151
|
Aleksza D, Horváth GV, Sándor G, Szabados L. Proline Accumulation Is Regulated by Transcription Factors Associated with Phosphate Starvation. PLANT PHYSIOLOGY 2017; 175:555-567. [PMID: 28765275 PMCID: PMC5580772 DOI: 10.1104/pp.17.00791] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
Pro accumulation in plants is a well-documented physiological response to osmotic stress caused by drought or salinity. In Arabidopsis (Arabidopsis thaliana), the stress and ABA-induced Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE1 (P5CS1) gene was previously shown to control Pro biosynthesis in such adverse conditions. To identify regulatory factors that control the transcription of P5CS1, Y1H screens were performed with a genomic fragment of P5CS1, containing 1.2-kB promoter and 0.8-kb transcribed regions. The myeloblastosis (MYB)-type transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHR1-LIKE1 (PHL1) were identified to bind to P5CS1 regulatory sequences in the first intron, which carries a conserved PHR1-binding site (P1BS) motif. Binding of PHR1 and PHL1 factors to P1BS was confirmed by Y1H, electrophoretic mobility assay and chromatin immunoprecipitation. Phosphate starvation led to gradual increase in Pro content in wild-type Arabidopsis plants as well as transcriptional activation of P5CS1 and PRO DEHYDROGENASE2 genes. Induction of P5CS1 transcription and Pro accumulation during phosphate deficiency was considerably reduced by phr1 and phl1 mutations and was impaired in the ABA-deficient aba2-3 and ABA-insensitive abi4-1 mutants. Growth and viability of phr1phl1 double mutant was significantly reduced in phosphate-depleted medium, while growth was only marginally affected in the aba2-3 mutants, suggesting that ABA is implicated in growth retardation in such nutritional stress. Our results reveal a previously unknown link between Pro metabolism and phosphate nutrition and show that Pro biosynthesis is target of cross talk between ABA signaling and regulation of phosphate homeostasis through PHR1- and PHL1-mediated transcriptional activation of the P5CS1 gene.
Collapse
Affiliation(s)
- Dávid Aleksza
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - Gábor V Horváth
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - Györgyi Sándor
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary
| |
Collapse
|
152
|
|
153
|
Li X, Chen L, Forde BG, Davies WJ. The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:1493. [PMID: 28890725 PMCID: PMC5574904 DOI: 10.3389/fpls.2017.01493] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/11/2017] [Indexed: 05/18/2023]
Abstract
Exogenous abscisic acid (ABA) is known to either stimulate or inhibit root growth, depending on its concentration. In this study, the roles of ethylene and auxin in this biphasic effect of ABA on root elongation were investigated using chemical inhibitors and mutants. Inhibitors of ethylene perception and biosynthesis and an auxin influx inhibitor were all found to block the inhibitory effect of high ABA concentrations, but not the stimulatory effect of low ABA concentrations. In addition, three ethylene-insensitive mutants (etr1-1, ein2-1, and ein3-1), two auxin influx mutants (aux1-7, aux1-T) and an auxin-insensitive mutant (iaa7/axr2-1) were all insensitive to the inhibitory effect of high ABA concentrations. In the case of the stimulatory effect of low ABA concentrations, it was blocked by two different auxin efflux inhibitors and was less pronounced in an auxin efflux mutant (pin2/eir1-1) and in the iaa7/axr2-1 auxin-insensitive mutant. Thus it appears that the stimulatory effect seen at low ABA concentrations is via an ethylene-independent pathway requiring auxin signalling and auxin efflux through PIN2/EIR1, while the inhibitory effect at high ABA concentrations is via an ethylene-dependent pathway requiring auxin signalling and auxin influx through AUX1.
