151
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 460] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
152
|
Gabdulkhakov AG, Dontsova MV. Structural studies on photosystem II of cyanobacteria. BIOCHEMISTRY (MOSCOW) 2014; 78:1524-38. [DOI: 10.1134/s0006297913130105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- A G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
153
|
Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M. Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem Sci 2014. [DOI: 10.1039/c3sc52703d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Site-selective X-ray spectroscopy discriminated the cubane and diiron units in the H-cluster of [FeFe]-hydrogenase revealing its electronic and structural configurations.
Collapse
Affiliation(s)
- Camilla Lambertz
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Petko Chernev
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Katharina Klingan
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Nils Leidel
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | | | - Thomas Happe
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Michael Haumann
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| |
Collapse
|
154
|
Linke K, Ho FM. Water in Photosystem II: Structural, functional and mechanistic considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:14-32. [DOI: 10.1016/j.bbabio.2013.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/30/2022]
|
155
|
|
156
|
Angeles-Boza AM, Ertem MZ, Sarma R, Ibañez CH, Maji S, Llobet A, Cramer CJ, Roth JP. Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes. Chem Sci 2014. [DOI: 10.1039/c3sc51919h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Competitive 18O KIEs on water oxidation catalysis provide a probe of transition states for O–O bond formation.
Collapse
Affiliation(s)
| | - Mehmed Z. Ertem
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Rupam Sarma
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| | | | - Somnath Maji
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ)
- 43007 Tarragona, Spain
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Center
- University of Minnesota
- Minneapolis, USA
| | - Justine P. Roth
- Department of Chemistry
- Johns Hopkins University
- Baltimore, USA
| |
Collapse
|
157
|
Siegbahn PEM, Blomberg MRA. Energy Diagrams for Water Oxidation in Photosystem II Using Different Density Functionals. J Chem Theory Comput 2013; 10:268-72. [DOI: 10.1021/ct401039h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
158
|
Yamaguchi K, Shoji M, Isobe H, Kitagawa Y, Yamada S, Kawakami T, Yamanaka S, Okumura M. Theory of chemical bonds in metalloenzymes XVI. Oxygen activation by high-valent transition metal ions in native and artificial systems. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
159
|
Bao H, Dilbeck PL, Burnap RL. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster. PHOTOSYNTHESIS RESEARCH 2013; 116:215-229. [PMID: 23975203 DOI: 10.1007/s11120-013-9907-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry during this final step of H2O-oxidation.
Collapse
Affiliation(s)
- Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK, 74078, USA
| | | | | |
Collapse
|
160
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
161
|
Dilbeck PL, Bao H, Neveu CL, Burnap RL. Perturbing the Water Cavity Surrounding the Manganese Cluster by Mutating the Residue D1-Valine 185 Has a Strong Effect on the Water Oxidation Mechanism of Photosystem II. Biochemistry 2013; 52:6824-33. [DOI: 10.1021/bi400930g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Preston L. Dilbeck
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Han Bao
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Curtis L. Neveu
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Robert L. Burnap
- Department of Microbiology and Molecular
Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
162
|
Smolentsev G, Guda A, Zhang XI, Haldrup K, Andreiadis E, Chavarot-Kerlidou M, Canton SE, Nachtegaal M, Artero V, Sundstrom V. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:17367-17375. [PMID: 24443663 PMCID: PMC3892145 DOI: 10.1021/jp4010554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed.
Collapse
Affiliation(s)
- Grigory Smolentsev
- Lund University, Lund, 22100, Sweden
- Paul Scherrer Insitute, Villigen, 5232, Switzerland
| | - Alexander Guda
- Research center for nanoscale structure of matter, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - XIaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Eugen Andreiadis
- Laboratory of Chemistry and Biology of Metals, CEA,CNRS, University Joseph Fourier, Grenoble, France
| | | | | | | | - Vincent Artero
- Laboratory of Chemistry and Biology of Metals, CEA,CNRS, University Joseph Fourier, Grenoble, France
| | | |
Collapse
|
163
|
Davis KM, Kosheleva I, Henning RW, Seidler GT, Pushkar Y. Kinetic modeling of the X-ray-induced damage to a metalloprotein. J Phys Chem B 2013; 117:9161-9. [PMID: 23815809 DOI: 10.1021/jp403654n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well-known that biological samples undergo X-ray-induced degradation. One of the fastest occurring X-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room-temperature data on the photoreduction of Mn ions in the oxygen-evolving complex (OEC) of photosystem II, one of the most radiation damage-sensitive proteins and a key constituent of natural photosynthesis in plants, green algae, and cyanobacteria. Time-resolved X-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of X-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC Mn(III) and Mn(IV) ions by solvated electrons was determined. From this model, the possible kinetics of X-ray-induced damage at a variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of X-ray-induced damage with increasing rates of dose deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and X-ray free electron laser sources.
