151
|
Singh T, Hook AL, Luckett J, Maitz MF, Sperling C, Werner C, Davies MC, Irvine DJ, Williams P, Alexander MR. Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials 2020; 260:120312. [PMID: 32866726 PMCID: PMC7534038 DOI: 10.1016/j.biomaterials.2020.120312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone.
Collapse
Affiliation(s)
- Taranjit Singh
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jeni Luckett
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Claudia Sperling
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Str. 6, D-01069, Dresden, Germany
| | - Martyn C Davies
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Derek J Irvine
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
152
|
Torres Jr L, Bienek DR. Use of Protein Repellents to Enhance the Antimicrobial Functionality of Quaternary Ammonium Containing Dental Materials. J Funct Biomater 2020; 11:E54. [PMID: 32752169 PMCID: PMC7565790 DOI: 10.3390/jfb11030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
An advancement in preventing secondary caries has been the incorporation of quaternary ammonium containing (QAC) compounds into a composite resin mixture. The permanent positive charge on the monomers allows for electrostatic-based killing of bacteria. Spontaneous adsorption of salivary proteins onto restorations dampens the antimicrobial capabilities of QAC compounds. Protein-repellent monomers can work with QAC restorations to achieve the technology's full potential. We discuss the theory behind macromolecular adsorption, direct and indirect characterization methods, and advances of protein repellent dental materials. The translation of protein adsorption to microbial colonization is covered, and the concerns and fallbacks of the state-of-the-art protein-resistant monomers are addressed. Last, we present new and exciting avenues for protein repellent monomer design that have yet to be explored in dental materials.
Collapse
Affiliation(s)
| | - Diane R. Bienek
- ADA Science & Research Institute, LLC, Innovative & Technology Research, Frederick, MD 21704, USA;
| |
Collapse
|
153
|
Wang J, Qiu M, He C. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
154
|
Li B, Yuan Z, He Y, Hung HC, Jiang S. Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. NANO LETTERS 2020; 20:4693-4699. [PMID: 32379455 DOI: 10.1021/acs.nanolett.0c01713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The lymphatic system provides a major route for the dissemination of many diseases such as tumor metastasis and virus infection. At present, treating these diseases remains a knotty task due to the difficulty of delivering sufficient drugs into lymphatics. After subcutaneous (SC) injection, the transferring of drugs to lymphatic vessels is significantly attenuated by physiological barriers in the interstitial space. Moreover, SC injection represents a highly challenging administration route for biological drugs, as it increases the risk of undesirable immune responses. Here, we demonstrate a simple and effective strategy to address this dilemma by conjugating protein therapeutics with zwitterionic poly(carboxy betaine) (PCB) polymers. PCB conjugation to l-asparaginase (ASP), a highly immunogenic enzyme drug, manifests to significantly promote the diffusion of ASP into the lymphatic system while mitigating its immunogenicity. This platform will facilitate the development of new therapies against diverse lymph-related diseases by enabling safe and efficient lymphatic drug delivery.
Collapse
Affiliation(s)
- Bowen Li
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhefan Yuan
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yuwei He
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
155
|
Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomater 2020; 109:51-60. [PMID: 32251778 DOI: 10.1016/j.actbio.2020.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
The shelf-life of human platelets preserved in vitro for therapeutic transfusion is limited because of bacterial contamination and platelet storage lesion (PSL). The PSL is the predominant factor and limiting unfavorable interactions between the platelets and the non-biocompatible storage bag surfaces is the key to alleviate PSL. Here we describe a surface modification method for biocompatible platelet storage bags that dramatically extends platelet shelf-life beyond the current US Food and Drug Administration (FDA) standards of 5 days. The surface coating of the bags can be achieved through a simple yet effective dip-coating and light-irradiation method using a biocompatible polymer. The biocompatible polymers with tunable functional groups can be routinely fabricated at any scale and impart super-hydrophilicity and non-fouling capability on commercial hydrophobic platelet storage bags. As critical parameters reflecting the platelets quality, the activation level and binding affinity with von Willebrand factor (VWF) of the platelets stored in the biocompatible platelet bags at 8 days are comparable with those in the commercial bags at 5 days. This technique also demonstrates promise for a wide range of medical and engineering applications requiring biocompatible surfaces. STATEMENT OF SIGNIFICANCE: Current standard platelet preservation techniques agitate platelets at room temperature (20-24 °C) inside a hydrophobic (e.g., polyvinyl chloride (PVC)) storage bag, thereby allowing preservation of platelets only for 5 days. A key factor leading to quality loss is the unfavorable interaction between the platelets and the non-biocompatible storage bag surfaces. Here, a surface modification method for biocompatible platelet storage bags has been created to dramatically extend platelet shelf-life beyond the current FDA standards of 5 days. The surface coating of the bags can be achieved via a simple yet effective dip-coating and light-irradiation method using a carboxybetaine polymer. This technique is also applicable to many other applications requiring biocompatible surfaces.
