151
|
Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV, Fray M, Teboul L, Dear TN, Kelsey G, Peters J. Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet 2011; 7:e1001347. [PMID: 21455290 PMCID: PMC3063750 DOI: 10.1371/journal.pgen.1001347] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 02/18/2011] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs.
Collapse
Affiliation(s)
- Christine M. Williamson
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Simon T. Ball
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Claire Dawson
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Stuti Mehta
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Colin V. Beechey
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Martin Fray
- Medical Research Council Mary Lyon Centre, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Lydia Teboul
- Medical Research Council Mary Lyon Centre, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - T. Neil Dear
- Medical Research Council Mary Lyon Centre, Harwell Science and Innovation Campus, Harwell, United Kingdom
| | - Gavin Kelsey
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Harwell, United Kingdom
| |
Collapse
|
152
|
Abstract
It is widely accepted that ncRNAs (non-coding RNAs), as opposed to protein-coding RNAs, represent the majority of human transcripts; and the regulatory roles of many of these ncRNAs have been elucidated over the past decade. One important role so far recognized for ncRNAs is their participation in the epigenetic regulation of genes. Indeed, it is becoming increasingly apparent that most epigenetic mechanisms of gene expression are controlled by ncRNAs. In this review, the different types of ncRNA that are strongly linked to epigenetic regulation are characterized and their possible mechanisms discussed.
Collapse
|
153
|
Abstract
Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal-zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
154
|
New lessons from random X-chromosome inactivation in the mouse. J Mol Biol 2011; 409:62-9. [PMID: 21329697 DOI: 10.1016/j.jmb.2011.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
X-chromosome inactivation (XCI) ensures dosage compensation in mammals. Random XCI is a process where a single X chromosome is silenced in each cell of the epiblast of mouse female embryos. Operating at the level of an entire chromosome, XCI is a major paradigm for epigenetic processes. Here we review the most recent discoveries concerning the role of long noncoding RNAs, pluripotency factors, and chromosome structure in random XCI.
Collapse
|
155
|
Gontan C, Jonkers I, Gribnau J. Long Noncoding RNAs and X Chromosome Inactivation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:43-64. [PMID: 21287133 DOI: 10.1007/978-3-642-16502-3_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In female somatic cells, one of the two X chromosomes is inactivated to equalize the dose of sex-linked gene products between female and male cells. X chromosome inactivation X chromosome inactivation (XCI) is initiated very early during development and requires Xist Xist , which is a noncoding X-linked gene. Upon initiation of XCI, Xist-RNA spreads along the X chromosome in cis, and Xist spreading is required for the recruitment of different chromatin remodeling complexes involved in the establishment and maintenance of the inactive X chromosome. Because XCI acts chromosomewise, Xist-mediated silencing has served as an important paradigm to study the function of noncoding RNAs (ncRNA) in gene silencing. In this chapter, we describe the current knowledge about the structure and function of Xist. We also discuss the important cis- and trans-regulatory elements and proteins in the initiation, establishment, and maintenance of XCI. In addition, we highlight new findings with other ncRNAs involved in gene repression and discuss these findings in relation to Xist-mediated gene silencing.
Collapse
Affiliation(s)
- Cristina Gontan
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
156
|
Collins LJ. The RNA infrastructure: an introduction to ncRNA networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:1-19. [PMID: 21915779 DOI: 10.1007/978-1-4614-0332-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.
Collapse
Affiliation(s)
- Lesley J Collins
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
157
|
Arora R, Brun CMC, Azzalin CM. TERRA: Long Noncoding RNA at Eukaryotic Telomeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:65-94. [PMID: 21287134 DOI: 10.1007/978-3-642-16502-3_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Telomeres protect the ends of linear eukaryotic chromosomes from being recognized as DNA double-stranded breaks, thereby maintaining the stability of our genome. The highly heterochromatic nature of telomeres had, for a long time, reinforced the idea that telomeres were transcriptionally silent. Since a few years, however, we know that DNA-dependent RNA polymerase II transcribes telomeric DNA into TElomeric Repeat-containing RNA (TERRA) molecules in a large variety of eukaryotes. In this chapter, we summarize the current knowledge of telomere structure and function and extensively review data accumulated on TERRA biogenesis and regulation. We also discuss putative functions of TERRA in preserving telomere stability and propose future directions for research encompassing this novel and exciting aspect of telomere biology.
