151
|
Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, Bonduelle M, Dietz HC, Gaspar IM, Cavaco D, Stattin EL, Schrander-Stumpel C, Coucke P, Loeys B, De Paepe A, De Backer J. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. Int J Cardiol 2011; 165:314-21. [PMID: 21937134 PMCID: PMC3253210 DOI: 10.1016/j.ijcard.2011.08.079] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/12/2011] [Accepted: 08/21/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm/dissection (TAAD) is a common phenotype that may occur as an isolated manifestation or within the constellation of a defined syndrome. In contrast to syndromic TAAD, the elucidation of the genetic basis of isolated TAAD has only recently started. To date, defects have been found in genes encoding extracellular matrix proteins (fibrillin-1, FBN1; collagen type III alpha 1, COL3A1), proteins involved in transforming growth factor beta (TGFβ) signaling (TGFβ receptor 1 and 2, TGFBR1/2; and SMAD3) or proteins that build up the contractile apparatus of aortic smooth muscle cells (myosin heavy chain 11, MYH11; smooth muscle actin alpha 2, ACTA2; and MYLK). METHODS AND RESULT In 110 non-syndromic TAAD patients that previously tested negative for FBN1 or TGFBR1/2 mutations, we identified 7 ACTA2 mutations in a cohort of 43 familial TAAD patients, including 2 premature truncating mutations. Sequencing of MYH11 revealed an in frame splice-site alteration in one out of two probands with TAA(D) associated with PDA but none in the series of 22 probands from the cohort of 110 patients with non-syndromic TAAD. Interestingly, immunohistochemical staining of aortic biopsies of a patient and a family member with MYH11 and patients with ACTA2 missense mutations showed upregulation of the TGFβ signaling pathway. CONCLUSIONS MYH11 mutations are rare and typically identified in patients with TAAD associated with PDA. ACTA2 mutations were identified in 16% of a cohort presenting familial TAAD. Different molecular defects in TAAD may account for a different pathogenic mechanism of enhanced TGFβ signaling.
Collapse
Affiliation(s)
- Marjolijn Renard
- Center for Medical Genetics, University Hospital of Ghent, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Saunders MG, Voth GA. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis. J Mol Biol 2011; 413:279-91. [PMID: 21856312 DOI: 10.1016/j.jmb.2011.07.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/15/2022]
Abstract
In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water.
Collapse
Affiliation(s)
- Marissa G Saunders
- Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
153
|
Mercer RCC, Mudalige WAKA, Ige TO, Heeley DH. Vertebrate slow skeletal muscle actin - conservation, distribution and conformational flexibility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1253-60. [PMID: 21722757 DOI: 10.1016/j.bbapap.2011.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 06/02/2011] [Accepted: 06/16/2011] [Indexed: 11/16/2022]
Abstract
The existence of a unique sarcomeric actin is demonstrated in teleosts that possess substantial amounts of slow skeletal muscle in the trunk. The slow skeletal isotype is conserved. There is one amino acid substitution between Atlantic herring slow skeletal actin and the equivalent in salmonids. Conversely, the intra-species variation is considerable; 13 substitutions between different herring skeletal isotypes (slow versus fast). The isomorphisms (non-conservative underlined: residues, 2, 3, 103, 155, 160, 165, 278, 281, 310, 329, 358, 360 and 363) are restricted to sub-domains 1 and 3 and include the substitution Asp-360 in 'slow' to Gln in 'fast' which results in an electrophoretic shift at alkaline pH. The musculature of the trunk facilitates the preparation of isoactins for biochemical study. Herring slow skeletal G-actin (Ca.ATP) is more susceptible to thermal, and urea, -induced denaturation and subtilisin cleavage than that in fast skeletal, but more stable than the counterpart in salmonids (one substitution, Gln354Ala) highlighting the critical nature of actin's carboxyl-terminal insert. Fluorescent spectra of G-actin isoforms containing the isomorphism Ser155Ala in complexation with 2'-deoxy 3' O-(N'-Methylanthraniloyl) ATP infer similar polarity of the nucleotide binding cleft. An electrophoretic survey detected two skeletal actins in some (smelt and mackerel) but not all teleosts. One skeletal muscle actin was detected in frog and bird.
Collapse
Affiliation(s)
- Robert C C Mercer
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland, Canada.
| | | | | | | |
Collapse
|
154
|
Gokhin DS, Fowler VM. Cytoplasmic gamma-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. ACTA ACUST UNITED AC 2011; 194:105-20. [PMID: 21727195 PMCID: PMC3135406 DOI: 10.1083/jcb.201011128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tropomodulins, cytoplasmic γ-actin, and small ankyrin 1.5 mechanically stabilize the sarcoplasmic reticulum and maintain myofibril alignment in skeletal muscle fibers. The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
155
|
Heparin-binding hemagglutinin HBHA from Mycobacterium tuberculosis affects actin polymerisation. Biochem Biophys Res Commun 2011; 410:339-44. [DOI: 10.1016/j.bbrc.2011.05.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
|
156
|
|
157
|
Aslan M, Dogan S. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 2011; 74:2274-88. [PMID: 21640858 DOI: 10.1016/j.jprot.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.
Collapse
Affiliation(s)
- Mutay Aslan
- Akdeniz University Faculty of Medicine, Department of Medical Biochemistry, Campus, 07070 Antalya, Turkey.
| | | |
Collapse
|
158
|
Yamaoka H, Matsushita S, Shimada Y, Adachi T. Multiscale modeling and mechanics of filamentous actin cytoskeleton. Biomech Model Mechanobiol 2011; 11:291-302. [PMID: 21614531 DOI: 10.1007/s10237-011-0317-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/08/2011] [Indexed: 01/07/2023]
Affiliation(s)
- Hidetaka Yamaoka
- Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
159
|
Splettstoesser T, Holmes KC, Noé F, Smith JC. Structural modeling and molecular dynamics simulation of the actin filament. Proteins 2011; 79:2033-43. [PMID: 21557314 DOI: 10.1002/prot.23017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/28/2011] [Indexed: 11/12/2022]
Abstract
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.