Collapse
|
156
|
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS NANO 2020; 14:4890-4904. [PMID: 32286784 DOI: 10.1021/acsnano.0c00974] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dense fibrotic stroma in pancreatic ductal adenocarcinoma (PDA) resists drug diffusion into the tumor and leads to an unsatisfactory prognosis. To address this problem, we demonstrate a dendrimer-camptothecin (CPT) conjugate that actively penetrates deep into PDA tumors through γ-glutamyl transpeptidase (GGT)-triggered cell endocytosis and transcytosis. The dendrimer-drug conjugate was synthesized by covalent attachment of CPT to polyamidoamine (PAMAM) dendrimers through a reactive oxygen species (ROS)-sensitive linker followed with surface modification with glutathione. Once the conjugate was delivered to the PDA tumor periphery, the overexpressed GGT on the vascular endothelial cell or tumor cell triggers the γ-glutamyl transfer reactions of glutathione to produce primary amines. The positively charged conjugate was rapidly internalized via caveolae-mediated endocytosis and followed by vesicle-mediated transcytosis, augmenting its deep penetration within the tumor parenchyma and releasing active CPT throughout the tumor after cleavage by intracellular ROS. The dendrimer-drug conjugate exhibited high antitumor activity in multiple mice tumor models, including patient-derived PDA xenograft and orthotopic PDA cell xenograft, compared to the standard first-line chemotherapeutic drug (gemcitabine) for advanced pancreatic cancer. This study demonstrates the high efficiency of an active tumor-penetrating dendrimer-drug conjugate via transcytotic transport with ROS-responsive drug release for PDA therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng Yan
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
157
|
Zhang D, Chen Q, Zhang W, Liu H, Wan J, Qian Y, Li B, Tang S, Liu Y, Chen S, Liu R. Silk‐Inspired β‐Peptide Materials Resist Fouling and the Foreign‐Body Response. Angew Chem Int Ed Engl 2020; 59:9586-9593. [DOI: 10.1002/anie.202000416] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Qi Chen
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Hengjiang Liu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jianglin Wan
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Bing Li
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Yu Liu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
158
|
Zhang D, Chen Q, Zhang W, Liu H, Wan J, Qian Y, Li B, Tang S, Liu Y, Chen S, Liu R. Silk‐Inspired β‐Peptide Materials Resist Fouling and the Foreign‐Body Response. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Qi Chen
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Hengjiang Liu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jianglin Wan
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yuxin Qian
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Bing Li
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| | - Yu Liu
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor EngineeringSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
- Key Laboratory for Ultrafine Materials of Ministry of EducationResearch Center for Biomedical Materials of Ministry of EducationEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
159
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
160
|
Sanchez-Cano C, Carril M. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces. Int J Mol Sci 2020; 21:E1007. [PMID: 32028729 PMCID: PMC7037411 DOI: 10.3390/ijms21031007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/04/2023] Open
Abstract
Biofouling is a major issue in the field of nanomedicine and consists of the spontaneous and unwanted adsorption of biomolecules on engineered surfaces. In a biological context and referring to nanoparticles (NPs) acting as nanomedicines, the adsorption of biomolecules found in blood (mostly proteins) is known as protein corona. On the one hand, the protein corona, as it covers the NPs' surface, can be considered the biological identity of engineered NPs, because the corona is what cells will "see" instead of the underlying NPs. As such, the protein corona will influence the fate, integrity, and performance of NPs in vivo. On the other hand, the physicochemical properties of the engineered NPs, such as their size, shape, charge, or hydrophobicity, will influence the identity of the proteins attracted to their surface. In this context, the design of coatings for NPs and surfaces that avoid biofouling is an active field of research. The gold standard in the field is the use of polyethylene glycol (PEG) molecules, although zwitterions have also proved to be efficient in preventing protein adhesion and fluorinated molecules are emerging as coatings with interesting properties. Hence, in this review, we will focus on recent examples of anti-biofouling coatings in three main areas, that is, PEGylated, zwitterionic, and fluorinated coatings.