Collapse
Affiliation(s)
- Rajika Arora
- Institute of Biochemistry, ETHZ-Eidgenössische Technische Hochschule Zürich, CH-8093, Zürich, Switzerland
| | | | | |
Collapse
|
158
|
Long Noncoding RNA and Epigenomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:174-95. [DOI: 10.1007/978-1-4614-0332-6_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
159
|
Kataoka K, Mochizuki K. Programmed DNA elimination in Tetrahymena: a small RNA-mediated genome surveillance mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:156-73. [PMID: 21915788 DOI: 10.1007/978-1-4614-0332-6_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was initially discovered as a post-transcriptional gene silencing mechanism in which short RNAs are used to target complementary RNAs for degradation. During the past several years, it has been demonstrated that RNAi-related processes are also involved in transcriptional gene silencing by directing formation of heterochromatin. The dynamic DNA rearrangement during sexual reproduction of the ciliated protozoan Tetrahymena provides an extreme example of RNAi-directed heterochromatin formation. In this process, small RNAs of ∼28-29 nt, which are processed by the Dicer-like protein Dcl1p and are associated with the Argonaute family protein Twi1p, induce heterochromatin formation at complementary genomic sequences by recruiting the histone H3 lysine 9/27 methyltransferase Ezl1p and chromodomain proteins. Eventually these heterochromatinized regions are targeted for DNA elimination. In many eukaryotes, one of the major roles for RNAi-related mechanisms is silencing transposons, and DNA elimination in Tetrahymena is also believed to have evolved as a transposon defense by removing transposon-related sequences from the somatic genome. Because DNA elimination is achieved by the coordinated actions of noncoding RNA transcription, RNA processing, RNA transport, RNA-RNA and RNA-protein interactions, RNA degradation and RNA-directed chromatin modifications, DNA elimination in Tetrahymena is a useful model to study 'RNA infrastructure'.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
160
|
Wutz A. RNA-mediated silencing mechanisms in mammalian cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:351-76. [PMID: 21507358 DOI: 10.1016/b978-0-12-387685-0.00011-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noncoding RNAs are a structural component of the nuclear scaffold and have been implicated in controlling gene expression. In mammals, long noncoding RNAs contribute to the regulation of imprinted gene expression, dosage compensation, development, and tumorigenesis. RNA is also a component of pericentric heterochromatin, and transcripts have been identified at the chromosomal telomeres. The functions of noncoding RNAs are likely diverse, and their underlying mechanisms are just beginning to be understood. Several noncoding RNAs interact with chromatin-modifying complexes and might have a role in targeting chromatin modifications to specific regions of the genome. This suggests a prominent function of RNA in establishing histone modification and DNA methylation patterns in development. Studies on model systems such as X inactivation, the regulation of the Hox clusters, and genomic imprinting have begun to shed light on the role of noncoding RNAs in chromosomal organization and regulation of gene expression. Well-studied examples of noncoding RNAs include Xist, Air, Kcnq1ot1, HOTAIR, and Tsix. Here, a concise review of noncoding RNA function in mammals is given, and the present understanding and future directions of the field are summarized.
Collapse
Affiliation(s)
- Anton Wutz
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
161
|
Zhao L, Zhao G, Xi H, Liu Y, Wu K, Zhou H. Molecular and DNA methylation analysis of Peg10 and Xist gene in sheep. Mol Biol Rep 2010; 38:3495-504. [PMID: 21113679 DOI: 10.1007/s11033-010-0460-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022]
Abstract
Peg10 is a maternally imprinted gene located in the imprinted domain of human chromosome 7q21 and mouse proximal chromosome 6. It is predominantly expressed in, and participates in the formation of, the placenta. Moreover, Peg10 is overexpressed in hepatocellular carcinoma, and is involved in hepatocarcinogenesis. The large noncoding RNA Xist has been shown to direct the female mammalian X chromatosome dosage compensation pathway. In the present study, we obtained partial cDNA sequences of sheep Peg10 and Xist. mRNA expression analysis in nine organs showed that they were universally expressed in two-day old lambs. The mRNA expression profile of Peg10 showed similar tissue specificity to pig, but was different compared with human and mouse. We concluded that the Peg10 mRNA expression profile was species specific. However, there was little difference in Xist expression between nine tissues of female lambs. Using bisulfite sequencing, we revealed that the first exon of Xist was either completely methylated or completely unmethylated, indicating that the newly obtained fragment of Xist was also differentially methylated in sheep as the DMR of Peg10. We did not find tissue specific DNA methylation of Xist, consistent with the Xist mRNA expression profile.
Collapse
Affiliation(s)
- Lixia Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | | | | | | | | | | |
Collapse
|
162
|
Tian D, Sun S, Lee JT. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 2010; 143:390-403. [PMID: 21029862 PMCID: PMC2994261 DOI: 10.1016/j.cell.2010.09.049] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/06/2010] [Accepted: 09/17/2010] [Indexed: 11/30/2022]
Abstract
Once protein-coding, the X-inactivation center (Xic) is now dominated by large noncoding RNAs (ncRNA). X chromosome inactivation (XCI) equalizes gene expression between mammalian males and females by inactivating one X in female cells. XCI requires Xist, an ncRNA that coats the X and recruits Polycomb proteins. How Xist is controlled remains unclear but likely involves negative and positive regulators. For the active X, the antisense Tsix RNA is an established Xist repressor. For the inactive X, here, we identify Xic-encoded Jpx as an Xist activator. Jpx is developmentally regulated and accumulates during XCI. Deleting Jpx blocks XCI and is female lethal. Posttranscriptional Jpx knockdown recapitulates the knockout, and supplying Jpx in trans rescues lethality. Thus, Jpx is trans-acting and functions as ncRNA. Furthermore, ΔJpx is rescued by truncating Tsix, indicating an antagonistic relationship between the ncRNAs. We conclude that Xist is controlled by two RNA-based switches: Tsix for Xa and Jpx for Xi.