Collapse
Affiliation(s)
| | - Lin Chen
- *Correspondence: Lin Chen, ; Xiaoqing Li,
| | | | | |
Collapse
|
154
|
Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ. Root hydrotropism is controlled via a cortex-specific growth mechanism. NATURE PLANTS 2017; 3:17057. [PMID: 28481327 DOI: 10.1038/nplants.2017.57] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Lei Pang
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - John A Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Véronique Boudolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Rahul Bhosale
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Regina Antoni
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Tuan Nguyen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sotaro Hiratsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Tae-Woong Bae
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Darren M Wells
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Markus R Owen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Leah R Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rosemary J Dyson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - Oliver E Jensen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - John R King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Saoirse R Tracy
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Craig J Sturrock
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Jeremy A Roberts
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umea, Sweden
- College of Science, KSU, Riyadh, Saudi Arabia
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science &Technology, Ikoma 630-0101, Japan
| | - Tobias I Baskin
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA
| | - Tony P Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
155
|
Zhang Y, He P, Yang Z, Huang G, Wang L, Pang C, Xiao H, Zhao P, Yu J, Xiao G. A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2017; 8:461. [PMID: 28424725 PMCID: PMC5371604 DOI: 10.3389/fpls.2017.00461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/16/2017] [Indexed: 05/25/2023]
Abstract
The PIN-FORMED (PIN) protein, the most important polar auxin transporter, plays a critical role in the distribution of auxin and controls multiple biological processes. However, characterizations and functions of this gene family have not been identified in cotton. Here, we identified the PIN family in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii. This gene family was divided into seven subgroups. A chromosomal distribution analysis showed that GhPIN genes were evenly distributed in eight chromosomes and that the whole genome and dispersed duplications were the main duplication events for GhPIN expansion. qRT-PCR analysis showed a tissue-specific expression pattern for GhPIN. Likely due to the cis-element variations in their promoters, transcripts of PIN6 and PIN8 genes from the At (tetraploid genome orginated from G. arboreum) subgenome and PIN1a from the Dt (tetraploid genome orginated from G. raimondii) subgenome in G. hirsutum was significantly increased compared to the transcripts in the diploids. The differential regulation of these PIN genes after the polyploidization may be conducive to fiber initiation and elongation. Exogenously applied auxin polar transport inhibitor significantly suppressed fiber growth, which is consistent with the essential function of these PIN genes for regulating cotton fiber development. Furthermore, the overexpression of GhPIN1a_Dt, GhPIN6_At, and GhPIN8_At in Arabidopsis promoted the density and length of trichomes in leaves.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan UniversityWuhan, China
| | - Peng He
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking UniversityBeijing, China
| | - Limin Wang
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Jianing Yu
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| |
Collapse
|
156
|
Moore S, Liu J, Zhang X, Lindsey K. A recovery principle provides insight into auxin pattern control in the Arabidopsis root. Sci Rep 2017; 7:43004. [PMID: 28220889 PMCID: PMC5318957 DOI: 10.1038/srep43004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/18/2017] [Indexed: 11/08/2022] Open
Abstract
Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combinations of interlinked levels and localisation of influx and efflux carriers. We demonstrate that (1) when efflux carriers maintain polarity but change levels, maintaining the same auxin pattern requires non-uniform and polar distribution of influx carriers; (2) the emergence of the same auxin pattern, from different levels of influx carriers with the same nonpolar localisation, requires simultaneous modulation of efflux carrier level and polarity; and (3) multiple patterns of influx and efflux carriers for maintaining an auxin pattern do not have spatially proportional correlation. This reveals that auxin pattern formation requires coordination between influx and efflux carriers. We further show that the model makes various predictions that can be experimentally validated.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Xiaoxian Zhang
- Department of Sustainable Soil and Grassland System, Rothamsted Research, Harpenden, Hertfordshire AL5 2GQ, UK
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
157
|
Huang J, Reichelt M, Chowdhury S, Hammerbacher A, Hartmann H. Increasing carbon availability stimulates growth and secondary metabolites via modulation of phytohormones in winter wheat. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1251-1263. [PMID: 28159987 PMCID: PMC5444446 DOI: 10.1093/jxb/erx008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytohormones play important roles in plant acclimation to changes in environmental conditions. However, their role in whole-plant regulation of growth and secondary metabolite production under increasing atmospheric CO2 concentrations ([CO2]) is uncertain but crucially important for understanding plant responses to abiotic stresses. We grew winter wheat (Triticum aestivum) under three [CO2] (170, 390, and 680 ppm) over 10 weeks, and measured gas exchange, relative growth rate (RGR), soluble sugars, secondary metabolites, and phytohormones including abscisic acid (ABA), auxin (IAA), jasmonic acid (JA), and salicylic acid (SA) at the whole-plant level. Our results show that, at the whole-plant level, RGR positively correlated with IAA but not ABA, and secondary metabolites positively correlated with JA and JA-Ile but not SA. Moreover, soluble sugars positively correlated with IAA and JA but not ABA and SA. We conclude that increasing carbon availability stimulates growth and production of secondary metabolites via up-regulation of auxin and jasmonate levels, probably in response to sugar-mediated signalling. Future low [CO2] studies should address the role of reactive oxygen species (ROS) in leaf ABA and SA biosynthesis, and at the transcriptional level should focus on biosynthetic and, in particular, on responsive genes involved in [CO2]-induced hormonal signalling pathways.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Somak Chowdhury
