151
|
Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, Pin JP, Acher FC. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology 2012; 66:53-64. [PMID: 22664304 DOI: 10.1016/j.neuropharm.2012.05.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/28/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Restoring the balance between excitatory and inhibitory circuits in the basal ganglia, following the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta, represents a major challenge to treat patients affected by Parkinson's disease (PD). The imbalanced situation in favor of excitation in the disease state may also accelerate excitotoxic processes, thereby representing a potential target for neuroprotective therapies. Reducing the excitatory action of glutamate, the major excitatory neurotransmitter in the basal ganglia, should lead to symptomatic improvement for PD patients and may promote the survival of DA neurons. Recent studies have focused on the modulatory action of metabotropic glutamate (mGlu) receptors on neurodegenerative diseases including PD. Group III mGlu receptors, including subtypes 4, 7 and 8, are largely expressed in the basal ganglia. Recent studies highlight the use of selective mGlu4 receptor positive allosteric modulators (PAMs) for the treatment of PD. Here we review the effects of newly-designed group-III orthosteric agonists on neuroprotection, neurorestoration and reduction of l-DOPA induced dyskinesia in animal models of PD. The combination of orthosteric mGlu4 receptor selective agonists with PAMs may open new avenues for the symptomatic treatment of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- M Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Fonctionnelles, Case C, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 2012; 9:1409-37. [PMID: 22552919 DOI: 10.1098/rsif.2011.0843] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk-benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein-drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein-drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants.
Collapse
Affiliation(s)
- Jennifer L Lahti
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
153
|
Maccioni P, Zaru A, Loi B, Lobina C, Carai MAM, Gessa GL, Capra A, Mugnaini C, Pasquini S, Corelli F, Hyytiä P, Lumeng L, Colombo G. Comparison of the effect of the GABAΒ receptor agonist, baclofen, and the positive allosteric modulator of the GABAB receptor, GS39783, on alcohol self-administration in 3 different lines of alcohol-preferring rats. Alcohol Clin Exp Res 2012; 36:1748-66. [PMID: 22486245 DOI: 10.1111/j.1530-0277.2012.01782.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Administration of the GABA(B) receptor agonist, baclofen, and positive allosteric modulator, GS39783, has been repeatedly reported to suppress multiple alcohol-related behaviors, including operant oral alcohol self-administration, in rats. This study was designed to compare the effect of baclofen and GS39783 on alcohol self-administration in 3 lines of selectively bred, alcohol-preferring rats: Indiana alcohol-preferring (P), Sardinian alcohol-preferring (sP), and Alko Alcohol (AA). METHODS Rats of each line were initially trained to respond on a lever, on a fixed ratio (FR) 4 (FR4) schedule of reinforcement, to orally self-administer alcohol (15%, v/v) in daily 30-minute sessions. Once responding reached stable levels, rats were exposed to a sequence of experiments testing baclofen (0, 1, 1.7, and 3 mg/kg; i.p.) and GS39783 (0, 25, 50, and 100 mg/kg; i.g.) on FR4 and progressive ratio (PR) schedules of reinforcement. Finally, to assess the specificity of baclofen and GS39783 action, rats were slightly food-deprived and trained to lever-respond for food pellets. RESULTS The rank of order of the reinforcing and motivational properties of alcohol was P>sP>AA rats. Under both FR and PR schedules of reinforcement, the rank of order of potency and efficacy of baclofen and GS39783 in suppressing alcohol self-administration was P>sP>AA rats. Only the highest dose of baclofen reduced lever-responding for food pellets; this effect was common to all 3 rat lines. Conversely, no dose of GS39783 altered lever-responding for food in any rat line. CONCLUSIONS These results suggest that: (i) the strength of the reinforcing and motivational properties of alcohol differ among P, sP, and AA rats; (ii) the reinforcing and motivational properties of alcohol in P, sP, and AA rats are differentially sensitive to treatment with baclofen and GS39783; (iii) the heterogeneity in sensitivity to baclofen and GS39783 of alcohol self-administration in P, sP, and AA rats may resemble the differential effectiveness of pharmacotherapies among the different typologies of human alcoholics; and (iv) the GABA(B) receptor is part of the neural substrate mediating the reinforcing and motivational properties of alcohol.