Collapse
Affiliation(s)
- Di Tian
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, and Department of Pathology, Massachusetts General Hospital
| | - Sha Sun
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, and Department of Pathology, Massachusetts General Hospital
| | - Jeannie T. Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, and Department of Pathology, Massachusetts General Hospital
| |
Collapse
|
163
|
Ahn JY, Lee JT. Retinoic acid accelerates downregulation of the Xist repressor, Oct4, and increases the likelihood of Xist activation when Tsix is deficient. BMC DEVELOPMENTAL BIOLOGY 2010; 10:90. [PMID: 20727175 PMCID: PMC2933617 DOI: 10.1186/1471-213x-10-90] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Background Imbalances in X-linked gene dosage between the sexes are resolved by transcriptionally silencing one of two X-chromosomes in female cells of the early mammalian embryo. X-inactivation is triggered by expression of the non-coding Xist gene. In turn, Xist is dually regulated by the antisense Tsix RNA and by the Oct4 pluripotency factor. Although there is general agreement that Tsix is an inhibitor of Xist, some laboratories have observed ectopic Xist induction in differentiating male ES cells when Tsix is mutated, whereas we have not observed significant changes in Xist. These observational differences have led to fundamentally diverse models of X-chromosome counting. Here, we investigate if different methods of cell differentiation and use of all -trans retinoic acid (RA) could be causative factors and how they might impact Xist expression. Results We compared suspension and cell-adhesion cultures in the presence or absence of RA and find that RA significantly impacts Xist expression in Tsix-mutant male cells. Whereas the standard embryoid body method infrequently leads to ectopic Xist expression, adding RA generates a significant number of Xist-positive male cells. However, while normal Xist clouds in wild-type female cells are robust and well-circumscribed, those found in the RA-treated mutant males are loosely dispersed. Furthermore, ectopic Xist expression does not generally lead to complete gene silencing. We attribute the effect of RA on Xist to RA's repressive influence on Oct4, a pluripotency factor recently shown to regulate Tsix and Xist. RA-treated ES cells exhibit accelerated decreases in Oct4 RNA levels and also display accelerated loss of binding to Xist intron 1. When Tsix is deficient, the faster kinetics of Oct4 loss tip the equilibrium towards Xist expression. However, the aberrant Xist clusters are unlikely to explain elevated cell death, as X-linked silencing does not necessarily correlate with the qualitatively aberrant Xist clusters. Conclusions We conclude that RA treatment leads to premature downregulation of Oct4 and partial derepression of Xist irrespective of X-chromosome counting. RA-induced Xist clusters in male cells do not result in global or stable silencing, and excess cell death is not observed. These data and RA's known pleiotropic effects on ES transcription networks suggest that RA differentation bypasses normal X-inactivation controls and should be used judiciously. We propose that the likelihood of Xist expression is determined by a balance of multiple Xist activators and repressors, and that levels of Oct4 and Tsix are crucial toward achieving this balance.
Collapse
Affiliation(s)
- Janice Y Ahn
- Department of Molecular Biology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School Boston, MA 02114 USA
| | | |
Collapse
|
164
|
Khalil AM, Driscoll DJ. Epigenetic regulation of pericentromeric heterochromatin during mammalian meiosis. Cytogenet Genome Res 2010; 129:280-9. [PMID: 20606401 DOI: 10.1159/000315903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian meiosis is a process that allows diploid progenitor germ cells to produce haploid gametes after proceeding through 2 rounds of cell divisions. The first division (MI) is unique and results in the separation of homologous chromosomes, while the second division (MII) leads to the separation of sister chromatids similar to a somatic cell division. However, the mechanisms by which meiotic cells regulate their 2 very different cell divisions are not well understood. We postulated a role for epigenetic chromatin modifications in regulating these processes. We found prior to the onset of MI that pericentromeric heterochromatic regions, which are enriched with histone H3K9me2 throughout meiosis, become enriched at late pachytene with H3S10ph and at diplotene with H4K5ace and H4K16ace, but remain underacetylated at other sites examined. RNA polymerase II, which is clearly excluded from pericentromeric heterochromatin at pachytene, becomes exclusively associated with these regions from diplotene to MI. By contrast, pericentromeric heterochromatic regions at MII are not engaged by RNA polymerase II nor enriched with H3S10ph. Furthermore, we found DICER to localize exclusively to pericentromeric heterochromatin at MI, but not MII. These results are significant since they suggest: (1) that distinct chromatin modifications differentiate the 2 meiotic divisions; (2) a role for repetitive DNA elements and RNAi in mammalian meiosis; (3) H3K9me2 is not sufficient to block RNA polymerase II elongation through heterochromatin, and (4) H3S10ph provides a 'binary switch' to activate transcription in heterochromatin.
Collapse
Affiliation(s)
- A M Khalil
- Division of Genetics and Metabolism, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Fla 32610-0296, USA
| | | |
Collapse
|
165
|
Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:2-21. [PMID: 21956903 DOI: 10.1002/wrna.5] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not all long, polyadenylated cellular RNAs encode polypeptides. In recent years, it has become apparent that a number of organisms express abundant amounts of transcripts that lack open reading frames or that are retained in the nucleus. Rather than accumulating silently in the cell, we now know that many of these long noncoding RNAs (lncRNAs) play important roles in nuclear architecture or in the regulation of gene expression. Here, we discuss some recent progress in our understanding of the functions of a number of important lncRNAs in mammalian cells.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
166
|
Abstract
X inactivation is the process that brings about the dosage equivalence of X-linked genes in females to that of males. This complex process initiated at a very early stage of female embryonic development is orchestrated by long non-coding RNAs transcribed in both sense and antisense orientation. Recent studies present contradicting evidence for the role of small RNAs and RNase III enzyme Dicer in the X inactivation process. In this review, I discuss these results in the overall perspective of X inactivation and gene silencing.
