated cRAAS without obvious association with the clinical volume status of these dogs with GD, suggests different mechanisms of fluid volume dysregulation in dogs with GD than previously assumed. This finding however should be confirmed in a focused larger scale study, as it may influence the use of cRAAS blockers as part of the standard therapy of GD in dogs.
Collapse
Affiliation(s)
- Lisa-Maria Grandt
- Small Animal Internal Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
- * E-mail:
| | - Ariane Schweighauser
- Small Animal Internal Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Alan Kovacevic
- Small Animal Internal Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Thierry Francey
- Small Animal Internal Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| |
Collapse
|
186
|
Cheng CJ, Mandour A, Yoshida T, Watari T, Tanaka R, Matsuura K. Changes in renin-angiotensin-aldosterone system during cardiac remodeling after mitral valvuloplasty in dogs. J Vet Intern Med 2022; 36:397-405. [PMID: 34994485 PMCID: PMC8965262 DOI: 10.1111/jvim.16346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Information regarding changes in renin-angiotensin-aldosterone system (RAAS) during cardiac remodeling after mitral valvuloplasty (MVP) in dogs remains lacking. HYPOTHESIS/OBJECTIVES To assess the longitudinal effects of MVP on circulating RAAS activity. ANIMALS Eight client-owned dogs receiving MVP for myxomatous mitral valve disease (MMVD). METHODS This is a cohort study. Plasma renin activity (PRA), angiotensin II (AT2), aldosterone (PAC), blood urea nitrogen (BUN), and creatinine concentrations, were measured in these dogs before (baseline) and at 3 consecutive monthly follow-ups (Post-1M, Post-2M, Post-3M). Echocardiography was concomitantly used to assess the process of cardiac recovery after MVP. RESULTS The echocardiography revealed a significant decrease in LVIDDN, LA/Ao, FS, E velocity, E/A, E' sep, S' lat, E' lat, and A' lat after MVP compared with baseline (P < .05). There was a significant reduction in the PRA (2.45, 3.05, 2.74 vs 8.8 ng/mL/h; P = .002), AT2 (466, 315, 235 vs 1200 pg/mL; P = .009), and PAC (39.88, 47, 54.62 vs 179.5 pg/mL; P = .01), respectively at Post-1M, Post-2M, Post-3M compared to the baseline. Additionally, BUN and creatinine concentrations decreased from Post-1M. The RAAS variables showed significant, weak to moderate, relationship with selected echocardiographic variables. CONCLUSIONS AND CLINICAL IMPORTANCE Mitral valvuloplasty contributes to decreased RAAS activity in MMVD dogs, which paralleled the process of cardiac reverse remodeling up to Post-3M. This information facilitates formulating strategies to optimize clinical outcomes for dogs after MVP.
Collapse
Affiliation(s)
- Chieh-Jen Cheng
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Ahmed Mandour
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Toshihiro Watari
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| |
Collapse
|
187
|
Giraud L, Rodrigues NF, Lekane M, Farnir F, Kennedy C, Gommeren K, Merveille AC. Caudal vena cava point-of-care ultrasound in dogs with degenerative mitral valve disease without clinically important right heart disease. J Vet Cardiol 2022; 41:18-29. [DOI: 10.1016/j.jvc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
188
|
Evans J, Ward J, Domenig O, Mochel JP, Creevy K. Suspected primary hyperreninism in a cat with malignant renal sarcoma and global renin-angiotensin-aldosterone system upregulation. J Vet Intern Med 2022; 36:272-278. [PMID: 34859924 PMCID: PMC8783369 DOI: 10.1111/jvim.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/01/2022] Open
Abstract
A 14-year-old male castrated domestic medium-hair cat with diabetes mellitus was evaluated for vomiting, diarrhea, and anorexia. Two weeks before presentation, the cat had been diagnosed with congestive heart failure and started on furosemide. Initial diagnostic testing identified hypokalemia, systemic hypertension, and hypertrophic cardiomyopathy phenotype, and plasma aldosterone concentration was moderately increased. Abdominal ultrasound examination disclosed bilateral adrenomegaly and a right renal mass, and cytology of a needle aspirate of the mass was consistent with malignant neoplasia. The cat was treated with amlodipine and spironolactone. Because of the unusual presentation for hyperaldosteronism, a comprehensive profile of renin-angiotensin-aldosterone system (RAAS) peptides was performed. Results from multiple timepoints indicated persistently and markedly increased plasma renin activity and generalized RAAS upregulation. In addition to the lack of adrenal tumor, the markedly increased plasma renin activity was atypical for primary hyperaldosteronism. These clinical findings are suggestive of primary hyperreninism, a condition previously unreported in cats. The concurrent presence of a renal neoplasm suggests the possibility of a renin-secreting tumor.
