151
|
Zhang J, Lv H, Li L, Chen M, Gu D, Wang J, Xu Y. Recent Improvements in CRISPR-Based Amplification-Free Pathogen Detection. Front Microbiol 2021; 12:751408. [PMID: 34659186 PMCID: PMC8515055 DOI: 10.3389/fmicb.2021.751408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Molecular diagnostic (MDx) methods directly detect target nucleic acid sequences and are therefore an important approach for precise diagnosis of pathogen infection. In comparison with traditional MDx techniques such as PCR, the recently developed CRISPR-based diagnostic technologies, which employ the single-stranded nucleic acid trans-cleavage activities of either Cas12 or Cas13, show merits in both sensitivity and specificity and therefore have great potential in both pathogen detection and beyond. With more and more efforts in improving both the CRISPR trans-cleavage efficiencies and the signal detection sensitivities, CRISPR-based direct detection of target nucleic acids without preamplification can be a possibility. Here in this mini-review, we summarize recent research progresses of amplification-free CRISPR-Dx systems and explore the potential changes they will lead to pathogen diagnosis. In addition, discussion of the challenges for both detection sensitivity and cost of the amplification-free systems will also be covered.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hailong Lv
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Linxian Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Minjie Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dayong Gu
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jin Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yong Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
152
|
Sridhara S, Goswami HN, Whyms C, Dennis JH, Li H. Virus detection via programmable Type III-A CRISPR-Cas systems. Nat Commun 2021; 12:5653. [PMID: 34580296 PMCID: PMC8476571 DOI: 10.1038/s41467-021-25977-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Among the currently available virus detection assays, those based on the programmable CRISPR-Cas enzymes have the advantage of rapid reporting and high sensitivity without the requirement of thermocyclers. Type III-A CRISPR-Cas system is a multi-component and multipronged immune effector, activated by viral RNA that previously has not been repurposed for disease detection owing in part to the complex enzyme reconstitution process and functionality. Here, we describe the construction and application of a virus detection method, based on an in vivo-reconstituted Type III-A CRISPR-Cas system. This system harnesses both RNA- and transcription-activated dual nucleic acid cleavage activities as well as internal signal amplification that allow virus detection with high sensitivity and at multiple settings. We demonstrate the use of the Type III-A system-based method in detection of SARS-CoV-2 that reached 2000 copies/μl sensitivity in amplification-free and 60 copies/μl sensitivity via isothermal amplification within 30 min and diagnosed SARS-CoV-2-infected patients in both settings. The high sensitivity, flexible reaction conditions, and the small molecular-driven amplification make the Type III-A system a potentially unique nucleic acid detection method with broad applications.
Collapse
Affiliation(s)
- Sagar Sridhara
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Hemant N Goswami
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Charlisa Whyms
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Jonathan H Dennis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
153
|
Gong S, Zhang S, Lu F, Pan W, Li N, Tang B. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Anal Chem 2021; 93:11899-11909. [PMID: 34427091 DOI: 10.1021/acs.analchem.1c02533] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Timely diagnosis is of great benefit to improve the survival rate of cancer patients. Body fluid cancer biomarker detection is a critical kind of noninvasive method for cancer diagnosis. Nevertheless, traditional methods for cancer biomarker detection always rely on a large-scale instrument and involve sophisticated operation. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based in vitro diagnosis can simplify the detection procedures and improve sensitivity and specificity, holding great promise as the next-generation molecular diagnostic technology. In this Feature, we introduce the working mechanisms of different kinds of CRISPR/Cas systems for biosensing and CRISPR/Cas-mediated detection strategies for different kinds of cancer biomarkers including nucleic acids, proteins, and extracellular vesicles. In addition, the perspective and challenges of CRISPR/Cas-based strategies for cancer biomarkers are discussed.