Collapse
Affiliation(s)
- Satya K Kota
- Institute of Molecular Genetics, CNRS, UMR5535, 34293 Montpelier Cedex 5, France.
| |
Collapse
|
167
|
Chen LL, Carmichael GG. Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 2010; 22:357-64. [PMID: 20356723 PMCID: PMC2916961 DOI: 10.1016/j.ceb.2010.03.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/15/2010] [Accepted: 03/03/2010] [Indexed: 01/22/2023]
Abstract
Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Department of Genetics and Developmental Biology University of Connecticut Stem Cell Institute University of Connecticut Health Center Farmington, CT 06030-3301
| | - Gordon G. Carmichael
- Department of Genetics and Developmental Biology University of Connecticut Stem Cell Institute University of Connecticut Health Center Farmington, CT 06030-3301
| |
Collapse
|
168
|
Abstract
The X-linked region now known as the "X-inactivation center" (Xic) was once dominated by protein-coding genes but, with the rise of Eutherian mammals some 150-200 million years ago, became infiltrated by genes that produce long noncoding RNA (ncRNA). Some of the noncoding genes have been shown to play crucial roles during X-chromosome inactivation (XCI), including the targeting of chromatin modifiers to the X. The rapid establishment of ncRNA hints at a possible preference for long transcripts in some aspects of epigenetic regulation. This article discusses the role of RNA in XCI and considers the advantages RNA offers in delivering allelic, cis-limited, and locus-specific control. Unlike proteins and small RNAs, long ncRNAs are tethered to the site of transcription and effectively tag the allele of origin. Furthermore, long ncRNAs are drawn from larger sequence space than proteins and can mark a unique region in a complex genome. Thus, like their small RNA cousins, long ncRNAs may emerge as versatile and powerful regulators of the epigenome.
Collapse
|
169
|
Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA, Cowan C, Zhong S. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 2010; 20:804-15. [PMID: 20219939 DOI: 10.1101/gr.100594.109] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian preimplantation embryonic development (PED) is thought to be governed by highly conserved processes. While it had been suggested that some plasticity of conserved signaling networks exists among different mammalian species, it was not known to what extent modulation of the genomes and the regulatory proteins could "rewire" the gene regulatory networks (GRN) that control PED. We therefore generated global transcriptional profiles from three mammalian species (human, mouse, and bovine) at representative stages of PED, including: zygote, two-cell, four-cell, eight-cell, 16-cell, morula and blastocyst. Coexpression network analysis suggested that 40.2% orthologous gene triplets exhibited different expression patterns among these species. Combining the expression data with genomic sequences and the ChIP-seq data of 16 transcription regulators, we observed two classes of genomic changes that contributed to interspecies expression difference, including single nucleotide mutations leading to turnover of transcription factor binding sites, and insertion of cis-regulatory modules (CRMs) by transposons. About 10% of transposons are estimated to carry CRMs, which may drive species-specific gene expression. The two classes of genomic changes act in concert to drive mouse-specific expression of MTF2, which links POU5F1/NANOG to NOTCH signaling. We reconstructed the transition of the GRN structures as a function of time during PED. A comparison of the GRN transition processes among the three species suggested that in the bovine system, POU5F1's interacting partner SOX2 may be replaced by HMGB1 (a TF sharing the same DNA binding domain with SOX2), resulting in rewiring of GRN by a trans change.
Collapse
Affiliation(s)
- Dan Xie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220:126-39. [PMID: 19882673 DOI: 10.1002/path.2638] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI-interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein-coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
171
|
Sibley CR, Seow Y, Wood MJA. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 2010; 18:466-76. [PMID: 20087319 DOI: 10.1038/mt.2009.306] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The past decade has seen intense scientific interest in non-coding RNAs. In particular, the discovery and subsequent exploitation of gene silencing via RNA interference (RNAi) has revolutionized the way in which gene expression is now studied and understood. It is now well established that post-transcriptional gene silencing (PTGS) by the microRNA (miRNA) and other RNAi-associated pathways represents an essential layer of complexity to gene regulation. Gene silencing using RNAi additionally demonstrates huge potential as a therapeutic strategy for eliminating pathogenic gene expression. Yet despite the early promise and excitement of gene-specific silencing, several critical hurdles remain to be overcome before widespread clinical adoption. These include off-target effects, toxicity due to saturation of the endogenous RNAi functions, limited duration of silencing, and effective targeted delivery. In recent years, a range of novel strategies for producing RNA-mediated silencing have been developed that can circumvent many of these hurdles, including small internally segmented interfering RNAs, tandem hairpin RNAs, and pri-miRNA cluster mimics. This review discusses RNA-mediated silencing in light of this recent research, and highlights the benefits and limitations conferred by these novel gene-silencing strategies.