Collapse
Affiliation(s)
- Thomas Splettstoesser
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
160
|
Matsushita S, Inoue Y, Hojo M, Sokabe M, Adachi T. Effect of tensile force on the mechanical behavior of actin filaments. J Biomech 2011; 44:1776-81. [PMID: 21536289 DOI: 10.1016/j.jbiomech.2011.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/29/2011] [Accepted: 04/09/2011] [Indexed: 01/08/2023]
Abstract
Actin filaments are the most abundant components of the cellular cytoskeleton, and play critical roles in various cellular functions such as migration, division and shape control. In these activities, mechanical tension causes structural changes in the double-helical structure of the actin filament, which is a key modulator of cytoskeletal reorganization. This study performed large-scale molecular dynamics (MD) and steered MD simulations to quantitatively analyze the effects of tensile force on the mechanical behavior of actin filaments. The results revealed that when a tensile force of 200pN was applied to a filament consisting of 14 actin subunits, the twist angle of the filament decreased by approximately 20°, corresponding to a rotation of approximately -2° per subunit, representing a critical structural change in actin filaments. Based on these structural changes, the variance in filament length and twist angle was found to decrease, leading to increases in extensional and torsional stiffness. Torsional stiffness increased significantly under the tensile condition, and the ratio of filament stiffness under tensile force to that under no external force increased significantly on longer temporal scales. The results obtained from this study contribute to the understanding of mechano-chemical interactions concerning actin dynamics, showing that increased tensile force in the filament prevents actin regulatory proteins from binding to the filament.
Collapse
Affiliation(s)
- Shinji Matsushita
- Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
161
|
Schuster I, Bernhardt R. Interactions of natural polyamines with mammalian proteins. Biomol Concepts 2011; 2:79-94. [DOI: 10.1515/bmc.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe ubiquitously expressed natural polyamines putrescine, spermidine, and spermine are small, flexible cationic compounds that exert pleiotropic actions on various regulatory systems and, accordingly, are essentially involved in diverse life functions. These roles of polyamines result from their capability to interact with negatively charged regions of all major classes of biomolecules, which might act in response by changing their structures and functions. The present review deals with polyamine-protein interactions, thereby focusing on mammalian proteins. We discuss the various modes in which polyamines can interact with proteins, describe major types of affected functions illustrated by representative examples of involved proteins, and support information with respective structural evidence from elucidated three-dimensional structures. A specific focus is put on polyamine interactions at protein surfaces that can modulate the aggregation of proteins to organized structural networks as well as to toxic aggregates and, moreover, can play a role in important transient protein-protein interactions.
Collapse
Affiliation(s)
- Inge Schuster
- 1Institute for Theoretical Chemistry, University Vienna, A-1090 Vienna, Austria
| | - Rita Bernhardt
- 2Institute of Biochemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
162
|
Deriu MA, Bidone TC, Mastrangelo F, Di Benedetto G, Soncini M, Montevecchi FM, Morbiducci U. Biomechanics of actin filaments: A computational multi-level study. J Biomech 2011; 44:630-6. [DOI: 10.1016/j.jbiomech.2010.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 01/07/2023]
|
163
|
Internal motions of actin characterized by quasielastic neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:661-71. [DOI: 10.1007/s00249-011-0669-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
164
|
Three novel mutations in the ACTA2 gene in German patients with thoracic aortic aneurysms and dissections. Eur J Hum Genet 2011; 19:520-4. [PMID: 21248741 DOI: 10.1038/ejhg.2010.239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in the gene encoding smooth muscle cell alpha actin (ACTA2) have recently been shown to cause familial thoracic aortic aneurysms leading to type A dissections (TAAD) and predispose to premature stroke and coronary artery disease. In order to further explore the role of ACTA2 variations in the pathogenesis of TAAD, we sequenced the coding regions of this gene in 40 unrelated German patients with TAAD (with (n=21) or without (n=19) clinical features suggestive of Marfan syndrome). All patients had previously tested negative for mutations in the FBN1 and TGFBR2 genes. We identified three novel ACTA2 mutations and mapped them on a three-dimensional model of actin. Two mutations affect residues within (M49V) or adjacent to (R39C), the DNAse-I-binding loop within subdomain 2 of alpha actin. They were observed in families with recurrent aortic aneurysm (R39C) or aortic dissection (M49V). The third mutation causes an exchange in the vicinity of the ATP-binding site (G304R) in a patient thought to have isolated TAAD. None of the affected individuals had clinical features typical for Marfan syndrome, and no case of premature stroke or coronary artery disease was reported from the affected families. In conclusion, we underscore the role of ACTA2 mutations in nonsyndromic TAAD and suggest that ACTA2 should be included in the genes routinely investigated for syndromic and nonsyndromic TAAD. Detailed clinical investigations of additional families are warranted to further explore the full range of phenotypic signs associated with the three novel mutations described here.