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745, Jena, Germany
| |
Collapse
|
158
|
Huang X, Zhang X, Gong Z, Yang S, Shi Y. ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:354-365. [PMID: 27711992 DOI: 10.1111/tpj.13389] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 05/02/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a crucial role in regulating seed germination and post-germination growth. ABSCISIC ACID INSENSITIVE4 (ABI4), an APETALA2 (AP2)-type transcription factor, is required for the ABA-mediated inhibition of seed germination. Cytokinins promote seed germination and seedling growth by antagonizing ABA signaling. However, the interaction between ABA and cytokinin signaling during seed germination remains unclear. Here, we report that ABA signaling downregulates Arabidopsis response regulators (ARRs), a class of cytokinin-inducible genes, during seed germination and cotyledon greening. We found that the application of exogenous ABA repressed the expression of type-A ARRs in Arabidopsis seeds and seedlings. Among the type-A ARR family members, the expression of ARR6, ARR7 and ARR15 was upregulated in ABA-deficient mutants, indicating that the transcriptional inhibition of type-A ARRs requires the ABA signaling pathway. Single and multiple mutations of these ARRs resulted in increased ABA sensitivity during germination and cotyledon greening; overexpression of ARR7 or ARR15 led to an ABA-insensitive phenotype. These observations suggest that type-A ARRs inhibit the ABA response during seed germination and cotyledon greening. Further analysis showed that ABI4 negatively regulated the transcription of ARR6, ARR7 and ARR15 by directly binding to their promoters. Genetic analysis showed that loss-of-function mutations of ARR7 and ARR15 partially rescued the ABA insensitivity of abi4-1. Thus, this study revealed that ABI4 plays a key role in ABA and cytokinin signaling by inhibiting the transcription of type-A ARRs to inhibit seed germination and cotyledon greening.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
159
|
Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, Mao C, Wang X. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:1121. [PMID: 28702040 PMCID: PMC5487450 DOI: 10.3389/fpls.2017.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.
Collapse
Affiliation(s)
- Tao Wang
- National Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghai, China
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chengxiang Li
- National Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Zhihua Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yancui Jia
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Hong Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang UniversityHangzhou, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Xuelu Wang,
| |
Collapse
|
160
|
Qu L, Wu C, Zhang F, Wu Y, Fang C, Jin C, Liu X, Luo J. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5349-5362. [PMID: 27497286 PMCID: PMC5049386 DOI: 10.1093/jxb/erw297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner.
Collapse
Affiliation(s)
- Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanying Fang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
161
|
Huang L, Zhang S, Singer SD, Yin X, Yang J, Wang Y, Wang X. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2016; 7:1379. [PMID: 27695466 PMCID: PMC5024652 DOI: 10.3389/fpls.2016.01379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/30/2016] [Indexed: 05/25/2023]
Abstract
Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Jinhua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| |
Collapse
|
162
|
Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1335. [PMID: 27630659 PMCID: PMC5005332 DOI: 10.3389/fpls.2016.01335] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/18/2016] [Indexed: 05/18/2023]
Abstract
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.
Collapse
Affiliation(s)
- Iko T. Koevoets
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| | - Jan Henk Venema
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - J. Theo. M. Elzenga
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Christa Testerink
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
163
|
Wang X, Gao B, Liu X, Dong X, Zhang Z, Fan H, Zhang L, Wang J, Shi S, Tu P. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli. BMC PLANT BIOLOGY 2016; 16:119. [PMID: 27230436 PMCID: PMC4881210 DOI: 10.1186/s12870-016-0803-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. RESULTS Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. CONCLUSIONS Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced dynamic changes in transcript abundance for novel classes of responsive genes involved in signal transduction, including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors. This study will aid in selecting the target genes to genetically regulate A. sinensis salt-stress signal transduction and elucidating the biosynthesis of 2-(2-phenylethyl)chromones under salinity stress.
Collapse
Affiliation(s)
- Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bowen Gao
- Baotou Medical College, Baotou, 014060, China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianjuan Dong
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongxiu Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiyan Fan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Le Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
164
|
Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. FRONTIERS IN PLANT SCIENCE 2016; 7:1884. [PMID: 28018412 PMCID: PMC5159420 DOI: 10.3389/fpls.2016.01884] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants.
Collapse
|