Collapse
Affiliation(s)
- Christopher R Sibley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
172
|
Barakat TS, Jonkers I, Monkhorst K, Gribnau J. X-changing information on X inactivation. Exp Cell Res 2010; 316:679-87. [PMID: 20083102 DOI: 10.1016/j.yexcr.2010.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 10/20/2022]
Abstract
In female somatic cells of mammalian species one X chromosome is inactivated to ensure dosage equality of X-encoded genes between females and males, during development and adulthood. X chromosome inactivation (XCI) involves various epigenetic mechanisms, including RNA mediated gene silencing in cis, DNA methylation, and changes in chromatin modifications and composition. XCI therefore provides an attractive paradigm to study epigenetic gene regulation in a more general context. The XCI process starts with counting of the number of X chromosomes present in a nucleus, and initiation of XCI follows if this number exceeds one per diploid genome. Recently, X-encoded RNF12 has been identified as a dose-dependent activator of XCI. In addition, other factors, including the pluripotency factors OCT4, SOX2 and Nanog, have been implicated to play a role in suppression of initiation of XCI. In this review, we highlight and explain these new and old findings in the context of a stochastic model for X chromosome counting and XCI initiation.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, Room Ee 09-71, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
173
|
Leeb M, Wutz A. Mechanistic concepts in X inactivation underlying dosage compensation in mammals. Heredity (Edinb) 2010; 105:64-70. [DOI: 10.1038/hdy.2009.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
174
|
Spigoni G, Gedressi C, Mallamaci A. Regulation of Emx2 expression by antisense transcripts in murine cortico-cerebral precursors. PLoS One 2010; 5:e8658. [PMID: 20066053 PMCID: PMC2799550 DOI: 10.1371/journal.pone.0008658] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Emx2 encodes for a transcription factor expressed in the embryonic intermediate mesoderm and central nervous system (CNS). It is implicated in several aspects of cerebral cortex development, including morphogenetic field specification, arealization, precursor proliferation and lamination. Four Emx2-associated antisense transcripts have been found in the urogenital system; one of them, Emx2OS, has been also detected in the adult brain. Until now, however, nothing is known about expression and function of Emx2OS in the developing CNS. Methodology/Principal Findings By quantitative RT-PCR and in situ hybridization, we reconstructed the Emx2OS expression profile in the embryonic CNS, paying special attention to the developing cerebral cortex. Emx2OS was observed in a number of CNS structures expressing also Emx2. Within the cortex, Emx2OS was detectable in periventricular precursors, expressing the sense transcript, and peaked in newly born post-mitotic neurons not expressing such transcript. By integrating lentiviral gene delivery, RNAi, TetON technology, morpholino-mediated gene knock-down, drug-induced perturbation of gene expression, and quantitative RT-PCR, we addressed possible roles of Ex2 antisense RNA in Emx2 regulation, in primary CNS precursor cultures. We found that, in both cortical precursors and their neuronal progenies, Emx2 antisense RNA contributes to post-transcriptional down-regulation of its sense partner, possibly by a Dicer-promoted mechanism. The same RNA, when delivered to rhombo-spinal precursors, stimulates ectopic expression of Emx2, whereas Emx2 knock-out dramatically impairs Emx2OS transcription. This suggests that, within the developing CNS, a reciprocal Emx2/Emx2OS regulatory loop may normally sustain transcription at the Emx2 locus. Conclusions/Significance This study shows that antisense transcripts may contribute to developmental regulation of a key transcription factor gene implicated in CNS patterning, possibly by complex and multilevel mechanisms. The activation of Emx2 by a short antisense transcript may be a prototype of a method for overexpressing single specific genes, without introducing additional copies of them into the genome.
Collapse
Affiliation(s)
- Giulia Spigoni
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Chiara Gedressi
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | - Antonello Mallamaci
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
- * E-mail:
| |
Collapse
|
175
|
Barakat TS, Gribnau J. X chromosome inactivation and embryonic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:132-54. [PMID: 21222204 DOI: 10.1007/978-1-4419-7037-4_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X chromosome inactivation (XCI) is a process required to equalize the dosage of X-encoded genes between female and male cells. XCI is initiated very early during female embryonic development or upon differentiation of female embryonic stem (ES) cells and results in inactivation of one X chromosome in every female somatic cell. The regulation of XCI involves factors that also play a crucial role in ES cell maintenance and differentiation and the XCI process therefore provides a beautiful paradigm to study ES cell biology. In this chapter we describe the important cis and trans acting regulators of XCI and introduce the models that have been postulated to explain initiation of XCI in female cells only. We also discuss the proteins involved in the establishment of the inactive X chromosome and describe the different chromatin modifications associated with the inactivation process. Finally, we describe the potential of mouse and human ES and induced pluripotent stem (iPS) cells as model systems to study the XCI process.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, University Medical Center, Room Ee 09-71, Erasmus MC, 3015 GE, Rotterdam, Netherlands
| | | |
Collapse
|
176
|
Coy S, Vasiljeva L. The exosome and heterochromatin : multilevel regulation of gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:105-21. [PMID: 21713681 DOI: 10.1007/978-1-4419-7841-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Heterochromatic silencing is important for repressing gene expression, protecting cells against viral invasion, maintaining DNA integrity and for proper chromosome segregation. Recently, it has become apparent that expression of eukaryotic genomesis far more complex than had previously been anticipated. Strikingly, it has emerged that most of the genome is transcribed including intergenic regions and heterochromatin, calling for us to re-address the question of how gene silencing is regulated and re-evaluate the concept ofheterochromatic regions of the genome being transcriptionally inactive. Although heterochromatic silencing can be regulated at the transcriptional level, RNA degrading activities supplied either by the exosome complex or RNAi also significantly contribute to this process. The exosome also regulates noncoding RNAs (ncRNAs) involved in the establishment of heterochromatin, further underscoring its role as the major cellular machinery involved in RNA processing and turn-over. This multilevel control of the transcriptome may be utilized to ensure greater accuracy of gene expression and allow distinction between functional transcripts and background noise. In this chapter, we will discuss the regulation of gene silencing across species, with special emphasis on the exosome's contribution to the process. We will also discuss the links between transcriptional and posttranscriptional mechanisms for gene silencing and their impact on the regulation of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | |
Collapse
|
177
|
Seim I, Amorim L, Walpole C, Carter S, Chopin LK, Herington AC. Ghrelin gene-related peptides: Multifunctional endocrine / autocrine modulators in health and disease. Clin Exp Pharmacol Physiol 2010; 37:125-31. [DOI: 10.1111/j.1440-1681.2009.05241.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
178
|
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 2009; 1178:29-46. [PMID: 19845626 DOI: 10.1111/j.1749-6632.2009.04991.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the birth of molecular biology it has been generally assumed that most genetic information is transacted by proteins, and that RNA plays an intermediary role. This led to the subsidiary assumption that the vast tracts of noncoding sequences in the genomes of higher organisms are largely nonfunctional, despite the fact that they are transcribed. These assumptions have since become articles of faith, but they are not necessarily correct. I propose an alternative evolutionary history whereby developmental and cognitive complexity has arisen by constructing sophisticated RNA-based regulatory networks that interact with generic effector complexes to control gene expression patterns and the epigenetic trajectories of differentiation and development. Environmental information can also be conveyed into this regulatory system via RNA editing, especially in the brain. Moreover, the observations that RNA-directed epigenetic changes can be inherited raises the intriguing question: has evolution learnt how to learn?