Collapse
Affiliation(s)
- Jeremy Evans
- Department of Small Animal Clinical SciencesTexas A&M College of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Jessica Ward
- Veterinary Clinical SciencesIowa State University College of Veterinary MedicineAmesIowaUSA
| | | | - Jonathan P. Mochel
- Department of Biomedical Sciences, SMART PharmacologyIowa State UniversityAmesIowaUSA
| | - Kate Creevy
- Department of Small Animal Clinical SciencesTexas A&M College of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| |
Collapse
|
189
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
190
|
Chaves ADS, Magalhães NS, Insuela DBR, Silva PMRE, Martins MA, Carvalho VF. Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor. Front Endocrinol (Lausanne) 2022; 13:1040040. [PMID: 36465619 PMCID: PMC9712183 DOI: 10.3389/fendo.2022.1040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Prior investigation shows an increase in the activity of both hypothalamus-pituitary-adrenal (HPA) axis and the renin-angiotensin system (RAS) in diabetic patients. Moreover, activation of angiotensin-II type 1 receptor (AT1) has been associated with adrenal steroidogenesis. This study investigates the role of RAS on the overproduction of corticosterone in diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice. Captopril (angiotensin-converting enzyme inhibitor), Olmesartan (AT1 receptor antagonist), CGP42112A (AT2 receptor agonist) or PD123319 (AT2 receptor antagonist) were administered daily for 14 consecutive days, starting 7 days post-alloxan. Plasma corticosterone was evaluated by ELISA, while adrenal gland expressions of AT1 receptor, AT2 receptor, adrenocorticotropic hormone receptor MC2R, pro-steroidogenic enzymes steroidogenic acute regulatory protein (StAR), and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) were assessed using immunohistochemistry or western blot. Diabetic mice showed adrenal gland overexpression of AT1 receptor, MC2R, StAR, and 11βHSD1 without altering AT2 receptor levels, all of which were sensitive to Captopril or Olmesartan treatment. In addition, PD123319 blocked the ability of Olmesartan to reduce plasma corticosterone levels in diabetic mice. Furthermore, CGP42112A significantly decreased circulating corticosterone levels in diabetic mice, without altering the overexpression of MC2R and StAR in the adrenal glands. Our findings revealed that inhibition of both angiotensin synthesis and AT1 receptor activity reduced the high production of corticosterone in diabetic mice via the reduction of MC2R signaling expression in the adrenal gland. Furthermore, the protective effect of Olmesartan on the overproduction of corticosterone by adrenals in diabetic mice depends on both AT1 receptor blockade and AT2 receptor activation.
Collapse
Affiliation(s)
- Amanda da Silva Chaves
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nathalia Santos Magalhães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- 2National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- *Correspondence: Vinicius Frias Carvalho,
| |
Collapse
|
191
|
王 森, 郑 翔, 毕 文, 周 雪. [Obesity Combined with Chronic Restraint Stress-Induced Hypertension in Mice Is Associated with the Damage of Noradrenergic Neurons in Nucleus Tractus Solitarii]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:77-82. [PMID: 35048604 PMCID: PMC10408846 DOI: 10.12182/20220160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate whether obesity combined with chronic restraint stress (CRS) can increase blood pressure in mice and its relationship with the damage of the intermediate part of the nucleus tractus solitarius (iNTS). METHODS The CRS mouse model was constructed, and 51 mice were assigned to four groups, low-fat diet non-restraint group (LF group), low-fat diet restraint group (LS group), high-fat diet non-restraint group (HF group), and high-fat diet restraint group (HS group). Interventions were carried out in four cycles (over the course of 40 consecutive days), with each cycle consisting of 7 days of restraint and 3 days of free movement. The body weight and the arterial systolic blood pressure of the mice were measured on the day 9 of every cycle. The mice were sacrificed on day 40 and the brain tissues of the mice were collected afterwards in order to perform immunohistochemical staining and Western blot to examine the expression of glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH). The protein expression of vascular endothelial growth factor A (VEGFA) was examined with Western blot on epididymal fat pad to assess the vascular density of lipid tissue. RESULTS On day 40, the arterial systolic pressure of mice in HS group was significantly higher than that of mice in the three other groups. Body mass of high-fat diet group (HF group and HS group) increased significantly. Mice in the four groups did not present significant difference in VEGFA protein expression. INTS astrocytes were activated in the brain of mice in the restraint groups (LS group and HS group), and iNTS TH expression was decreased in HS group. Mice in HF group and LS group did not show abnormal changes in their blood pressure. Blood pressure of mice in the HS group generally rose, and hypertension (arterial systolic blood pressure ≥140 mmHg, 1 mmHg=0.133 kPa) was observed in 37.5% of the mice in this group. CONCLUSION Obesity combined with CRS may cause an increase in arterial blood pressure in mice, the mechanism of which may be related to the damage of noradrenergic neurons in the nucleus tractus solitarius.
