151
|
Li T, Yu X, Ren Y, Kang M, Yang W, Feng L, Hu Q. The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis. DNA Res 2022; 29:dsac008. [PMID: 35380665 PMCID: PMC9019652 DOI: 10.1093/dnares/dsac008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Gentiana dahurica Fisch. is a perennial herb of the family Gentianaceae. This species is used as a traditional Tibetan medicine because of its rich gentiopicroside constituents. Here, we generate a high-quality, chromosome-level genome of G. dahurica with a total length of 1,416.54 Mb. Comparative genomic analyses showed that G. dahurica shared one whole-genome duplication (WGD) event with Gelsemium sempervirens of the family Gelsemiaceaei and had one additional species-specific WGD after the ancient whole-genome triplication with other eudicots. Further transcriptome analyses identified numerous enzyme coding genes and the transcription factors related to gentiopicroside biosynthesis. A set of candidate cytochrome P450 genes were identified for being involved in biosynthetic shifts from swertiamarin to gentiopicroside. Both gene expressions and the contents measured by high-performance liquid chromatography indicated that the gentiopicrosides were mainly synthesized in the rhizomes with the highest contents. In addition, we found that two above-mentioned WGDs, contributed greatly to the identified candidate genes involving in gentiopicroside biosynthesis. The first reference genome of Gentianaceae we generated here will definitely accelerate evolutionary, ecological, and pharmaceutical studies of this family.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
152
|
Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, Yang L, Diao Y. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). HORTICULTURE RESEARCH 2022; 9:uhac029. [PMID: 35184169 PMCID: PMC9039500 DOI: 10.1093/hr/uhac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Lotus (Nelumbo Adans.), a relict plant, is the testimony of long-term sustained ecological success, but the underlying genetic changes related to its survival strategy remains unclear. Here, we assembled the high-quality lotus genome, investigated genome variation of lotus mutation accumulation (MA) lines and reconstructed the demographic history of wild Asian lotus, respectively. We identified and validated 43 base substitutions fixed in MA lines, implying a spontaneous mutation rate of 1.4 × 10-9 base/generation in lotus shoot stem cells. The past history of lotus revealed that the ancestors of lotus in eastern and southern Asia could be traced back ~20 million years ago (Mya) and experienced twice significant bottlenecks and population splits. We further identified the selected genes among three lotus groups in different habitats, suggesting that 453 genes between tropical and temperate group and 410 genes between two subgroups from Northeastern China and the Yangtze River - Yellow River Basin might play important roles in natural selection in lotus's adaptation and resilience. Our findings not only improve an understanding of the lotus evolutionary history and the genetic basis of its survival advantages, but also provide valuable data for addressing various questions in evolution and protection for the relict plants.
Collapse
Affiliation(s)
- Xingwen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Teng Cheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinxing Xu
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Keqiang Xie
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liangbo Yang
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
153
|
Tsivelikas AL, Ben Ghanem H, El-Baouchi A, Kehel Z. Single-Plant Selection at Ultra-Low Density Enhances Buffering Capacity of Barley Varieties and Landraces to Unpredictable Environments and Improves Their Agronomic Performance. FRONTIERS IN PLANT SCIENCE 2022; 13:838536. [PMID: 35251108 PMCID: PMC8895306 DOI: 10.3389/fpls.2022.838536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Rainfall and temperature are unpredictable factors in Mediterranean environments that result in irregular environmental conditions for crop growth, thus being a critical source of uncertainty for farmers. This study applied divergent single-plant selection for high and low yield within five barley varieties and two Tunisian landraces under semi-arid conditions at an ultra-low density of 1.2 plants/m2 for two consecutive years. Progeny evaluation under dense stands following farmers' practices was conducted in two semi-arid locations in Tunisia during one cropping season and in one location during a second season, totalling three environments. The results revealed significant genotypic effects for all recorded agronomic and physiological traits. No genotype × environment interaction was shown for biological yield, implying a biomass buffering capacity for selected lines under different environmental conditions. However, genotype × environment interaction was present in terms of grain yield since plasticity for biomass production under drought stress conditions was not translated directly to yield compensation for some of the lines. Nevertheless, several lines selected for high yield were identified to surpass their source material and best checks in each environment, while one line (IH4-4) outperformed consistently by 62.99% on average, in terms of grain yield, the best check across all environments. In addition, improved agronomic performance under drought conditions induced an indirect effect on some grain quality traits. Most of the lines selected for high yield maintained or even improved their grain protein content in comparison to their source material (average increase by 2.33%). On the other hand, most of the lines selected for low yield indicated a poor agronomic performance, further confirming the coherence between selection under ultra-low density and performance under dense stand.