Collapse
Affiliation(s)
- Shaohua Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shiqi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
154
|
Chen J, Zhuang X, Zheng J, Yang R, Wu F, Zhang A, Fang B. Aptamer-based cell-free detection system to detect target protein. Synth Syst Biotechnol 2021; 6:209-215. [PMID: 34466691 PMCID: PMC8374636 DOI: 10.1016/j.synbio.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Biomarkers of disease, especially protein, show great potential for diagnosis and prognosis. For detecting a certain protein, a binding assay implementing antibodies is commonly performed. However, antibodies are not thermally stable and may cause false-positive when the sample composition is complicated. In recent years, a functional nucleic acid named aptamer has been used in many biochemical analysis cases, which is commonly selected from random sequence libraries by using the systematic evolution of ligands by exponential enrichment (SELEX) techniques. Compared to antibodies, the aptamer is more thermal stable, easier to be modified, conjugated, and amplified. Herein, an Aptamer-Based Cell-free Detection (ABCD) system was proposed to detect target protein, using epithelial cell adhesion molecule (EpCAM) as an example. We combined the robustness of aptamer in binding specificity with the signal amplification ability of CRISPR-Cas12a′s trans-cleavage activity in the ABCD system. We also demonstrated that the ABCD system could work well to detect target protein in a relatively low limit of detection (50–100 nM), which lay a foundation for the development of portable detection devices. This work highlights the superiority of the ABCD system in detecting target protein with low abundance and offers new enlightenment for future design and development.
Collapse
Affiliation(s)
- Junhong Chen
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Xiaoyan Zhuang
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jiyang Zheng
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Ruofan Yang
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Fei Wu
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China
| | - Aihui Zhang
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.,The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Baishan Fang
- XMU-China Team, Xiamen University, Xiamen, 361005, PR China.,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.,The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
155
|
Tian G, Zhang D, Wang Y, Hu T, Lin Y, Wang Y, Cheng W, Xia Q. A universal CRISPR/Cas12a nucleic acid sensing platform based on proximity extension and transcription-unleashed self-supply crRNA. Anal Chim Acta 2021; 1176:338755. [PMID: 34399899 DOI: 10.1016/j.aca.2021.338755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
The extraordinary genome-editing tool CRISPR/Cas12a has also been utilized as a powerful sensing technology owing to its highly-specificity and isothermal signal amplification. Nevertheless, the widespread application of Cas12a-based sensing methods in nucleic acid detection is limited by the targeting range and high undesired background. Herein, we established a universal Cas12a-based nucleic acid sensing strategy by using proximity extension and transcription-unleashed self-suppling of crRNA. The target was recognized and bound to a pair of adjacent probes, and then triggered the proximity-induced primer extension and transcription amplification to produce numerous crRNAs. The amplified abundant crRNAs assembled with Cas12a and dsDNA activators containing PAM to form a ternary complex, which trans-cleaved ssDNA-FQ reporters continuously to generate a strong fluorescent signal. Thus, the cascade enzymatic amplification was performed and subsequently applied for detecting target DNA down to 41.7 amol with a low nonspecific background. The application of this strategy in RNA detection has also been demonstrated, and it is expected to provide a universal and sensitive sensing platform for molecular diagnosis applications.
Collapse
Affiliation(s)
- Guozhen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Decai Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Laboratory Diagnosis, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuexin Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Tingwei Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yingzi Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Yongxia Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
156
|