Collapse
Affiliation(s)
- Paola Maccioni
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy, Monserrato, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtually every organ system. One particular family of GPCRs, the class C GPCRs, is distinguished by a characteristically large extracellular domain and constitutive dimerization. The structure and activation mechanism of this family result in potentially unique ligand recognition sites, thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds. In the present article, we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs. Furthermore, we demonstrate the precise steps that occur during the receptor activation process, which underlie the possibilities by which receptor function may be altered by different approaches. Finally, we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.
Collapse
|
155
|
Vinson PN, Conn PJ. Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology 2012; 62:1461-72. [PMID: 21620876 PMCID: PMC3189289 DOI: 10.1016/j.neuropharm.2011.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/02/2011] [Accepted: 05/08/2011] [Indexed: 01/13/2023]
Abstract
Treatment options for schizophrenia that address all symptom categories (positive, negative, and cognitive) are lacking in current therapies for this disorder. Compounds targeting the metabotropic glutamate (mGlu) receptors hold promise as a more comprehensive therapeutic alternative to typical and atypical antipsychotics and may avoid the occurrence of extrapyramidal side effects that accompany these treatments. Activation of the group II mGlu receptors (mGlu(2) and mGlu(3)) and the group I mGlu(5) are hypothesized to normalize the disruption of thalamocortical glutamatergic circuitry that results in abnormal glutamaterigic signaling in the prefrontal cortex (PFC). Agonists of mGlu(2) and mGlu(3) have demonstrated efficacy for the positive symptom group in both animal models and clinical trials with mGlu(2) being the subtype most likely responsible for the therapeutic effect. Limitations in the chemical space tolerated by the orthosteric site of the mGlu receptors has led to the pursuit of compounds that potentiate the receptor's response to glutamate by acting at less highly conserved allosteric sites. Several series of selective positive allosteric modulators (PAMs) for mGlu(2) and mGlu(5) have demonstrated efficacy in animal models used for the evaluation of antipsychotic agents. In addition, evidence from animal studies indicates that mGlu(5) PAMs hold promise for the treatment of cognitive deficits that occur in schizophrenia. Hopefully, further optimization of allosteric modulators of mGlu receptors will yield clinical candidates that will allow full evaluation of the potential efficacy of these compounds in the treatment of multiple symptom domains in schizophrenia patients in the near future.
Collapse
Affiliation(s)
- Paige N. Vinson
- Vanderbilt University Medical Center, Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37202
| | - P. Jeffrey Conn
- Vanderbilt University Medical Center, Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37202
| |
Collapse
|
156
|
Castelli MP, Casu A, Casti P, Lobina C, Carai MAM, Colombo G, Solinas M, Giunta D, Mugnaini C, Pasquini S, Tafi A, Brogi S, Gessa GL, Corelli F. Characterization of COR627 and COR628, two novel positive allosteric modulators of the GABA(B) receptor. J Pharmacol Exp Ther 2012; 340:529-38. [PMID: 22129594 DOI: 10.1124/jpet.111.186460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The potential efficacy of GABA(B) receptor agonists in the treatment of pain, drug addiction, epilepsy, cognitive dysfunctions, and anxiety disorders is supported by extensive preclinical and clinical evidence. However, the numerous side effects produced by the GABA(B) receptor agonist baclofen considerably limit the therapeutic use of this compound. The identification of positive allosteric modulators (PAMs) of the GABA(B) receptor may constitute a novel approach in the pharmacological manipulation of the GABA(B) receptor, leading to fewer side effects. The present study reports the identification of two novel compounds, methyl 2-(1-adamantanecarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate (COR627) and methyl 2-(cyclohexanecarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate (COR628), which act as GABA(B) PAMs in 1) rat cortical membranes and 2) in vivo assay. Both compounds potentiated GABA- and baclofen-stimulated guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding to native GABA(B) receptors, while producing no effect when given alone. GABA concentration-response curves in the presence of fixed concentrations of COR627 and COR628 revealed an increase of potency of GABA rather than its maximal efficacy. In radioligand binding experiments [displacement of the GABA(B) receptor antagonist, 3-N-[1-((S)-3,4dichlorophenyl)-ethylaminol]-2-(S)hydroxypropyl cyclo-hexylmethyl phosphinic acid ([(3)H]CGP54626)], both COR627 and COR628 increased the affinity of high- and low-affinity binding sites for GABA, producing no effect when administered alone up to a concentration of 1 mM. In vivo experiments indicated that pretreatment with per se ineffective doses of COR627 and COR628 potentiated the sedative/hypnotic effect of baclofen. In conclusion, COR627 and COR628 may represent two additional tools for use in investigating the roles and functions of positive allosteric modulatory binding sites of the GABA(B) receptor.