Collapse
|
165
|
Abstract
Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more protein-protein interactions than any known protein. These properties, along with its ability to transition between monomeric (G-actin) and filamentous (F-actin) states under the control of nucleotide hydrolysis, ions, and a large number of actin-binding proteins, make actin a critical player in many cellular functions, ranging from cell motility and the maintenance of cell shape and polarity to the regulation of transcription. Moreover, the interaction of filamentous actin with myosin forms the basis of muscle contraction. Owing to its central role in the cell, the actin cytoskeleton is also disrupted or taken over by numerous pathogens. Here we review structures of G-actin and F-actin and discuss some of the interactions that control the polymerization and disassembly of actin.
Collapse
Affiliation(s)
- Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085;
| | - Kenneth C. Holmes
- Max Planck Institute for Medical Research, D69120 Heidelberg, Germany;
| |
Collapse
|
166
|
Aylett CH, Löwe J, Amos LA. New Insights into the Mechanisms of Cytomotive Actin and Tubulin Filaments. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:1-71. [DOI: 10.1016/b978-0-12-386033-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
167
|
Lee JY, Iverson TM, Dima RI. Molecular investigations into the mechanics of actin in different nucleotide states. J Phys Chem B 2010; 115:186-95. [PMID: 21141951 DOI: 10.1021/jp108249g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Actin plays crucial roles in the mechanical response of cells to applied forces. For example, during cell adhesion, under the action of forces transmitted through integrins, actin filaments (F-actin) induce intracellular mechanical movements leading to changes in the cell shape. Muscle contraction results from the interaction of F-actin with the molecular motor myosin. Thus, understanding the origin of actin's mechanical flexibility is required to understand the basis of fundamental cellular processes. F-actin results from the polymerization of globular actin (G-actin), which contains one tightly bound nucleotide (ATP or ADP). Experiments revealed that G-actin is more flexible than F-actin, but no molecular-level understanding of this differential behavior exists. To probe the basis of the mechanical behavior of actin, we study the force response of G-actin bound with ATP (G-ATP) or ADP (G-ADP). We investigate the global unfolding of G-actin under forces applied at its ends and its mechanical resistance along the actin-actin and actin-myosin bonds in F-actin. Our study reveals that the nucleotide plays an important role in the global unfolding of actin, leading to multiple unfolding scenarios which emphasize the differences between the G-ATP and G-ADP states. Furthermore, our simulations show that G-ATP is more flexible than G-ADP and that the actin-myosin interaction surface responds faster to force than the actin-actin interaction surface. The deformation of G-actin under tension revealed in our simulations correlates very well with experimental data on G-actin domain flexibility.
Collapse
Affiliation(s)
- Ji Y Lee
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | |
Collapse
|
168
|
Abstract
Heat shock proteins act as cytoplasmic chaperones to ensure correct protein folding and prevent protein aggregation. The presence of stoichiometric amounts of one such heat shock protein, Hsp27, in supersaturated solutions of unmodified G-actin leads to crystallization, in preference to polymerization, of the actin. Hsp27 is not evident in the resulting crystal structure. Thus, for the first time, we present the structure of G-actin in a form that is devoid of polymerization-deterring chemical modifications or binding partners, either of which may alter its conformation. The structure contains a calcium ion and ATP within a closed nucleotide-binding cleft, and the D-loop is disordered. This native G-actin structure invites comparison with the current F-actin model in order to understand the structural implications for actin polymerization. In particular, this analysis suggests a mechanism by which the bound cation coordinates conformational change and ATP-hydrolysis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
169
|
Matsushita S, Adachi T, Inoue Y, Hojo M, Sokabe M. Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. J Biomech 2010; 43:3162-7. [DOI: 10.1016/j.jbiomech.2010.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/30/2010] [Accepted: 07/25/2010] [Indexed: 11/28/2022]
|
170
|
Characterization of engineered actin binding proteins that control filament assembly and structure. PLoS One 2010; 5:e13960. [PMID: 21103060 PMCID: PMC2980482 DOI: 10.1371/journal.pone.0013960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/26/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate. METHODOLOGY/PRINCIPAL FINDINGS We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively. CONCLUSIONS/SIGNIFICANCE From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly.
Collapse
|
171
|
Murakami K, Yasunaga T, Noguchi TQP, Gomibuchi Y, Ngo KX, Uyeda TQP, Wakabayashi T. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 2010; 143:275-87. [PMID: 20946985 DOI: 10.1016/j.cell.2010.09.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/10/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.
Collapse
Affiliation(s)
- Kenji Murakami
- Department of Biosciences, School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
172
|
Stuart SF, Leatherbarrow RJ, Willison KR. A two-step mechanism for the folding of actin by the yeast cytosolic chaperonin. J Biol Chem 2010; 286:178-84. [PMID: 21056978 DOI: 10.1074/jbc.m110.166256] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin requires the chaperonin containing TCP1 (CCT), a hexadecameric ATPase essential for cell viability in eukaryotes, to fold to its native state. Following binding of unfolded actin to CCT, the cavity of the chaperone closes and actin is folded and released in an ATP-dependent folding cycle. In yeast, CCT forms a ternary complex with the phosducin-like protein PLP2p to fold actin, and together they can return nascent or chemically denatured actin to its native state in a pure in vitro folding assay. The complexity of the CCT-actin system makes the study of the actin folding mechanism technically challenging. We have established a novel spectroscopic assay through selectively labeling the C terminus of yeast actin with acrylodan and observe significant changes in the acrylodan fluorescence emission spectrum as actin is chemically unfolded and then refolded by the chaperonin. The variation in the polarity of the environment surrounding the fluorescent probe during the unfolding/folding processes has allowed us to monitor actin as it folds on CCT. The rate of actin folding at a range of temperatures and ATP concentrations has been determined for both wild type CCT and a mutant CCT, CCT4anc2, defective in folding actin in vivo. Binding of the non-hydrolysable ATP analog adenosine 5'-(β,γ-imino)triphosphate to the ternary complex leads to 3-fold faster release of actin from CCT following addition of ATP, suggesting a two-step folding process with a conformational change occurring upon closure of the cavity and a subsequent final folding step involving packing of the C terminus to the native-like state.