Collapse
Affiliation(s)
- John S Mattick
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
179
|
Epigenetics: advances of non-coding RNAs regulation in mammalian cells. YI CHUAN = HEREDITAS 2009; 31:1077-86. [DOI: 10.3724/sp.j.1005.2009.01077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
180
|
|
181
|
Abstract
Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion ( approximately 15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, approximately 80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.
Collapse
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA.
| | | |
Collapse
|
182
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
183
|
Abstract
Transcriptome studies are revealing that the eukaryotic genome actively transcribes a diverse repertoire of large noncoding RNAs (ncRNAs), many of which are unannotated and distinct from the small RNAs that have garnered much attention in recent years. Why are they so pervasive, and do they have a function? X-chromosome inactivation (XCI) is a classic epigenetic phenomenon associated with many large ncRNAs. Here, I provide a perspective on how XCI is achieved in mice and suggest how this knowledge can be applied to the rest of the genome. Emerging data indicate that long ncRNAs can function as guides and tethers, and may be the molecules of choice for epigenetic regulation: First, unlike proteins and small RNAs, large ncRNAs remain tethered to the site of transcription, and can therefore uniquely direct allelic regulation. Second, ncRNAs command a much larger sequence space than proteins, and can therefore achieve very precise spatiotemporal control of development. These properties imply that long noncoding transcripts may ultimately rival small RNAs and proteins in their versatility as epigenetic regulators, particularly for locus- and allele-specific control.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
184
|
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23:1494-504. [PMID: 19571179 DOI: 10.1101/gad.1800909] [Citation(s) in RCA: 1865] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most of the eukaryotic genome is transcribed, yielding a complex network of transcripts that includes tens of thousands of long noncoding RNAs with little or no protein-coding capacity. Although the vast majority of long noncoding RNAs have yet to be characterized thoroughly, many of these transcripts are unlikely to represent transcriptional "noise" as a significant number have been shown to exhibit cell type-specific expression, localization to subcellular compartments, and association with human diseases. Here, we highlight recent efforts that have identified a myriad of molecular functions for long noncoding RNAs. In some cases, it appears that simply the act of noncoding RNA transcription is sufficient to positively or negatively affect the expression of nearby genes. However, in many cases, the long noncoding RNAs themselves serve key regulatory roles that were assumed previously to be reserved for proteins, such as regulating the activity or localization of proteins and serving as organizational frameworks of subcellular structures. In addition, many long noncoding RNAs are processed to yield small RNAs or, conversely, modulate how other RNAs are processed. It is thus becoming increasingly clear that long noncoding RNAs can function via numerous paradigms and are key regulatory molecules in the cell.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
185
|
Pang KC, Dinger ME, Mercer TR, Malquori L, Grimmond SM, Chen W, Mattick JS. Genome-wide identification of long noncoding RNAs in CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:7738-48. [PMID: 19494298 DOI: 10.4049/jimmunol.0900603] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous research into the molecular mechanisms that underlie Ag-specific CD8(+) T cell differentiation and function has largely focused on the role of proteins. However, it is now apparent that the mammalian genome expresses large numbers of long (>200 nt) nonprotein-coding RNAs (ncRNAs), and there is increasing evidence that these RNAs have important regulatory functions, particularly in the regulation of epigenetic processes underpinning cell differentiation. In this study, we show that CD8(+) T cells express hundreds of long ncRNAs, many of which are lymphoid-specific and/or change dynamically with lymphocyte differentiation or activation. Numerous ncRNAs surround or overlap immunologically important protein-coding genes and can be predicted to function via a range of regulatory mechanisms. The overlap of many long ncRNAs expressed in CD8(+) T cells with microRNAs and small interfering RNAs further suggests that long ncRNAs may be processed into and exert their effects via smaller functional species. Finally, we show that the majority of long ncRNAs expressed in CD8(+) T cells harbor signatures of evolutionary conservation, secondary structures, and/or regulated promoters, further supporting their functionality. Taken together, our findings represent the first systematic discovery of long ncRNAs expressed in CD8(+) T cells and suggest that many of these transcripts are likely to play a role in adaptive immunity.