Collapse
Affiliation(s)
- M Paola Castelli
- Department of Neuroscience Bernard B. Brodie, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
John MR. Allosteric modulators of the calcium-sensing receptor: turning news into distinct views. Endocrinology 2012; 153:1014-5. [PMID: 22355178 DOI: 10.1210/en.2012-1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Markus R John
- Novartis Pharma AG, Forum 1, WSJ-157.5.10.4, CH-4002 Basel, Switzerland.
| |
Collapse
|
158
|
Monaghan DT, Irvine MW, Costa BM, Fang G, Jane DE. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int 2012; 61:581-92. [PMID: 22269804 DOI: 10.1016/j.neuint.2012.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 11/27/2022]
Abstract
The NMDA receptor (NMDAR) family of l-glutamate receptors are well known to have diverse roles in CNS function as well as in various neuropathological and psychiatric conditions. Until recently, the types of agents available to pharmacologically regulate NMDAR function have been quite limited in terms of mechanism of action and subtype selectivity. This has changed significantly in the past two years. The purpose of this review is to summarize the many drug classes now available for modulating NMDAR activity. Previously, this included competitive antagonists at the l-glutamate and glycine binding sites, high and low affinity channel blockers, and GluN2B-selective N-terminal domain binding site antagonists. More recently, we and others have identified new classes of NMDAR agents that are either positive or negative allosteric modulators (PAMs and NAMs, respectively). These compounds include the pan potentiator UBP646, the GluN2A-selective potentiator/GluN2C and GluN2D inhibitor UBP512, the GluN2D-selective potentiator UBP551, the GluN2C/GluN2D-selective potentiator CIQ as well as the new NMDAR-NAMs such as the pan-inhibitor UBP618, the GluN2C/GluN2D-selective inhibitor QZN46 and the GluN2A inhibitors UBP608 and TCN201. These new agents do not bind within the l-glutamate or glycine binding sites, the ion channel pore or the N-terminal regulatory domain. Collectively, these new allosteric modulators appear to be acting at multiple novel sites on the NMDAR complex. Importantly, these agents display improved subtype-selectivity and as NMDAR PAMs and NAMs, they represent a new generation of potential NMDAR therapeutics.
Collapse
Affiliation(s)
- Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | | | |
Collapse
|
159
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
160
|
Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, Conn PJ, Lindsley CW. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 2012; 55:1445-64. [PMID: 22148748 DOI: 10.1021/jm201139r] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bruce J Melancon
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | |
Collapse
|
161
|
DuBois GE, Prakash I. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol 2012; 3:353-80. [PMID: 22224551 DOI: 10.1146/annurev-food-022811-101236] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For a new sweetness technology to realize strong commercial success, it must be safe, exhibit good taste quality, be sufficiently soluble and stable in food and beverage systems, and be cost effective and patentable. Assessments of the commercial promise of eight synthetic and eight natural non-caloric sweeteners are made relevant to these metrics. High-potency (HP) non-caloric sweeteners, both synthetic and natural, are generally limited in taste quality by (a) low maximal sweetness response, (b) "off" tastes, (c) slow-onset sweet tastes that linger, and (d) sweet tastes that adapt or desensitize the gustatory system. Formulation approaches to address these limitations are discussed. Enhancement of the normal sucrose sensory response by action of a sweetener receptor positive allosteric modulator (PAM) has been achieved with very significant calorie reduction and with retention of the taste quality of sucrose. Research on PAM discovery over the past decade is summarized.
Collapse
|
162
|
Abstract
Radioligand binding is widely used to characterize receptors and determine their anatomical distribution, particularly the superfamily of seven transmembrane-spanning G protein-coupled receptors for both established transmitters such as endothelin-1 and an increasing number of orphan receptors recently paired with their cognate ligands. Three types of assay are described. In saturation experiments, tissue sections, cultured cells, or homogenates are incubated with an increasing concentration of a radiolabeled ligand, which can be a labeled analog of a naturally occurring transmitter, hormone, or synthetic drug. Analysis using iterative nonlinear curve-fitting programs, such as KELL, measures the affinity of the labeled ligand for a receptor (equilibrium dissociation constant, K ( D )), receptor density (B (max)), and Hill slope (nH). The affinity and selectivity of an unlabeled ligand to compete for the binding of a fixed concentration of a radiolabeled ligand to a receptor are determined using a competition binding assay. Kinetic assays measure the rate of association to or dissociation from a receptor from which a kinetic K ( D ) may be derived. Quantitative autoradiography and image analysis is a sensitive technique to detect low levels of radiolabeled ligands and determine the anatomical distribution of receptors in sections that retain the morphology of the tissue. The measurement of bound radioligand within discrete regions of autoradiographical images using -computer-assisted image analysis is described.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
163
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
164
|
Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proc Natl Acad Sci U S A 2011; 108:16819-24. [PMID: 21949380 DOI: 10.1073/pnas.1016644108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity.