Collapse
Affiliation(s)
- Sarah F Stuart
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
173
|
Galkin VE, Orlova A, Schröder GF, Egelman EH. Structural polymorphism in F-actin. Nat Struct Mol Biol 2010; 17:1318-23. [PMID: 20935633 PMCID: PMC2988880 DOI: 10.1038/nsmb.1930] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/15/2010] [Indexed: 12/31/2022]
Abstract
Actin has maintained an exquisite degree of sequence conservation over large evolutionary distances for reasons that are not understood. The desire to explain phenomena from muscle contraction to cytokinesis in mechanistic detail has driven the generation of an atomic model of the actin filament (F-actin). Here we use electron cryomicroscopy to show that frozen-hydrated actin filaments contain a multiplicity of different structural states. We show (at ∼10 Å resolution) that subdomain 2 can be disordered and can make multiple contacts with the C terminus of a subunit above it. We link a number of disease-causing mutations in the human ACTA1 gene to the most structurally dynamic elements of actin. Because F-actin is structurally polymorphic, it cannot be described using only one atomic model and must be understood as an ensemble of different states.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
174
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
175
|
Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK. Crystal structure of the Formin mDia1 in autoinhibited conformation. PLoS One 2010; 5. [PMID: 20927343 PMCID: PMC2948019 DOI: 10.1371/journal.pone.0012896] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022] Open
Abstract
Background Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID). Methodology/Principal Findings Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state. Conclusions/Significance Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.
Collapse
Affiliation(s)
- Takanori Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Chinatsu Otomo
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Michael K. Rosen
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
176
|
Fujii T, Iwane AH, Yanagida T, Namba K. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 2010; 467:724-8. [PMID: 20844487 DOI: 10.1038/nature09372] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/21/2010] [Indexed: 12/11/2022]
Abstract
F-actin is a helical assembly of actin, which is a component of muscle fibres essential for contraction and has a crucial role in numerous cellular processes, such as the formation of lamellipodia and filopodia, as the most abundant component and regulator of cytoskeletons by dynamic assembly and disassembly (from G-actin to F-actin and vice versa). Actin is a ubiquitous protein and is involved in important biological functions, but the definitive high-resolution structure of F-actin remains unknown. Although a recent atomic model well reproduced X-ray fibre diffraction intensity data from a highly oriented liquid-crystalline sol specimen, its refinement without experimental phase information has certain limitations. Direct visualization of the structure by electron cryomicroscopy, however, has been difficult because it is relatively thin and flexible. Here we report the F-actin structure at 6.6 Å resolution, made obtainable by recent advances in electron cryomicroscopy. The density map clearly resolves all the secondary structures of G-actin, such as α-helices, β-structures and loops, and makes unambiguous modelling and refinement possible. Complex domain motions that open the nucleotide-binding pocket on F-actin formation, specific D-loop and terminal conformations, and relatively tight axial but markedly loose interprotofilament interactions hydrophilic in nature are revealed in the F-actin model, and all seem to be important for dynamic functions of actin.
Collapse
Affiliation(s)
- Takashi Fujii
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
177
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
178
|
Pivovarova AV, Khaitlina SY, Levitsky DI. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin. FEBS J 2010; 277:3812-22. [PMID: 20718862 DOI: 10.1111/j.1742-4658.2010.07782.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations.
Collapse
|
179
|
Abstract
In order to understand the mechanism of muscle contraction at the atomic level, it is necessary to understand how myosin binds to actin in a reversible way. We have used a novel molecular dynamics technique constrained by an EM map of the actin-myosin complex at 13-A resolution to obtain an atomic model of the strong-binding (rigor) actin-myosin interface. The constraining force resulting from the EM map during the molecular dynamics simulation was sufficient to convert the myosin head from the initial weak-binding state to the strong-binding (rigor) state. Our actin-myosin model suggests extensive contacts between actin and the myosin head (S1). S1 binds to two actin monomers. The contact surface between actin and S1 has increased dramatically compared with previous models. A number of loops in S1 and actin are involved in establishing the interface. Our model also suggests how the loop carrying the critical Arg 405 Glu mutation in S1 found in a familial cardiomyopathy might be functionally involved.
Collapse
|
180
|
Neural cytoskeleton capabilities for learning and memory. J Biol Phys 2010; 36:3-21. [PMID: 19669423 PMCID: PMC2791806 DOI: 10.1007/s10867-009-9153-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 04/06/2009] [Indexed: 11/10/2022] Open
Abstract
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory.
Collapse
|
181
|
Kudryashov DS, Grintsevich EE, Rubenstein PA, Reisler E. A nucleotide state-sensing region on actin. J Biol Chem 2010; 285:25591-601. [PMID: 20530485 DOI: 10.1074/jbc.m110.123869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleotide state of actin (ATP, ADP-P(i), or ADP) is known to impact its interactions with other actin molecules upon polymerization as well as with multiple actin binding proteins both in the monomeric and filamentous states of actin. Recently, molecular dynamics simulations predicted that a sequence located at the interface of subdomains 1 and 3 (W-loop; residues 165-172) changes from an unstructured loop to a beta-turn conformation upon ATP hydrolysis (Zheng, X., Diraviyam, K., and Sept, D. (2007) Biophys. J. 93, 1277-1283). This region participates directly in the binding to other subunits in F-actin as well as to cofilin, profilin, and WH2 domain proteins and, therefore, could contribute to the nucleotide sensitivity of these interactions. The present study demonstrates a reciprocal communication between the W-loop region and the nucleotide binding cleft on actin. Point mutagenesis of residues 167, 169, and 170 and their site-specific labeling significantly affect the nucleotide release from the cleft region, whereas the ATP/ADP switch alters the fluorescence of probes located in the W-loop. In the ADP-P(i) state, the W-loop adopts a conformation similar to that in the ATP state but different from the ADP state. Binding of latrunculin A to the nucleotide cleft favors the ATP-like conformation of the W-loop, whereas ADP-ribosylation of Arg-177 forces the W-loop into a conformation distinct from those in the ADP and ATP-states. Overall, our experimental data suggest that the W-loop of actin is a nucleotide sensor, which may contribute to the nucleotide state-dependent changes in F-actin and nucleotide state-modulated interactions of both G- and F-actin with actin-binding proteins.