Collapse
Affiliation(s)
- Ken C Pang
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
CTCF is a ubiquitous transcription factor that is involved in numerous, seemingly unrelated functions. These functions include, but are not limited to, positive or negative regulation of transcription, enhancer-blocking activities at developmentally regulated gene clusters and at imprinted loci, and X-chromosome inactivation. Here, we review recent data acquired with state-of-the-art technologies that illuminate possible mechanisms behind the diversity of CTCF functions. CTCF interacts with numerous protein partners, including cohesin, nucleophosmin, PARP1, Yy1 and RNA polymerase II. We propose that CTCF interacts with one or two different partners according to the biological context, applying the Roman principle of governance, 'divide and rule' (divide et impera).
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
187
|
Abstract
The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non-protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia.
| |
Collapse
|
188
|
Abstract
Telomeric regions are known to be transcribed in several organisms. Although originally reported to be transcribed from all chromosomes with enrichment near the inactive X of female cells, we show that telomeric RNAs in fact are enriched on both sex chromosomes of the mouse in a developmentally specific manner. In female stem cells, both active Xs are marked by the RNAs. In male stem cells, both the X and the Y accumulate telomeric RNA. Distribution of telomeric RNAs changes during cell differentiation, after which they associate only with the heterochromatic sex chromosomes of each sex. FISH mapping suggests that accumulated telomeric RNAs localize at the distal telomeric end. Interestingly, telomeric expression changes in cancer and during cellular stress. Furthermore, RNA accumulation increases in Dicer-deficient stem cells, suggesting direct or indirect links to RNAi. We propose that telomeric RNAs are tied to cell differentiation and may be used to mark pluripotency and disease.
Collapse
|
189
|
Xist gene regulation at the onset of X inactivation. Curr Opin Genet Dev 2009; 19:122-6. [DOI: 10.1016/j.gde.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
|
190
|
Hawkins PG, Santoso S, Adams C, Anest V, Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 2009; 37:2984-95. [PMID: 19304753 PMCID: PMC2685082 DOI: 10.1093/nar/gkp127] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Small RNAs targeted to gene promoters in human cells can mediate transcriptional gene silencing (TGS) by directing silent state epigenetic modifications to targeted loci. Many mechanistic details of this process remain poorly defined, and the ability to stably modulate gene expression in this manner has not been explored. Here we describe the mechanisms of establishment and maintenance of long-term transcriptional silencing of the human ubiquitin C gene (UbC). Sustained targeting of the UbC promoter with a small RNA for a minimum of 3 days resulted in long-term silencing which correlated with an early increase in histone methylation and a later increase in DNA methylation at the targeted locus. Transcriptional silencing of UbC required the presence of a promoter-associated RNA. The establishment and maintenance of the TGS were shown to require distinct protein factors. Argonaute 1 (Ago1), DNA methyltransferase 3a (DNMT3a) and histone deacetylase 1 (HDAC1) were required for the initiation of silencing, and DNA methyltransferase 1 (DNMT1) was necessary for maintenance. Taken together the data presented here highlight the cellular pathway with which noncoding RNAs interact to epigenetically regulate gene expression in human cells.
Collapse
Affiliation(s)
- Peter G Hawkins
- Department of Molecular and Experimental Medicine, Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
191
|
Genomic imprinting in Singapore. EMBO Rep 2009; 10:222-7. [DOI: 10.1038/embor.2009.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/27/2009] [Indexed: 11/08/2022] Open
|
192
|
Lee TL, Pang ALY, Rennert OM, Chan WY. Genomic landscape of developing male germ cells. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:43-63. [PMID: 19306351 PMCID: PMC2939912 DOI: 10.1002/bdrc.20147] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% - 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.
Collapse
Affiliation(s)
- Tin-Lap Lee
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alan Lap-Yin Pang
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Owen M. Rennert
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Wai-Yee Chan
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Department of Pediatrics, Georgetown University College of Medicine, Washington, DC
| |
Collapse
|
193
|
|
194
|
Zakharova IS, Shevchenko AI, Zakian SM. Monoallelic gene expression in mammals. Chromosoma 2009; 118:279-90. [PMID: 19242715 DOI: 10.1007/s00412-009-0206-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/06/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Three systems of monoallelic gene expression in mammals are known, namely, X-chromosome inactivation, imprinting, and allelic exclusion. In all three systems, monoallelic expression is regulated epigenetically and is frequently directed by long non-coding RNAs (ncRNAs). This review briefs all three systems of monoallelic gene expression in mammals focusing on chromatin modifications, spatial chromosome organization in the nucleus, and the functioning of ncRNAs.
Collapse
Affiliation(s)
- Irina S Zakharova
- Siberian Department, Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
195
|
Abstract
RNA is not only a messenger operating between DNA and protein. Transcription of essentially the entire eukaryotic genome generates a myriad of non-protein-coding RNA species that show complex overlapping patterns of expression and regulation. Although long noncoding RNAs (lncRNAs) are among the least well-understood of these transcript species, they cannot all be dismissed as merely transcriptional "noise." Here, we review the evolution of lncRNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease.