Collapse
Affiliation(s)
- 森甲 王
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 翔 郑
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 文杰 毕
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 雪 周
- 四川大学华西基础医学与法医学院 组织胚胎学与神经生物学教研室 (成都 610041)Department of Histology, Embryology and Neurobiology, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
- 四川大学华西基础医学与法医学院 基础医学专业实验室 (成都 610041)Laboratory of Basic Medicine, West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
192
|
Donati P, Tarducci A, Zanatta R, Verdier N, Belerenian G, Cordero I, Villalta C, Franco J, Tarragona L. Angiotensin-converting enzyme inhibitors in preclinical myxomatous mitral valve disease in dogs: systematic review and meta-analysis. J Small Anim Pract 2021; 63:362-371. [PMID: 34905219 DOI: 10.1111/jsap.13461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 10/31/2021] [Indexed: 12/09/2022]
Abstract
To determine the efficacy and adverse events of the administration of angiotensin-converting enzyme inhibitors for the management of preclinical myxomatous mitral valve disease in dogs. A comprehensive search using Pubmed/MEDLINE, LILACS and CAB abstracts databases was performed. Randomised clinical trials that assessed efficacy and adverse events of angiotensin-converting enzyme inhibitors for the management of preclinical myxomatous mitral valve disease in dogs were included. Certainty of evidence was rated using GRADE methods. Four randomised clinical trials were included. While safe, angiotensin-converting enzyme inhibitors administration to dogs with myxomatous mitral valve disease and cardiomegaly results in little to no difference in the risk of development congestive heart failure (high certainty of evidence; relative risk: 1.03; 95% confidence interval: 0.87 to 1.23) and may result in little to no difference in cardiovascular-related (low certainty of evidence; relative risk: 1.01; 95% confidence interval: 0.54 to 1.89) and all-cause mortality (low certainty of evidence; relative risk: 0.93; 95% confidence interval: 0.63 to 1.36). Administration of angiotensin-converting enzyme inhibitors to dogs with myxomatous mitral valve disease without cardiomegaly may result in a reduced risk of congestive heart failure development. However, the range in which the actual effect for this outcome may be, the "margin of error," indicates it might also increase the risk of congestive heart failure development (low certainty of evidence; relative risk: 0.86; 95% confidence interval: 0.54 to 1.35). Administration of angiotensin-converting enzyme inhibitors to dogs with preclinical myxomatous mitral valve disease and cardiomegaly results in little to no difference in the risk of the development of congestive heart failure and may result in little to no difference in cardiovascular-related and all-cause mortality. The certainty of evidence of the efficacy of angiotensin-converting enzyme inhibitors administration to dogs without cardiomegaly was low.
Collapse
Affiliation(s)
- P Donati
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Anestesiología y Algiología, Av. Chorroarín 280, CP, 1427, Ciudad Autónoma de Buenos Aires, Argentina
| | - A Tarducci
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco Turin, Italy
| | - R Zanatta
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco Turin, Italy
| | - N Verdier
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Anestesiología y Algiología, Av. Chorroarín 280, CP, 1427, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Anesthesiology and Perioperative Intensive Care, University of Veterinary Medicine, Veterinärplatz 1, 1220, Vienna, Austria
| | - G Belerenian
- Luis Pasteur Zoonosis Institute, Av. Díaz Vélez 482, CP, 1405, Ciudad Autónoma de Buenos Aires, Argentina
| | - I Cordero
- Clinica Veterinaria VET'S, Suecia 3580, Providencia, Ñuñoa, Región Metropolitana, Chile
| | - C Villalta
- Clinica Veterinaria VET'S, Suecia 3580, Providencia, Ñuñoa, Región Metropolitana, Chile
| | - J Franco
- Instituto Universitario Hospital Italiano, Argentine Cochrane Centre, Potosi 4234, CP, 1199, Ciudad Autónoma de Buenos Aires, Argentina
| | - L Tarragona
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Anestesiología y Algiología, Av. Chorroarín 280, CP, 1427, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
193
|
Starace V, Battista M, Brambati M, Cavalleri M, Bertuzzi F, Amato A, Lattanzio R, Bandello F, Cicinelli MV. The role of inflammation and neurodegeneration in diabetic macular edema. Ther Adv Ophthalmol 2021; 13:25158414211055963. [PMID: 34901746 PMCID: PMC8652911 DOI: 10.1177/25158414211055963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of diabetic macular edema (DME) is complex. Persistently high blood glucose activates multiple cellular pathways and induces inflammation, oxidation stress, and vascular dysfunction. Retinal ganglion cells, macroglial and microglial cells, endothelial cells, pericytes, and retinal pigment epithelium cells are involved. Neurodegeneration, characterized by dysfunction or apoptotic loss of retinal neurons, occurs early and independently from the vascular alterations. Despite the increasing knowledge on the pathways involved in DME, only limited therapeutic strategies are available. Besides antiangiogenic drugs and intravitreal corticosteroids, alternative therapeutic options tackling inflammation, oxidative stress, and neurodegeneration have been considered, but none of them has been currently approved.