Collapse
Affiliation(s)
- Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
182
|
Aslan M. Functional consequences of actin nitration: in vitro and in disease states. Amino Acids 2010; 42:65-74. [PMID: 20480195 DOI: 10.1007/s00726-010-0613-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
Abstract
To link the phenomena of inflammatory-induced increases in protein nitrotyrosine (NO(2)Tyr) derivatives to protein dysfunction and consequent pathological conditions, the evaluation of discrete NO(2)Tyr modifications on specific proteins must be undertaken. Mass spectrometric (MS) proteomics-based strategies allow for the identification of all individual proteins that are nitrated by separating tissue homogenates using 2D gel electrophoresis, detecting the nitrated proteins using an anti-NO(2)Tyr antibody, and then identifying the peptides generated during an in-gel proteolytic digest using matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) MS. Actin, one of the most abundant proteins in eukaryotic cells, constitutes 5% or more of cell protein and serves with other cytoskeletal proteins as a critical target for nitration-induced functional impairment. Herein, examples of actin nitration detected under physiological conditions in various models of human disease or in clinically derived tissues are given and the impact that this post-translational protein modification can have on cell and organ function is discussed.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Biochemistry, Akdeniz University Medical School, 07070, Antalya, Turkey.
| |
Collapse
|
183
|
Pfaendtner J, De La Cruz EM, Voth GA. Actin filament remodeling by actin depolymerization factor/cofilin. Proc Natl Acad Sci U S A 2010; 107:7299-304. [PMID: 20368459 PMCID: PMC2867716 DOI: 10.1073/pnas.0911675107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate, using molecular dynamics, how the severing protein, actin depolymerization factor (ADF)/cofilin, modulates the structure, conformational dynamics, and mechanical properties of actin filaments. The actin and cofilactin filament bending stiffness and corresponding persistence lengths obtained from all-atom simulations are comparable to values obtained from analysis of thermal fluctuations in filament shape. Filament flexibility is strongly affected by the nucleotide-linked conformation of the actin subdomain 2 DNase-I binding loop and the filament radial mass density distribution. ADF/cofilin binding between subdomains 1 and 3 of a filament subunit triggers reorganization of subdomain 2 of the neighboring subunit such that the DNase-I binding loop (DB-loop) moves radially away from the filament. Repositioning of the neighboring subunit DB-loop significantly weakens subunit interactions along the long-pitch helix and lowers the filament bending rigidity. Lateral filament contacts between the hydrophobic loop and neighboring short-pitch helix monomers in native filaments are also compromised with cofilin binding. These works provide a molecular interpretation of biochemical solution studies documenting the disruption of filament subunit interactions and also reveal the molecular basis of actin filament allostery and its linkage to ADF/cofilin binding.
Collapse
Affiliation(s)
- Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 S. Ellis Ave, Chicago, IL 60637; and
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 S. Ellis Ave, Chicago, IL 60637; and
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112-0850
| |
Collapse
|
184
|
An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. Proc Natl Acad Sci U S A 2010; 107:8159-64. [PMID: 20404198 DOI: 10.1073/pnas.0911668107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arp2/3 complex polymerizes new actin filaments from the sides of existing filaments, forming Y-branched networks that are critical for actin-mediated force generation. Binding of the Arp2/3 complex to the sides of actin filaments is therefore central to its actin-nucleating and branching activities. Although a model of the Arp2/3 complex in filament branches has been proposed based on electron microscopy, this model has not been validated using independent approaches, and the functional importance of predicted actin-binding residues has not been extensively tested. Using a combination of molecular dynamics and protein-protein docking simulations, we derived an independent structural model of the interaction between two subunits of the Arp2/3 complex that are key to actin binding, ARPC2 and ARPC4, and the side of an actin filament. This model agreed remarkably well with the previous results from electron microscopy. Complementary mutagenesis experiments revealed numerous residues in ARPC2 and ARPC4 that were required for the biochemical activity of the entire complex. Functionally critical residues clustered together and defined a surface that was predicted by protein-protein docking to be buried in the interaction with actin. Moreover, key residues at this interface were crucial for actin nucleation and Y-branching, high-affinity F-actin binding, and Y-branch stability, demonstrating that the affinity of Arp2/3 complex for F actin independently modulates branch formation and stability. Our results highlight the utility of combining computational and experimental approaches to study protein-protein interactions and provide a basis for further elucidating the role of F-actin binding in Arp2/3 complex activation and function.