Shen H, Qileng A, Yang H, Liang H, Zhu H, Liu Y, Lei H, Liu W. "Dual-Signal-On" Integrated-Type Biosensor for Portable Detection of miRNA: Cas12a-Induced Photoelectrochemistry and Fluorescence Strategy. Anal Chem 2021; 93:11816-11825. [PMID: 34461727 DOI: 10.1021/acs.analchem.1c02395] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abnormal expression of microRNA (miRNA) can affect the RNA transcription and protein translation, leading to tumor progression and metastasis. Currently, the accurate detection of aberrant expression of miRNA, particularly using a portable detection system, remains a great challenge. Herein, a novel dual-mode biosensor with high sensitivity and robustness for miR-21 detection was developed based on the cis-cleavage and trans-cleavage activities of Cas12a. miRNA can be combined with hairpin DNA-horseradish peroxidase anchored on a CdS/g-C3N4/B-TiO2 photoelectrode, thus the nonenzymatic amplification was triggered to form numerous HRP-modified double-stranded DNA (HRP-dsDNA). Then, HRP-dsDNA can be specifically recognized and efficiently cis-cleaved by Cas12a nucleases to detach HRP from the substrate, while the remaining HRP on HRP-dsDNA can catalyze 4-chloro-1-naphthol (4-CN) to form biocatalytic precipitation (BCP) on the surface of the photoelectrode, and thus the photocurrent can be changed. Meanwhile, the trans-cleavage ability of Cas12a was activated, and nonspecifically degrade the FQ-reporter and a significant fluorescence signal can be generated. Such two different kinds of signals with independent transmission paths can mutually support to improve the performance of the detection platform. Besides, a portable device was constructed for the point-of-care (POC) detection of miR-21. Moreover, the dual-mode detection platform can be easily expanded for the specific detection of other types of biomarkers by changing the sequence of hairpin DNA, thereby promoting the establishment of POC detection for early cancer diagnosis.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongshuai Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
157
|
Liu G. Grand Challenges in Biosensors and Biomolecular Electronics. Front Bioeng Biotechnol 2021; 9:707615. [PMID: 34422782 PMCID: PMC8377753 DOI: 10.3389/fbioe.2021.707615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
158
|
Branca M, Calvet C, Limoges B, Mavré F. Specific Versus Non-specific Response in Exponential Molecular Amplification from Cross-Catalysis: Modeling the Influence of Background Amplifications on the Analytical Performances. Chemphyschem 2021; 22:1611-1621. [PMID: 34038617 DOI: 10.1002/cphc.202100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Indexed: 11/05/2022]
Abstract
Molecule based signal amplifications relying on an autocatalytic process may represent an ideal strategy for the development of ultrasensitive analytical or bioanalytical assays, the main reason being the exponential nature of the amplification. However, to take full advantage of such amplification rates, high stability of the starting co-reactants is required in order to avoid any undesirable background amplification. Here, on the basis of a simple kinetic model of cross-catalysis including a certain degree of intrinsic instability of co-reactants, we highlight the key parameters governing the analytical response of the system and discuss the analytical performances that are expected from a given kinetic set. In particular, we show how the detection limit is directly related to the relative instability of reactants within each catalytic loop. The model is validated with an experimental dataset and is intended to serve as a guide in the design and optimization of autocatalytic molecular-based amplification systems with improved analytical performances.
Collapse
Affiliation(s)
- Mathieu Branca
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, 75013, Paris, France
| | - Corentin Calvet
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, 75013, Paris, France
| | - Benoît Limoges
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, 75013, Paris, France
| | - François Mavré
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS, 75013, Paris, France
| |
Collapse
|
159
|
Ma QN, Wang M, Zheng LB, Lin ZQ, Ehsan M, Xiao XX, Zhu XQ. RAA-Cas12a-Tg: A Nucleic Acid Detection System for Toxoplasma gondii Based on CRISPR-Cas12a Combined with Recombinase-Aided Amplification (RAA). Microorganisms 2021; 9:microorganisms9081644. [PMID: 34442722 PMCID: PMC8401747 DOI: 10.3390/microorganisms9081644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Toxoplasmosis, caused by the intracellular protozoon Toxoplasma gondii, is a significant parasitic zoonosis with a world-wide distribution. As a main transmission route, human infection can be acquired by the ingestion of T. gondii oocysts from the environment (e.g., soil, water, fruits and vegetables). Regarding the detection of T. gondii oocysts in environmental samples, the development of a time-saving, cost-effective and highly sensitive technique is crucial for the surveillance, prevention and control of toxoplasmosis. In this study, we developed a new method by combining recombinase-aided amplification (RAA) with CRISPR-Cas12a, designated as the RAA-Cas12a-Tg system. Here, we compared this system targeting the 529 bp repeat element (529 bp-RE) with the routine PCR targeting both 529 bp-RE and ITS-1 gene, respectively, to assess its ability to detect T. gondii oocysts in soil samples. Our results indicated that the 529 bp RE-based RAA-Cas12a-Tg system was able to detect T. gondii successfully in nearly an hour at body temperature and was more sensitive than the routine PCR assay. The sensitivity of this system reached as low as 1 fM with high specificity. Thus, RAA-Cas12a-Tg system provided a rapid, sensitive and easily operable method for point-of-care detection of T. gondii oocysts in soil, which will facilitate the control of T. gondii infection in humans and animals.