Collapse
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michele Cavalleri
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Bertuzzi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Amato
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosangela Lattanzio
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, via Olgettina 60, 20132 Milan, ItalySchool of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
194
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
195
|
Qi Y, Tang X, Liu H, Lin Q, Lu Y, Luo H. Identification of Novel Nonapeptides from Sipunculus nudus L. and Comparing Its ACEI Activities Mechanism by Molecular Docking. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10328-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
196
|
Silva-Cardoso J, Fonseca C, Franco F, Morais J, Ferreira J, Brito D. Optimization of heart failure with reduced ejection fraction prognosis-modifying drugs: A 2021 heart failure expert consensus paper. Rev Port Cardiol 2021; 40:975-983. [PMID: 34922707 DOI: 10.1016/j.repce.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 10/19/2022] Open
Abstract
Heart failure (HF) with reduced ejection fraction (HFrEF) is associated with high rates of hospitalization and death. It also has a negative impact on patients' functional capacity and quality of life, as well as on healthcare costs. In recent years, new HFrEF prognosis-modifying drugs have emerged, leading to intense debate within the international scientific community toward a paradigm shift for the management of HFrEF. In this article, we report the contribution of a Portuguese HF expert panel to the ongoing debate. Based on the most recently published clinical evidence, and the panel members' clinical judgment, three key principles are highlighted: (i) sacubitril/valsartan should be preferred as first-line therapy for HFrEF, instead of an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker; (ii) the four foundation HFrEF drugs are the angiotensin receptor/neprilysin inhibitor, beta-adrenergic blocking agents, mineralocorticoid receptor antagonists, and sodium-glucose co-transporter 2 inhibitors, regardless of the presence of type-2 diabetes mellitus; (iii) these four HFrEF drug classes should be introduced over a short-term period of four to six weeks, guided by a safety protocol, followed by a dose up-titration period of 8 weeks.
Collapse
Affiliation(s)
- José Silva-Cardoso
- Department of Medicine, Faculdade de Medicina, Universidade do Porto, Oporto, Portugal; Department of Cardiology, Centro Hospitalar Universitário de São João, Oporto, Portugal; CINTESIS, Center for Health Technology and Services Research, Faculdade de Medicina, Universidade do Porto, Oporto, Portugal.
| | - Cândida Fonseca
- Heart Failure Clinic, Hospital de São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fátima Franco
- Serviço de Cardiologia, Unidade de Tratamento de Insuficiência Cardíaca Avançada (UTICA), Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João Morais
- Cardiology Division, Centro Hospitalar de Leiria, Leiria, Portugal; CiTechCare, Center for Innovative Care and Health, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Jorge Ferreira
- Department of Cardiology, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Dulce Brito
- Heart and Vessels Department, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal; CCUL, Cardiovascular Center, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
197
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
198
|
L-NAME Administration Enhances Diabetic Kidney Disease Development in an STZ/NAD Rat Model. Int J Mol Sci 2021; 22:ijms222312767. [PMID: 34884571 PMCID: PMC8657539 DOI: 10.3390/ijms222312767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
One of the most important risk factors for developing chronic kidney disease (CKD) is diabetes. To assess the safety and efficacy of potential drug candidates, reliable animal models that mimic human diseases are crucial. However, a suitable model of diabetic kidney disease (DKD) is currently not available. The aim of this study is to develop a rat model of DKD by combining streptozotocin and nicotinamide (STZ/NAD) with oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration. Diabetes was induced in male Wistar rats by intravenous injection of 65 mg/kg STZ, 15 min after intraperitoneal injection of 230 mg/kg NAD. Rats were assigned to different groups receiving L-NAME (100 mg/kg/day) (STZ/NAD/L-NAME) or vehicle (STZ/NAD) for a period of 9 or 12 weeks by daily oral gavage. All rats developed hyperglycemia. Hyperfiltration was observed at the start of the study, whereas increased serum creatinine, albumin-to-creatinine ratio, and evolving hypofiltration were detected at the end of the study. Daily L-NAME administration caused a rapid rise in blood pressure. Histopathological evaluation revealed heterogeneous renal injury patterns, which were most severe in the STZ/NAD/L-NAME rats. L-NAME-induced NO-deficiency in STZ/NAD-induced diabetic rats leads to multiple characteristic features of human DKD and may represent a novel rat model of DKD.