Collapse
|
185
|
Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor. Proc Natl Acad Sci U S A 2010; 107:7769-74. [PMID: 20385833 DOI: 10.1073/pnas.0911830107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actomyosin molecular motor, the motor composed of myosin II and actin filament, is responsible for muscle contraction, converting chemical energy into mechanical work. Although recent single molecule and structural studies have shed new light on the energy-converting mechanism, the physical basis of the molecular-level mechanism remains unclear because of the experimental limitations. To provide a clue to resolve the controversy between the lever-arm mechanism and the Brownian ratchet-like mechanism, we here report an in silico single molecule experiment of an actomyosin motor. When we placed myosin on an actin filament and allowed myosin to move along the filament, we found that myosin exhibits a unidirectional Brownian motion along the filament. This unidirectionality was found to arise from the combination of a nonequilibrium condition realized by coupling to the ATP hydrolysis and a ratchet-like energy landscape inherent in the actin-myosin interaction along the filament, indicating that a Brownian ratchet-like mechanism contributes substantially to the energy conversion of this molecular motor.
Collapse
|
186
|
Abstract
The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Chosun University School of Medicine, Department of Cellular and Molecular Medicine, Gwangju 501-759, Korea.
| | | |
Collapse
|
187
|
Yates SP, Loncar A, Dawson JF. Actin polymerization is controlled by residue size at position 204. Biochem Cell Biol 2010; 87:853-65. [PMID: 19935871 DOI: 10.1139/o09-039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work has shown that purified double mutant A204C/C374A yeast actin is polymerization-deficient in vitro under physiological concentrations. To understand the importance of the 204 residue in subdomain 4, a series of actin proteins with a single mutation at this position were created with Cys-374 retained. Only yeast expressing A204G-, A204S-, or A204C-actin were viable. The A204G and A204S strains were sensitive to cold temperature and hyperosmolarity, whereas the A204C strain showed more profound effects on growth under these conditions. Cells expressing A204C-actin exhibited anomalies previously observed for A204C/C374A actin, including abnormal actin structures. A204G- and A204S-actin proteins had 12- and 13-fold increased critical concentrations, respectively, relative to wild-type. Only at very high concentrations could A204C actin polymerize when ATP was bound; when hydrolyzed, the ADP-containing A204C filaments depolymerized, demonstrating a profound difference in critical concentration between ATP and ADP states with A204C actin. A correlation between size of the residue substituted at position 204 and energy minimization of actin filament models was observed. We propose that the region surrounding residue 204 is involved in interactions that change depending on the phosphorylation state of the bound nucleotide that might reflect different conformations of F-actin subunits.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
188
|
Splettstoesser T, Noé F, Oda T, Smith JC. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state. Proteins 2010; 76:353-64. [PMID: 19156817 DOI: 10.1002/prot.22350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The assembly of monomeric G-actin into filamentous F-actin is nucleotide dependent: ATP-G-actin is favored for filament growth at the "barbed end" of F-actin, whereas ADP-G-actin tends to dissociate from the "pointed end." Structural differences between ATP- and ADP-G-actin are examined here using multiple molecular dynamics simulations. The "open" and "closed" conformational states of G-actin in aqueous solution are characterized, with either ATP or ADP in the nucleotide binding pocket. With both ATP and ADP bound, the open state closes in the absence of actin-bound profilin. The position of the nucleotide in the protein is found to be correlated with the degree of opening of the active site cleft. Further, the simulations reveal the existence of a structurally well-defined, compact, "superclosed" state of ATP-G-actin, as yet unseen crystallographically and absent in the ADP-G-actin simulations. The superclosed state resembles structurally the actin monomer in filament models derived from fiber diffraction and is putatively the polymerization competent conformation of ATP-G-actin.
Collapse
Affiliation(s)
- Thomas Splettstoesser
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
189
|
Sedeh RS, Bathe M, Bathe KJ. The subspace iteration method in protein normal mode analysis. J Comput Chem 2010; 31:66-74. [PMID: 19408277 DOI: 10.1002/jcc.21250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Normal mode analysis plays an important role in relating the conformational dynamics of proteins to their biological function. The subspace iteration method is a numerical procedure for normal mode analysis that has enjoyed widespread success in the structural mechanics community due to its numerical stability and computational efficiency in calculating the lowest normal modes of large systems. Here, we apply the subspace iteration method to proteins to demonstrate its advantageous properties in this area of computational protein science. An effective algorithm for choosing the number of iteration vectors in the method is established, offering a considerable improvement over the original implementation. In the present application, computational time scales linearly with the number of normal modes computed. Additionally, the method lends itself naturally to normal mode analyses of multiple neighboring macromolecular conformations, as demonstrated in a conformational change pathway analysis of adenylate kinase. These properties, together with its computational robustness and intrinsic scalability to multiple processors, render the subspace iteration method an effective and reliable computational approach to protein normal mode analysis.