Collapse
Affiliation(s)
- Katherine M Davis
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
164
|
Pokhrel R, Service RJ, Debus RJ, Brudvig GW. Mutation of Lysine 317 in the D2 Subunit of Photosystem II Alters Chloride Binding and Proton Transport. Biochemistry 2013; 52:4758-73. [DOI: 10.1021/bi301700u] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ravi Pokhrel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107,
United States
| | - Rachel J. Service
- Department
of Biochemistry, University of California, Riverside, California 92521,
United States
| | - Richard J. Debus
- Department
of Biochemistry, University of California, Riverside, California 92521,
United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107,
United States
| |
Collapse
|
165
|
Vinyard DJ, Ananyev GM, Charles Dismukes G. Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annu Rev Biochem 2013; 82:577-606. [DOI: 10.1146/annurev-biochem-070511-100425] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Vinyard
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540;
| | - Gennady M. Ananyev
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology and the Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854; ,
| |
Collapse
|
166
|
Eckenhoff WT, McNamara WR, Du P, Eisenberg R. Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:958-73. [PMID: 23689026 DOI: 10.1016/j.bbabio.2013.05.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/19/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
The generation of H2 from protons and electrons by complexes of cobalt has an extensive history. During the past decade, interest in this subject has increased as a result of developments in hydrogen generation that are driven electrochemically or photochemically. This article reviews the subject of hydrogen generation using Co complexes as catalysts and discusses the mechanistic implications of the systems studied for making H2. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
167
|
Petrova IO, Kurashov VN, Zaspa AA, Semenov AY, Mamedov MD. Vectorial charge transfer reactions on the donor side of manganese-depleted and reconstituted photosystem 2 core complexes. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:395-402. [PMID: 23590442 DOI: 10.1134/s0006297913040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). Generation of ΔΨ due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1→S2, S2→S3, and S4→S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2.
Collapse
Affiliation(s)
- I O Petrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | | |
Collapse
|
168
|
Nishida Y, Morimoto Y, Lee YM, Nam W, Fukuzumi S. Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)–Oxo Complex via Proton-Coupled Electron Transfer. Inorg Chem 2013; 52:3094-101. [DOI: 10.1021/ic302573x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yusuke Nishida
- Department of Material
and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology (JST),
Suita, Osaka 565-0871, Japan,
| | - Yuma Morimoto
- Department of Material
and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology (JST),
Suita, Osaka 565-0871, Japan,
| | - Yong-Min Lee
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shunichi Fukuzumi
- Department of Material
and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology (JST),
Suita, Osaka 565-0871, Japan,
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
169
|
Chakraborty M, Mandal PC, Mukhopadhyay S. Kinetic studies on oxidation of l-cysteine and 2-mercaptoethanol by a trinuclear Mn(IV) species in aqueous acidic media. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
170
|
Inui Y, Shiro M, Kusukawa T, Fukuzumi S, Kojima T. A triangular prismatic hexanuclear iridium(III) complex bridged by flavin analogues showing reversible redox processes. Dalton Trans 2013; 42:2773-8. [PMID: 23235491 DOI: 10.1039/c2dt32535g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Ir(6)(μ-alloCl(2)(2-))(3)(Cp*)(6)(OH)(3)](PF(6))(3) (1) having 7,8-dichloroalloxazine dianion (alloCl(2)(2-)) as bridging ligands was synthesized and characterized by X-ray crystallography, spectroscopic and electrochemical measurements. The alloxazine ligands showed unprecedented coordination modes to link the six Ir(III) centres. The complex exhibited remarkable stability and reversible six-electron redox processes at the bridging alloxazine ligands in organic solvents. The first reversible reduction process occurred on each of three alloxazine ligands in 1 to produce a three-electron-reduced species, [Ir(III)(6)Cp*(6)(μ-alloCl(2)˙(3-))(3)(OH)(3)], and was observed as an apparent one-step reduction process at -0.65 V (vs. Fc(0/+)). The second reversible reduction process on each of the three alloxazine ligands in 1 was recorded at almost the same potential, -0.78 V (vs. Fc(0/+)), to afford the six-electron-reduced form, [Ir(III)(6)Cp*(6)(μ-alloCl(2)(4-))(3)(OH)(3)](3-). The radical anion of the alloxazine derivative was detected by EPR measurements at room temperature. After the six-electron reduction of 1 with cobaltocene, the backward oxidation processes of reduced forms with p-chloranil were traced by UV-Vis spectroscopy to confirm the recovery of the original spectrum of 1.