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain;
| | - Mónica Carril
- Instituto Biofisika UPV/EHU, CSIC, Barrio Sarriena s/n, Leioa, E-48940 Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, UPV/EHU, Barrio Sarriena s/n, Leioa, E-48940 Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
161
|
Ren B, Li K, Liu Z, Liu G, Wang H. White light-triggered zwitterionic polymer nanoparticles based on an AIE-active photosensitizer for photodynamic antimicrobial therapy. J Mater Chem B 2020; 8:10754-10763. [DOI: 10.1039/d0tb02272a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photodynamic antimicrobial therapy (PDAT) has received enormous attention due to its excellent spatiotemporal accuracy, non-invasiveness, and anti-multidrug resistance properties compared with chemotherapy.
Collapse
Affiliation(s)
- Bibo Ren
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kaijun Li
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zheng Liu
- Jiangsu Province Special Equipment Safety Supervision and Inspection Institute
- Wuxi 214170
- P. R. China
| | - Gongyan Liu
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University
| | - Haibo Wang
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University
| |
Collapse
|
162
|
Del Grosso CA, Leng C, Zhang K, Hung HC, Jiang S, Chen Z, Wilker JJ. Surface hydration for antifouling and bio-adhesion. Chem Sci 2020; 11:10367-10377. [PMID: 34094298 PMCID: PMC8162394 DOI: 10.1039/d0sc03690k] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation. Poly(ethylene glycol) (or PEG) containing polymers and zwitterionic polymers have been shown to be excellent antifouling materials. It is believed that their outstanding antifouling activity comes from their strong surface hydration. On the other hand, it is difficult to develop underwater glues, although adhesives with strong adhesion in a dry environment are widely available. This is related to dehydration, which is important for adhesion for many cases while water is the enemy of adhesion. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to investigate buried interfaces between mussel adhesive plaques and a variety of materials including antifouling polymers and control samples, supplemented by studies on marine animal (mussel) behavior and adhesion measurements. It was found that PEG containing polymers and zwitterionic polymers have very strong surface hydration in an aqueous environment, which is the key for their excellent antifouling performance. Because of the strong surface hydration, mussels do not settle on these surfaces even after binding to the surfaces with rubber bands. For control samples, SFG results indicate that their surface hydration is much weaker, and therefore mussels can generate adhesives to displace water to cause dehydration at the interface. Because of the dehydration, mussels can foul on the surfaces of these control materials. Our experiments also showed that if mussels were forced to deposit adhesives onto the PEG containing polymers and zwitterionic polymers, interfacial dehydration did not occur. However, even with the strong interfacial hydration, strong adhesion between mussel adhesives and antifouling polymer surfaces was detected, showing that under certain circumstances, interfacial water could enhance the interfacial bio-adhesion. Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation.![]()
Collapse
Affiliation(s)
| | - Chuan Leng
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Kexin Zhang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | - Shaoyi Jiang
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Jonathan J. Wilker
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| |
Collapse
|
163
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|