Collapse
|
199
|
The Expression of RAAS Key Receptors, Agtr2 and Bdkrb1, Is Downregulated at an Early Stage in a Rat Model of Wolfram Syndrome. Genes (Basel) 2021; 12:genes12111717. [PMID: 34828323 PMCID: PMC8621801 DOI: 10.3390/genes12111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Wolfram syndrome (WS) 1 is a rare monogenic neurodegenerative disorder caused by mutations in the gene encoding WFS1. Knowledge of the pathophysiology of WS is incomplete and to date, there is no treatment available. Here, we describe early deviations in the renin-angiotensin-aldosterone system (RAAS) and bradykinin pathway (kallikrein kinin system, KKS) observed in a rat model of WS (Wfs1 KO) and the modulative effect of glucagon-like peptide-1 receptor agonist liraglutide (LIR) and anti-epileptic drug valproate (VPA), which have been proven effective in delaying WS progression in WS animal models. We found that the expression of key receptors of the RAAS and KKS, Agtr2 and Bdkrb1, were drastically downregulated both in vitro and in vivo at an early stage in a rat model of WS. Moreover, in Wfs1, KO serum aldosterone levels were substantially decreased and bradykinin levels increased compared to WT animals. Neither treatment nor their combination affected the gene expression levels seen in the Wfs1 KO animals. However, all the treatments elevated serum aldosterone and decreased bradykinin in the Wfs1 KO rats, as well as increasing angiotensin II levels independent of genotype. Altogether, our results indicate that Wfs1 deficiency might disturb the normal functioning of RAAS and KKS and that LIR and VPA have the ability to modulate these systems.
Collapse
|
200
|
Dropkin CA, Kruger JM, Langlois DK. Evaluation of urine electrolytes for the diagnosis of hypoadrenocorticism in dogs. Vet Clin Pathol 2021; 50:507-514. [PMID: 34699620 DOI: 10.1111/vcp.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most dogs with primary hypoadrenocorticism (HA) have a mineralocorticoid deficiency, which decreases renal tubular sodium reabsorption and potassium excretion. Limited information is available concerning the clinical value of measuring urine electrolytes to aid in an HA diagnosis. OBJECTIVES We aimed to evaluate the diagnostic utility of urine electrolyte measurements in dogs with HA. METHODS Urine sodium and potassium concentrations were measured in 89 dogs, including 39 dogs with HA and 50 controls with nonadrenal illness. Fractional excretions of sodium (FENa ) and potassium (FEK ) were also calculated. Urine electrolytes and fractional excretion values were compared between the groups. Sensitivities and specificities were determined for various cut-points. RESULTS The median urine sodium to potassium (Na:K) ratio was twofold greater (P < .001), and median FENa was fourfold greater (P < .001) in HA dogs as compared with controls. However, no cut-point for any variable with >90% sensitivity or specificity provided a corresponding specificity or sensitivity of >50%. When only dogs with abnormal serum or plasma electrolytes were included in the analyses, absolute urine electrolyte concentrations and FENa were not different between study populations (P > .05 for all comparisons), but the FEK was increased (P = .005) and the urine potassium:creatinine ratio was decreased (P < .001) in the control dogs compared with the dogs with HA. CONCLUSIONS Urine electrolyte concentrations and fractional excretions are altered in dogs with HA. However, substantial overlap exists with control dogs with nonadrenal illness. Therefore, these values are unlikely to have diagnostic utility for dogs with HA.
Collapse
Affiliation(s)
- Casey A Dropkin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - John M Kruger
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Daniel K Langlois
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|