Collapse
Affiliation(s)
- Yuji Inui
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, and ALCA (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
171
|
Sigfridsson KGV, Chernev P, Leidel N, Popović-Bijelić A, Gräslund A, Haumann M. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. J Biol Chem 2013; 288:9648-9661. [PMID: 23400774 DOI: 10.1074/jbc.m112.438796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Collapse
Affiliation(s)
| | - Petko Chernev
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Nils Leidel
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany
| | - Ana Popović-Bijelić
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Michael Haumann
- Free University Berlin, Institute of Experimental Physics, 14195 Berlin, Germany.
| |
Collapse
|
172
|
Dobrikova AG, Domonkos I, Sözer Ö, Laczkó-Dobos H, Kis M, Párducz Á, Gombos Z, Apostolova EL. Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. PHYSIOLOGIA PLANTARUM 2013; 147:248-260. [PMID: 22582961 DOI: 10.1111/j.1399-3054.2012.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Influence of the modification of the cyanobacterial light-harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS-less), CK (phycocyanin-less), BE (PSII-PBS-less) and PSI-less/apcE(-) (PSI-less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen-evolving activity, P700 kinetics and energy transfer between the pigment-protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS-PSII macrocomplex (BE mutant) or PSI complex (PSI-less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen-evolving PSII centers depends on the partial or complete elimination of light-harvesting complexes, as the slow operating PSII centers dominate in the PBS-less mutant and in the mutant with detached PBS.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Cox N, Messinger J. Reflections on substrate water and dioxygen formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1020-30. [PMID: 23380392 DOI: 10.1016/j.bbabio.2013.01.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
This brief article aims at presenting a concise summary of all experimental findings regarding substrate water-binding to the Mn4CaO5 cluster in photosystem II. Mass spectrometric and spectroscopic results are interpreted in light of recent structural information of the water oxidizing complex obtained by X-ray crystallography, spectroscopy and theoretical modeling. Within this framework current proposals for the mechanism of photosynthetic water-oxidation are evaluated. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
174
|
Kanady JS, Mendoza-Cortes JL, Tsui EY, Nielsen RJ, Goddard WA, Agapie T. Oxygen Atom Transfer and Oxidative Water Incorporation in Cuboidal Mn3MOn Complexes Based on Synthetic, Isotopic Labeling, and Computational Studies. J Am Chem Soc 2013; 135:1073-82. [DOI: 10.1021/ja310022p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob S. Kanady
- Division of Chemistry and Chemical
Engineering , California Institute of Technology, Pasadena, California 91125, United States
| | - Jose L. Mendoza-Cortes
- Materials and Process Simulation
Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Emily Y. Tsui
- Division of Chemistry and Chemical
Engineering , California Institute of Technology, Pasadena, California 91125, United States
| | - Robert J. Nielsen
- Materials and Process Simulation
Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials and Process Simulation
Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical
Engineering , California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
175
|
Vagnini MT, Mara MW, Harpham MR, Huang J, Shelby ML, Chen LX, Wasielewski MR. Interrogating the photogenerated Ir(iv) state of a water oxidation catalyst using ultrafast optical and X-ray absorption spectroscopy. Chem Sci 2013. [DOI: 10.1039/c3sc51511g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
176
|
Chernev P, Zaharieva I, Dau H, Haumann M. Coordination Changes of Carboxyl Ligands at the QAFeQB Triad in Photosynthetic Reaction Centers Studied by Density-Functional Theory. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-32034-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
177
|
W. Boukhvalov D. Carbon Mono and Dioxide Hydrogenation over Pure and Metal Oxide Decorated Graphene Oxide Substrates: Insight from DFT. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/graphene.2013.23016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
178
|
Fukuzumi S, Mizuno T, Ojiri T. Catalytic electron-transfer oxygenation of substrates with water as an oxygen source using manganese porphyrins. Chemistry 2012; 18:15794-804. [PMID: 23129350 DOI: 10.1002/chem.201202041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Indexed: 11/10/2022]
Abstract
Manganese(V)-oxo-porphyrins are produced by the electron-transfer oxidation of manganese-porphyrins with tris(2,2'-bipyridine)ruthenium(III) ([Ru(bpy)(3)](3+); 2 equiv) in acetonitrile (CH(3)CN) containing water. The rate constants of the electron-transfer oxidation of manganese-porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)(3)](3+) to a solution of olefins (styrene and cyclohexene) in CH(3)CN containing water in the presence of a catalytic amount of manganese-porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese-porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1-phenylethanol using manganese-porphyrins as electron-transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using (18)O-labeled water. The rate constant of the reaction of the manganese(V)-oxo species with cyclohexene was determined directly under single-turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate-determining step in the catalytic electron-transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)(3)](3+) to the manganese-porphyrins.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Japan.