Collapse
|
165
|
Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A 2011; 108:15480-5. [PMID: 21896740 DOI: 10.1073/pnas.1107775108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cell surface receptors are multimeric proteins, composed of several structural domains, some involved in ligand recognition, whereas others are responsible for signal transduction. In most cases, the mechanism of how ligand interaction in the extracellular domains leads to the activation of effector domains remains largely unknown. Here we examined how the extracellular ligand binding to the venus flytrap (VFT) domains of the dimeric metabotropic glutamate receptors activate the seven transmembrane (7TM) domains responsible for G protein activation. These two domains are interconnected by a cysteine-rich domain (CRD). We show that any of the four disulfide bridges of the CRD are required for the allosteric coupling between the VFT and the 7TM domains. More importantly, we show that a specific association of the two CRDs corresponds to the active state of the receptor. Indeed, a specific crosslinking of the CRDs with intersubunit disulfide bridges leads to fully constitutively active receptors, no longer activated by agonists nor by allosteric modulators. These data demonstrate that intersubunit movement at the level of the CRDs represents a key step in metabotropic glutamate receptor activation.
Collapse
|
166
|
Thiele S, Steen A, Jensen PC, Mokrosinski J, Frimurer TM, Rosenkilde MM. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach. J Biol Chem 2011; 286:37543-54. [PMID: 21878623 DOI: 10.1074/jbc.m111.243808] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.
Collapse
Affiliation(s)
- Stefanie Thiele
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
167
|
Stauffer SR. Progress toward positive allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGluR5). ACS Chem Neurosci 2011; 2:450-70. [PMID: 22860171 DOI: 10.1021/cn2000519] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
Abstract
This Review describes recent trends in the development of small molecule mGlu(5) positive allosteric modulators (PAMs). A large body of pharmacological, genetic, electrophysiological, and in vivo behavioral evidence has accumulated over the past decade which continues to support the hypothesis and rationale for the activation of the metabotropic glutamate receptor subtype 5 (mGlu(5)) as a viable and promising target for the development of novel antipsychotics. Until recently, functionally efficacious and potent mGlu(5) PAMs have been somewhat structurally limited in scope and slow to emerge. This Review will discuss efforts since late 2008 which have provided novel mGlu(5) PAM chemotypes, offering ligands with a diverse range of pharmacological, physicochemical, and DMPK properties that were previously unavailable. In addition, significant biological studies of importance in the past few years using the well established PAMs known as DFB, CPPHA, CDPPB, and ADX-47273 will be discussed.
Collapse
Affiliation(s)
- Shaun R. Stauffer
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
168
|
Congreve M, Langmead CJ, Mason JS, Marshall FH. Progress in structure based drug design for G protein-coupled receptors. J Med Chem 2011; 54:4283-311. [PMID: 21615150 PMCID: PMC3308205 DOI: 10.1021/jm200371q] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Limited, BioPark, Welwyn Garden City, Hertfordshire, UK.
| | | | | | | |
Collapse
|
169
|
Lobina C, Carai MAM, Froestl W, Mugnaini C, Pasquini S, Corelli F, Gessa GL, Colombo G. Activation of the GABA(B) Receptor Prevents Nicotine-Induced Locomotor Stimulation in Mice. Front Psychiatry 2011; 2:76. [PMID: 22232609 PMCID: PMC3248647 DOI: 10.3389/fpsyt.2011.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/13/2011] [Indexed: 01/07/2023] Open
Abstract
Recent studies demonstrated that activation of the GABA(B) receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs), inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABA(B) receptor agonist, baclofen, and GABA(B) PAMs, CGP7930, and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p.), CGP7930 (0, 25, and 50 mg/kg, i.g.), or GS39783 (0, 25, and 50 mg/kg, i.g.), then treated with nicotine (0 and 0.05 mg/kg, s.c.), and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABA(B) PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABA(B) receptor may represent a potentially useful, anti-smoking therapeutic strategy.
Collapse
Affiliation(s)
- Carla Lobina
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|