Collapse
Affiliation(s)
- Reza Sharifi Sedeh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
190
|
Kapoor P, Kumar A, Naik R, Ganguli M, Siddiqi MI, Sahasrabuddhe AA, Gupta CM. Leishmania actin binds and nicks kDNA as well as inhibits decatenation activity of type II topoisomerase. Nucleic Acids Res 2010; 38:3308-17. [PMID: 20147461 PMCID: PMC2879525 DOI: 10.1093/nar/gkq051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmania actin (LdACT) is an unconventional form of eukaryotic actin in that it markedly differs from other actins in terms of its filament forming as well as toxin and DNase-1-binding properties. Besides being present in the cytoplasm, cortical regions, flagellum and nucleus, it is also present in the kinetoplast where it appears to associate with the kinetoplast DNA (kDNA). However, nothing is known about its role in this organelle. Here, we show that LdACT is indeed associated with the kDNA disc in Leishmania kinetoplast, and under in vitro conditions, it specifically binds DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove. We further reveal that this protein exhibits DNA-nicking activity which requires its polymeric state as well as ATP hydrolysis and through this activity it converts catenated kDNA minicircles into open form. In addition, we show that LdACT specifically binds bacterial type II topoisomerase and inhibits its decatenation activity. Together, these results strongly indicate that LdACT could play a critical role in kDNA remodeling.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Division of Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil Palace, CSIR, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
191
|
Popp D, Xu W, Narita A, Brzoska AJ, Skurray RA, Firth N, Goshdastider U, Maéda Y, Robinson RC, Schumacher MA. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J Biol Chem 2010; 285:10130-10140. [PMID: 20106979 DOI: 10.1074/jbc.m109.071613] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II plasmid partition systems utilize ParM NTPases in coordination with a centromere-binding protein called ParR to mediate accurate DNA segregation, a process critical for plasmid retention. The Staphylococcus aureus pSK41 plasmid is a medically important plasmid that confers resistance to multiple antibiotics, disinfectants, and antiseptics. In the first step of partition, the pSK41 ParR binds its DNA centromere to form a superhelical partition complex that recruits ParM, which then mediates plasmid separation. pSK41 ParM is homologous to R1 ParM, a known actin homologue, suggesting that it may also form filaments to drive partition. To gain insight into the partition function of ParM, we examined its ability to form filaments and determined the crystal structure of apoParM to 1.95 A. The structure shows that pSK41 ParM belongs to the actin/Hsp70 superfamily. Unexpectedly, however, pSK41 ParM shows the strongest structural homology to the archaeal actin-like protein Thermoplasma acidophilum Ta0583, rather than its functional homologue, R1 ParM. Consistent with this divergence, we find that regions shown to be involved in R1 ParM filament formation are not important in formation of pSK41 ParM polymers. These data are also consonant with our finding that pSK41 ParM forms 1-start 10/4 helices very different from the 37/17 symmetry of R1 ParM. The polymerization kinetics of pSK41 ParM also differed from that of R1 ParM. These results indicate that type II NTPases utilize different polymeric structures to drive plasmid segregation.
Collapse
Affiliation(s)
- David Popp
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore.
| | - Weijun Xu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Akihiro Narita
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anthony J Brzoska
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald A Skurray
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Neville Firth
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Umesh Goshdastider
- Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuichiro Maéda
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
192
|
Liu X, Shu S, Hong MSS, Yu B, Korn ED. Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft. J Biol Chem 2010; 285:9729-9739. [PMID: 20100837 DOI: 10.1074/jbc.m109.073452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All but 11 of the 323 known actin sequences have Tyr at position 53, and the 11 exceptions have the conservative substitution Phe, which raises the following questions. What is the critical role(s) of Tyr-53, and, if it can be replaced by Phe, why has this happened so infrequently? We compared the properties of purified endogenous Dictyostelium actin and mutant constructs with Tyr-53 replaced by Phe, Ala, Glu, Trp, and Leu. The Y53F mutant did not differ significantly from endogenous actin in any of the properties assayed, but the Y53A and Y53E mutants differed substantially; affinity for DNase I was reduced, the rate of nucleotide exchange was increased, the critical concentration for polymerization was increased, filament elongation was inhibited, and polymerized actin was in the form of small oligomers and imperfect filaments. Growth and/or development of cells expressing these actin mutants were also inhibited. The Trp and Leu mutations had lesser but still significant effects on cell phenotype and the biochemical properties of the purified actins. We conclude that either Tyr or Phe is required to maintain the functional conformations of the DNase I-binding loop (D-loop) in both G- and F-actin, and that the conformation of the D-loop affects not only the properties that directly involve the D-loop (binding to DNase I and polymerization) but also allosterically modifies the conformation of the nucleotide-binding cleft, thus increasing the rate of nucleotide exchange. The apparent evolutionary "preference" for Tyr at position 53 may be the result of Tyr allowing dynamic modification of the D-loop conformation by phosphorylation (Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748-11753) with effects similar, but not identical, to those of the Ala and Glu mutations.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Myoung-Soon S Hong
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bin Yu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward D Korn
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
193
|
Sato T, Shimozawa T, Fukasawa T, Ohtaki M, Aramaki K, Wakabayashi K, Ishiwata S. Actin oligomers at the initial stage of polymerization induced by increasing temperature at low ionic strength: Study with small-angle X-ray scattering. Biophysics (Nagoya-shi) 2010; 6:1-11. [PMID: 27857581 PMCID: PMC5036667 DOI: 10.2142/biophysics.6.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/31/2022] Open
Abstract
Using small-angle X-ray scattering (SAXS), we have studied the initial stage (nucleation and oligomerization) of actin polymerization induced by raising temperature in a stepwise manner from 1°C to 30°C at low ionic strength (4.0 mg ml−1 actin in G-buffer). The SAXS experiments were started from the mono-disperse G-actin state, which was confirmed by comparing the scattering pattern in q- and real space with X-ray crystallographic data. We observed that the forward scattering intensity I(q → 0), used as an indicator for the extent of poly-merization, began to increase at ∼14°C for Mg-actin and ∼20°C for Ca-actin, and this critical temperature did not depend on the nucleotide species, i.e., ATP or ADP. At the temperatures higher than ∼20°C for Mg-actin and ∼25°C for Ca-actin, the coherent reflection peak, which is attributed to the helical structure of F-actin, appeared. The pair-distance distribution functions, p(r), corresponding to the frequency of vector lengths (r) within the molecule, were obtained by the indirect Fourier transformation (IFT) of the scattering curves, I(q). Next, the size distributions of oligomers at each temperature were analyzed by fitting the experimentally obtained p(r) with the theoretical p(r) for the helical and linear oligomers (2–13mers) calculated based on the X-ray crystallographic data. We found that p(r) at the initial stage of polymerization was well accounted for by the superposition of monomer, linear/helical dimers, and helical trimer, being independent of the type of divalent cations and nucleotides. These results suggest that the polymerization of actin in G-buffer induced by an increase in temperature proceeds via the elongation of the helical trimer, which supports, in a structurally resolved manner, a widely believed hypothesis that the polymerization nucleus is a helical trimer.