Collapse
Affiliation(s)
- Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
| | - Lai-Bao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
| | - Zi-Qin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Xing-Xing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
- Correspondence: (X.-X.X.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (X.-X.X.); (X.-Q.Z.)
| |
Collapse
|
160
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
161
|
Zhao J, Tan Z, Wang L, Lei C, Nie Z. A ligation-driven CRISPR-Cas biosensing platform for non-nucleic acid target detections. Chem Commun (Camb) 2021; 57:7051-7054. [PMID: 34179901 DOI: 10.1039/d1cc02578c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we describe a CRISPR-Cas12a sensing platform activated by a DNA ligation reaction for the sensitive detection of non-nucleic acid targets, including NAD+, ATP and polynucleotide kinase (PNK). In this design, the DNA ligation reaction triggered by these biomolecules generates DNA duplexes, which can activate the nuclease activity of Cas12a to produce amplified fluorescence signals. As a result, this work provides an alternative strategy to expand the applicability of the CRISPR-Cas system into the detection of non-nucleic acid biomolecules.
Collapse
Affiliation(s)
- Jiali Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| | - Zhen Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
162
|
Yue H, Huang M, Tian T, Xiong E, Zhou X. Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies. ACS NANO 2021; 15:7848-7859. [PMID: 33961413 DOI: 10.1021/acsnano.1c02372] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clustered, regularly interspaced short palindromic repeats (CRISPR)-based diagnoses, derived from gene-editing technology, have been exploited for less than 5 years and are now reaching the stage of precommercial use. CRISPR tools have some notable features, such as recognition at physiological temperature, excellent specificity, and high-efficiency signal amplification capabilities. These characteristics are promising for the development of next-generation diagnostic technologies. In this Perspective, we present a detailed summary of which micro/nanotechnologies play roles in the advancement of CRISPR diagnosis and how they are involved. The use of nanoprobes, nanochips, and nanodevices, microfluidic technology, lateral flow strips, etc. in CRISPR detection systems has led to new opportunities for CRISPR-based diagnosis assay development, such as achieving equipment-free detection, providing more compact detection systems, and improving sensitivity and quantitative capabilities. Although tremendous progress has been made, CRISPR diagnosis has not yet reached its full potential. We discuss upcoming opportunities and improvements and how micro/nanotechnologies will continue to play key roles.
Collapse
Affiliation(s)
- Huahua Yue
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengqi Huang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Tian Tian
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Erhu Xiong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
163
|
Advances in the Integration of Nucleic Acid Nanotechnology into CRISPR-Cas System. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00180-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
164
|
Yu Y, Li L, Li G, Zhou X, Deng T, Liang M, Nie G. Intracellular enzyme-powered DNA circuit with a tunable amplifier for miRNA imaging. Chem Commun (Camb) 2021; 57:3753-3756. [PMID: 33876121 DOI: 10.1039/d1cc00536g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe an intracellular enzyme-powered DNA circuit probe with a tunable amplifier for sensitive and selective detection of miRNA. This approach has been successfully applied for in situ miRNA-21 fluorescence imaging in live cells. Also, we used chemicals to elevate the APE1 expression level rendering a tunable amplification strength for more flexible imaging applications.
Collapse
Affiliation(s)
- Yingjie Yu
- Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | | | | | | | | | | | | |
Collapse
|
165
|
Jia Y, Hu Y. Cofactor-assisted three-way DNA junction-driven strand displacement. RSC Adv 2021; 11:30377-30382. [PMID: 35480263 PMCID: PMC9041134 DOI: 10.1039/d1ra05242j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
Toehold-mediated strand displacement is widely used to construct and operate DNA nanodevices. Cooperative regulation of strand displacement with diverse factors is pivotal in the design and construction of functional and dynamic devices. Herein, a cofactor-assisted three-way DNA junction-driven strand displacement strategy was reported, which could tune the reaction kinetics by the collaboration of DNA and other types of stimulus. This strategy is responsive to various inputs by incorporation of the specific sequence into the three-way junction structure. Specifically, the cooperation of multiple factors changes the conformation of the specific domain and promotes the reaction. To demonstrate the strategy, adenosine triphosphate (ATP), HG2+, and pH were used as cofactors to modulate the displacement reaction. The electrophoresis and fluorescence experiments showed that the cooperative regulation of the strand displacement reaction could be achieved by diverse factors using this strategy. The proposed strategy provides design flexibility for dynamic DNA devices and may have potential in biosensing and biocomputing. Cooperative regulation of strand displacement with diverse factors was achieved by a cofactor-assisted three-way DNA junction-driven strategy. Using this strategy nanodevices reacted to various inputs by incorporating a specific sequence into the three-way junction structure.![]()
Collapse
Affiliation(s)
- Yufeng Jia
- School of Economics and Management, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China
| |
Collapse
|