Collapse
Affiliation(s)
- Chris P Ponting
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| | | | | |
Collapse
|
196
|
Kanduri C, Whitehead J, Mohammad F. The long and the short of it: RNA-directed chromatin asymmetry in mammalian X-chromosome inactivation. FEBS Lett 2009; 583:857-64. [PMID: 19302783 DOI: 10.1016/j.febslet.2009.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 01/07/2023]
Abstract
Mammalian X-chromosome inactivation is controlled by a multilayered silencing pathway involving both short and long non-coding RNAs, which differentially recruit the epigenetic machinery to establish chromatin asymmetries. In response to developmentally regulated small RNAs, dicer, a key effector of RNA interference, locally silences Xist on the active X-chromosome and establishes the heterochromatin conformation along the silent X-chromosome. The 1.6 kb RepA RNA initiates silencing by targeting the PRC2 polycomb complex to the inactive X-chromosome. In addition, the nuclear microenvironment is implicated in the initiation and maintenance of X-chromosome asymmetries. Here we review new findings involving these various RNA species in terms of understanding Xist gene regulation and the establishment of X-chromosome inactivation.
Collapse
Affiliation(s)
- Chandrasekhar Kanduri
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
197
|
Abstract
The development of genetic sex determination and cytologically distinct sex chromosomes leads to the potential problem of gene dosage imbalances between autosomes and sex chromosomes and also between males and females. To circumvent these imbalances, mammals have developed an elaborate system of dosage compensation that includes both upregulation and repression of the X chromosome. Recent advances have provided insights into the evolutionary history of how both the imprinted and random forms of X chromosome inactivation have come about. Furthermore, our understanding of the epigenetic switch at the X-inactivation center and the molecular aspects of chromosome-wide silencing has greatly improved recently. Here, we review various facets of the ever-expanding field of mammalian dosage compensation and discuss its evolutionary, developmental, and mechanistic components.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
198
|
Redrup L, Branco MR, Perdeaux ER, Krueger C, Lewis A, Santos F, Nagano T, Cobb BS, Fraser P, Reik W. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development 2009; 136:525-30. [PMID: 19144718 PMCID: PMC2685953 DOI: 10.1242/dev.031328] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs are implicated in a number of regulatory functions in eukaryotic genomes. The paternally expressed long noncoding RNA (ncRNA) Kcnq1ot1 regulates epigenetic gene silencing in an imprinted gene cluster in cis over a distance of 400 kb in the mouse embryo, whereas the silenced region extends over 780 kb in the placenta. Gene silencing by the Kcnq1ot1 RNA involves repressive histone modifications, including H3K9me2 and H3K27me3, which are partly brought about by the G9a and Ezh2 histone methyltransferases. Here, we show that Kcnq1ot1 is transcribed by RNA polymerase II, is unspliced, is relatively stable and is localised in the nucleus. Analysis of conditional Dicer mutants reveals that the RNAi pathway is not involved in gene silencing in the Kcnq1ot1 cluster. Instead, using RNA/DNA FISH we show that the Kcnq1ot1 RNA establishes a nuclear domain within which the genes that are epigenetically inactivated in cis are frequently found, whereas nearby genes that are not regulated by Kcnq1ot1 are localised outside of the domain. The Kcnq1ot1 RNA domain is larger in the placenta than in the embryo, consistent with more genes in the cluster being silenced in the placenta. Our results show for the first time that autosomal long ncRNAs can establish nuclear domains, which might create a repressive environment for epigenetic silencing of adjacent genes. Long ncRNAs in imprinting clusters and the Xist RNA on the inactive X chromosome thus appear to regulate epigenetic gene silencing by similar mechanisms.
Collapse
Affiliation(s)
- Lisa Redrup
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Dicer is central to the RNA interference (RNAi) pathway, because it is required for processing of double-stranded RNA (dsRNA) precursors into small RNA effector molecules. In principle, any long dsRNA could serve as a substrate for Dicer. The X inactive specific transcript (Xist) is an untranslated RNA that is required for dosage compensation in mammals. It coats and silences 1 of the 2 X chromosomes in female cells and initiates a chromosomewide change in chromatin structure that includes the recruitment of Polycomb proteins, but it is largely unknown how Xist RNA mediates these processes. To investigate a potential link between the RNAi pathway and X inactivation, we generated and analyzed Dicer-deficient embryonic stem (ES) cells. In the absence of Dicer, coating by Xist RNA, initiation of silencing, and recruitment of Polycomb proteins occur normally. Dicer ablation had modest effects on the steady-state levels of spliced Xist RNA. Together our data indicate that the RNAi machinery is not essential for the initiation of X inactivation.
Collapse
|
200
|
Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J. The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 2009; 32:465-77. [PMID: 19026778 DOI: 10.1016/j.molcel.2008.10.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/21/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Vertebrate telomeres are transcribed into telomeric repeat-containing RNA (TERRA) that associates with telomeres and may be important for telomere function. Here, we demonstrate that telomeres are also transcribed in Saccharomyces cerevisiae by RNA polymerase II (RNAPII). Yeast TERRA is polyadenylated and stabilized by Pap1p and regulated by the 5' to 3' exonuclease, Rat1p. rat1-1 mutant cells accumulate TERRA and harbor short telomeres because of defects in telomerase-mediated telomere elongation. Overexpression of RNaseH overcomes telomere elongation defects in rat1-1 cells, indicating that RNA/DNA hybrids inhibit telomerase function at chromosome ends in these mutants. Thus, telomeric transcription combined with Rat1p-dependent TERRA degradation is important for regulating telomerase in yeast. Telomere transcription is conserved in different kingdoms of the eukaryotic domain.
Collapse
Affiliation(s)
- Brian Luke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|