Collapse
Affiliation(s)
- Takaaki Sato
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Togo Shimozawa
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiko Fukasawa
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masako Ohtaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shin'ichi Ishiwata
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, 138667 Singapore
| |
Collapse
|
194
|
Pfaendtner J, Lyman E, Pollard TD, Voth GA. Structure and dynamics of the actin filament. J Mol Biol 2009; 396:252-63. [PMID: 19931282 DOI: 10.1016/j.jmb.2009.11.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/04/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
We used all-atom molecular dynamics simulations to investigate the structure and properties of the actin filament, starting with either the recent Oda model or the older Holmes model. Simulations of monomeric and polymerized actin show that polymerization changes the nucleotide-binding cleft, bringing together the Q137 side chain and bound ATP in a way that may enhance the ATP hydrolysis rate in the filament. Simulations with different bound nucleotides and conformations of the DNase I binding loop show that the persistence length of the filament depends only on loop conformation. Computational modeling reveals how bound phalloidin stiffens actin filaments and inhibits the release of gamma-phosphate from ADP-P(i) actin.
Collapse
Affiliation(s)
- Jim Pfaendtner
- Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, UT 84112-0850, USA
| | | | | | | |
Collapse
|
195
|
F-actin structure destabilization and DNase I binding loop: fluctuations mutational cross-linking and electron microscopy analysis of loop states and effects on F-actin. J Mol Biol 2009; 395:544-57. [PMID: 19900461 DOI: 10.1016/j.jmb.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues >45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (>41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in the interprotomer space and document the link between D-loop interactions and F-actin stability.
Collapse
|
196
|
Li X, Kierfeld J, Lipowsky R. Actin polymerization and depolymerization coupled to cooperative hydrolysis. PHYSICAL REVIEW LETTERS 2009; 103:048102. [PMID: 19659403 DOI: 10.1103/physrevlett.103.048102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Indexed: 05/28/2023]
Abstract
The hydrolysis of adenosine triphosphate (ATP) during actin (de)polymerization consists of two subprocesses, ATP cleavage and phosphate (P_{i}) release, which involve three nucleotide states of each actin protomer. A new theoretical model that explicitly incorporates these different subprocesses and states is introduced and compared with recent experimental data for actin depolymerization. These data can be explained by strongly cooperative ATP cleavage followed by strongly cooperative P_{i} release but are incompatible with random and/or vectorial subprocesses as proposed previously.
Collapse
Affiliation(s)
- Xin Li
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | | | | |
Collapse
|
197
|
Abstract
The influence of the state of the bound nucleotide (ATP, ADP-Pi, or ADP) on the conformational free-energy landscape of actin is investigated. Nucleotide-dependent folding of the DNase-I binding (DB) loop in monomeric actin and the actin trimer is carried out using all-atom molecular dynamics (MD) calculations accelerated with a multiscale implementation of the metadynamics algorithm. Additionally, an investigation of the opening and closing of the actin nucleotide binding cleft is performed. Nucleotide-dependent free-energy profiles for all of these conformational changes are calculated within the framework of metadynamics. We find that in ADP-bound monomer, the folded and unfolded states of the DB loop have similar relative free-energy. This result helps explain the experimental difficulty in obtaining an ordered crystal structure for this region of monomeric actin. However, we find that in the ADP-bound actin trimer, the folded DB loop is stable and in a free-energy minimum. It is also demonstrated that the nucleotide binding cleft favors a closed conformation for the bound nucleotide in the ATP and ADP-Pi states, whereas the ADP state favors an open confirmation, both in the monomer and trimer. These results suggest a mechanism of allosteric interactions between the nucleotide binding cleft and the DB loop. This behavior is confirmed by an additional simulation that shows the folding free-energy as a function of the nucleotide cleft width, which demonstrates that the barrier for folding changes significantly depending on the value of the cleft width.
Collapse
|
198
|
An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc Natl Acad Sci U S A 2009; 106:11011-5. [PMID: 19549879 DOI: 10.1073/pnas.0904907106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed and tested a robust delivery method for the transport of proteins to the cytoplasm of mammalian cells without compromising the integrity of the cell membrane. This receptor-mediated delivery (RMD) technology utilizes a variant of substance P (SP), a neuropeptide that is rapidly internalized upon interaction with the neurokinin-1 receptor (NK1R). Cargos in the form of synthetic antibody fragments (sABs) were conjugated to the engineered SP variant (SPv) and efficiently internalized by NK1R-expressing cells. The sABs used here were generated to bind specific conformational forms of actin. The internalized proteins appear to escape the endosome and retain their binding activity within the cells as demonstrated by co-localization with the actin cytoskeleton. Further, since the NK1R is over-expressed in many cancers, SPv-mediated delivery provides a highly specific method for therapeutic utilization of affinity reagents targeting intracellular processes in diseased tissue.
Collapse
|
199
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
200
|
Vandamme D, Rommelaere H, Lambert E, Waterschoot D, Vandekerckhove J, Constantin B, Ampe C. α-Skeletal muscle actin mutants causing different congenital myopathies induce similar cytoskeletal defects in cell line cultures. ACTA ACUST UNITED AC 2009; 66:179-92. [DOI: 10.1002/cm.20340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|