| | | | | |
Collapse
|
179
|
|
180
|
Stötzel J, Lützenkirchen-Hecht D, Grunwaldt JD, Frahm R. T-REX: new software for advanced QEXAFS data analysis. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:920-929. [PMID: 23093750 DOI: 10.1107/s0909049512038599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
New approaches to analyze the data generated by modern time-resolved X-ray absorption spectroscopy instrumentation are presented as part of a new analysis software to handle files containing typically a few thousand EXAFS spectra. Various filter techniques to remove high-frequency noise and run-away values are discussed as well as advanced analysis tools like linear combination fitting, EXAFS fitting, principal component analysis and phase-sensitive detection. These techniques were implemented in a user-friendly graphical user interface to analyse huge data files where it is not possible to treat each spectrum separately. New ideas to exploit existent tools more efficiently for time-resolved EXAFS data analysis are discussed theoretically as well as applied to real measurements, especially in situ catalytic experiments and surface-sensitive reflection-mode X-ray absorption studies of thin film growth.
Collapse
Affiliation(s)
- Jan Stötzel
- Fachbereich C-Physik, Universität Wuppertal, Wuppertal, Germany.
| | | | | | | |
Collapse
|
181
|
Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1639-1653. [PMID: 22784471 DOI: 10.1016/j.jplph.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Photosystem I (PSI) is one of the most efficient biological macromolecular complexes that converts solar energy into condensed energy of chemical bonds. Despite high structural complexity, PSI operates with a quantum yield close to 1.0 and to date, no man-made synthetic system approached this remarkable efficiency. This review highlights recent developments in dissecting molecular structure and function of the prokaryotic and eukaryotic PSI. It also overviews progress in the application of this complex as a natural photocathode for production of hydrogen within the biomimetic solar-to-fuel nanodevices.
Collapse
Affiliation(s)
- Joanna Kargul
- Department of Plant Molecular Physiology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
182
|
Feyziyev Y, Deák Z, Styring S, Bernát G. Electron transfer from Cyt b(559) and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. J Bioenerg Biomembr 2012; 45:111-20. [PMID: 23104119 DOI: 10.1007/s10863-012-9482-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Abstract
The Mn(4)CaO(5) cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P(680), which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y(D)) and Cytochrome b(559) (Cyt b(559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b(559) and Y(D) to the S(2) and S(3) states at 195 K. First, Y(D)(•) and Cyt b(559) were chemically reduced. The S(2) and S(3) states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S(1) state. EPR signals of the WOC (the S(2)-state multiline signal, ML-S(2)), Y(D)(•) and oxidized Cyt b(559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S(2) population decayed to S(1) in the S(2) samples by following a single exponential decay. Differently, S(3) samples showed an initial increase in the ML-S(2) intensity (due to S(3) to S(2) conversion) and a subsequent slow decay due to S(2) to S(1) conversion. In both cases, only a minor oxidation of Y(D) was observed. In contrast, the signal intensity of the oxidized Cyt b(559) showed a two-fold increase in both the S(2) and S(3) samples. The electron donation from Cyt b(559) was much more efficient to the S(2) state than to the S(3) state.
Collapse
Affiliation(s)
- Yashar Feyziyev
- Institute of Botany, 40 Patamdar Shosse, AZ-1073 Baku, Azerbaijan
| | | | | | | |
Collapse
|
183
|
Siegbahn PEM. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1003-19. [PMID: 23103385 DOI: 10.1016/j.bbabio.2012.10.006] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022]
Abstract
The present status of DFT studies on water oxidation in photosystem II is described. It is argued that a full understanding of all steps is close. In each S-transition, the manganese that is oxidized and the proton released are strongly implicated, and structures of all intermediates have been determined. For the S2-state, recent important experimental findings support key elements of the structure and the mechanism. In this mechanism, the O-O bond is formed between an oxyl radical in the center of the cluster and an Mn-bridging μ-oxo ligand, which was suggested already in 2006. The DFT structure of the oxygen evolving complex, suggested in 2008, is very similar to the recent high-resolution X-ray structure. Some new aspects of the interaction between P680 and the OEC are suggested. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
184
|
Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc Natl Acad Sci U S A 2012; 109:16035-40. [PMID: 22988080 DOI: 10.1073/pnas.1206266109] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.
Collapse
|
185
|
Mamedov MD, Kurashov VN, Petrova IO, Semenov AY. Transmembrane electric potential difference in the protein-pigment complex of photosystem 2. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:947-955. [PMID: 23157254 DOI: 10.1134/s0006297912090015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P(680) and the quinone acceptor Q(A), accompanied by re-reduction of P(680)(+) by the redox-active tyrosine residue Y(Z). The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn(4)Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.
Collapse
Affiliation(s)
- M D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | |
Collapse
|
186
|
Suzuki H, Sugiura M, Noguchi T. Determination of the Miss Probabilities of Individual S-State Transitions during Photosynthetic Water Oxidation by Monitoring Electron Flow in Photosystem II Using FTIR Spectroscopy. Biochemistry 2012; 51:6776-85. [DOI: 10.1021/bi300708a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Suzuki
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology
Research Center, Ehime University, Matsuyama,
Ehime 790-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawagchi,
Saitama 332-0012, Japan
| | - Takumi Noguchi
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
187
|
Hasan SS, Cramer WA. On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 2012; 14:13853-60. [PMID: 22890107 DOI: 10.1039/c2cp41386h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering information in the crystal structures of the cytochrome b(6)f complex relevant to the rate-limiting step in oxygenic photosynthesis, it is enigmatic that electron transport in the complex is not limited by the large distance, approximately 26 Å, between the iron-sulfur cluster (ISP) and its electron acceptor, cytochrome f. This enigma has been explained for the respiratory bc(1) complex by a crystal structure with a greatly shortened cluster-heme c(1) distance, leading to a concept of ISP dynamics in which the ISP soluble domain undergoes a translation-rotation conformation change and oscillates between positions relatively close to the cyt c(1) heme and a membrane-proximal position close to the ubiquinol electron-proton donor. Comparison of cytochrome b(6)f structures shows a variation in cytochrome f heme position that suggests the possibility of flexibility and motion of the extended cytochrome f structure that could entail a transient decrease in cluster-heme f distance. The dependence of cyt f turnover on lumen viscosity is consistent with a role of ISP - cyt f dynamics in determination of the rate-limiting step under conditions of low light intensity. Under conditions of low light intensity and proton electrochemical gradient present, for example, under a leaf canopy, it is proposed that a rate limitation of electron transport in the b(6)f complex may also arise from steric constraints in the entry/exit portal for passage of the plastoquinol and -quinone to/from its oxidation site proximal to the iron-sulfur cluster.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
188
|
Davis KM, Mattern BA, Pacold JI, Zakharova T, Brewe D, Kosheleva I, Henning RW, Graber TJ, Heald SM, Seidler GT, Pushkar Y. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature. J Phys Chem Lett 2012; 3:1858-1864. [PMID: 22919444 PMCID: PMC3423219 DOI: 10.1021/jz3006223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn Kβ x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/µm(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/µm(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources.
Collapse
Affiliation(s)
| | - Brian A. Mattern
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Joseph I. Pacold
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Dale Brewe
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Timothy J. Graber
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Steve M. Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
189
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
190
|
Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc Natl Acad Sci U S A 2012; 109:9721-6. [PMID: 22665786 DOI: 10.1073/pnas.1204598109] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the "probe before destroy" approach using an X-ray free electron laser works even for the highly-sensitive Mn(4)CaO(5) cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn(4)CaO(5) cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.
Collapse
|
191
|
Liu X, Wang F. Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.01.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
192
|
Fast structural changes (200-900ns) may prepare the photosynthetic manganese complex for oxidation by the adjacent tyrosine radical. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1196-207. [PMID: 22579714 DOI: 10.1016/j.bbabio.2012.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022]
Abstract
The Mn complex of photosystem II (PSII) cycles through 4 semi-stable states (S(0) to S(3)). Laser-flash excitation of PSII in the S(2) or S(3) state induces processes with time constants around 350ns, which have been assigned previously to energetic relaxation of the oxidized tyrosine (Y(Z)(ox)). Herein we report monitoring of these processes in the time domain of hundreds of nanoseconds by photoacoustic (or 'optoacoustic') experiments involving pressure-wave detection after excitation of PSII membrane particles by ns-laser flashes. We find that specifically for excitation of PSII in the S(2) state, nuclear rearrangements are induced which amount to a contraction of PSII by at least 30Å(3) (time constant of 350ns at 25°C; activation energy of 285+/-50meV). In the S(3) state, the 350-ns-contraction is about 5 times smaller whereas in S(0) and S(1), no volume changes are detectable in this time domain. It is proposed that the classical S(2)=>S(3) transition of the Mn complex is a multi-step process. The first step after Y(Z)(ox) formation involves a fast nuclear rearrangement of the Mn complex and its protein-water environment (~350ns), which may serve a dual role: (1) The Mn- complex entity is prepared for the subsequent proton removal and electron transfer by formation of an intermediate state of specific (but still unknown) atomic structure. (2) Formation of the structural intermediate is associated (necessarily) with energetic relaxation and thus stabilization of Y(Z)(ox) so that energy losses by charge recombination with the Q(A)(-) anion radical are minimized. The intermediate formed within about 350ns after Y(Z)(ox) formation in the S(2)-state is discussed in the context of two recent models of the S(2)=>S(3) transition of the water oxidation cycle. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: From Natural to Artificial.
Collapse
|
193
|
Boussac A, Ishida N, Sugiura M, Rappaport F. Probing the role of chloride in Photosystem II from Thermosynechococcus elongatus by exchanging chloride for iodide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:802-10. [DOI: 10.1016/j.bbabio.2012.02.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
|
194
|
Maji S, Vigara L, Cottone F, Bozoglian F, Benet-Buchholz J, Llobet A. Ligand Geometry Directs OO Bond-Formation Pathway in Ruthenium-Based Water Oxidation Catalyst. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
195
|
Maji S, Vigara L, Cottone F, Bozoglian F, Benet-Buchholz J, Llobet A. Ligand Geometry Directs OO Bond-Formation Pathway in Ruthenium-Based Water Oxidation Catalyst. Angew Chem Int Ed Engl 2012; 51:5967-70. [DOI: 10.1002/anie.201201356] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/22/2012] [Indexed: 11/07/2022]
|
196
|
Extended protein/water H-bond networks in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1177-90. [PMID: 22503827 DOI: 10.1016/j.bbabio.2012.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
197
|
Noguchi T, Suzuki H, Tsuno M, Sugiura M, Kato C. Time-Resolved Infrared Detection of the Proton and Protein Dynamics during Photosynthetic Oxygen Evolution. Biochemistry 2012; 51:3205-14. [DOI: 10.1021/bi300294n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takumi Noguchi
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroyuki Suzuki
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Masaya Tsuno
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology
Research Center, Ehime University, Matsuyama,
Ehime 790-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawauchi,
Saitama 332-0012, Japan
| | - Chihiro Kato
- Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435, Japan
| |
Collapse
|
198
|
Dau H, Zaharieva I, Haumann M. Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 2012; 16:3-10. [DOI: 10.1016/j.cbpa.2012.02.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/27/2022]
|
199
|
Leidel N, Chernev P, Havelius KGV, Ezzaher S, Ott S, Haumann M. Site-Selective X-ray Spectroscopy on an Asymmetric Model Complex of the [FeFe] Hydrogenase Active Site. Inorg Chem 2012; 51:4546-59. [DOI: 10.1021/ic2024154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nils Leidel
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Kajsa G. V. Havelius
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Salah Ezzaher
- University of Uppsala, Department of Chemistry, Ångström
Laboratories, 75120
Uppsala, Sweden
| | - Sascha Ott
- University of Uppsala, Department of Chemistry, Ångström
Laboratories, 75120
Uppsala, Sweden
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| |
Collapse
|
200
|
Sjöholm J, Styring S, Havelius KGV, Ho FM. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model. Biochemistry 2012; 51:2054-64. [PMID: 22352968 DOI: 10.1021/bi2015794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Photochemistry and Molecular Science, Department of Chemistry, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|