Collapse
Affiliation(s)
- Athanasios L. Tsivelikas
- Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Hajer Ben Ghanem
- Field Crop Laboratory, National Institute of Agricultural Research, University of Carthage, Tunis, Tunisia
| | - Adil El-Baouchi
- African Integrated Plant and Soil Research Group (AiPlaS), AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zakaria Kehel
- Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| |
Collapse
|
154
|
Abstract
How do mutational biases influence the process of adaptation? A common assumption is that selection alone determines the course of adaptation from abundant preexisting variation. Yet, theoretical work shows broad conditions under which the mutation rate to a given type of variant strongly influences its probability of contributing to adaptation. Here we introduce a statistical approach to analyzing how mutation shapes protein sequence adaptation. Using large datasets from three different species, we show that the mutation spectrum has a proportional influence on the types of changes fixed in adaptation. We also show via computer simulations that a variety of factors can influence how closely the spectrum of adaptive substitutions reflects the spectrum of variants introduced by mutation. Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a distribution for types of changes fixed in adaptation. Recent work establishes that the changes involved in adaptation reflect common types of mutations, raising the question of how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three large datasets covering thousands of amino acid changes identified in natural and experimental adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. Using species-specific mutation spectra based on prior knowledge, we find that the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately recover the species-specific mutation spectra. However, we also find that the predictive power of the model differs substantially between the three species. To better understand these differences, we use population simulations to explore the factors that influence how closely the spectrum of adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the mutation spectrum decreases with increasing mutational supply (Nμ) and that predictive power is strongly affected by the number and diversity of beneficial mutations.
Collapse
|
155
|
Wyant SR, Rodriguez MF, Carter CK, Parrott WA, Jackson SA, Stupar RM, Morrell PL. Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3 (BETHESDA, MD.) 2022; 12:jkab431. [PMID: 35100358 PMCID: PMC9335934 DOI: 10.1093/g3journal/jkab431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 11/13/2022]
Abstract
The mutagenic effects of ionizing radiation have been used for decades to create novel variants in experimental populations. Fast neutron (FN) bombardment as a mutagen has been especially widespread in plants, with extensive reports describing the induction of large structural variants, i.e., deletions, insertions, inversions, and translocations. However, the full spectrum of FN-induced mutations is poorly understood. We contrast small insertions and deletions (indels) observed in 27 soybean lines subject to FN irradiation with the standing indels identified in 107 diverse soybean lines. We use the same populations to contrast the nature and context (bases flanking a nucleotide change) of single-nucleotide variants. The accumulation of new single-nucleotide changes in FN lines is marginally higher than expected based on spontaneous mutation. In FN-treated lines and in standing variation, C→T transitions and the corresponding reverse complement G→A transitions are the most abundant and occur most frequently in a CpG local context. These data indicate that most SNPs identified in FN lines are likely derived from spontaneous de novo processes in generations following mutagenesis rather than from the FN irradiation mutagen. However, small indels in FN lines differ from standing variants. Short insertions, from 1 to 6 bp, are less abundant than in standing variation. Short deletions are more abundant and prone to induce frameshift mutations that should disrupt the structure and function of encoded proteins. These findings indicate that FN irradiation generates numerous small indels, increasing the abundance of loss-of-function mutations that impact single genes.
Collapse
Affiliation(s)
- Skylar R Wyant
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - M Fernanda Rodriguez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Corey K Carter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Wayne A Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Scott A Jackson
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
156
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
157
|
Gustafsson ALS, Gussarova G, Borgen L, Ikeda H, Antonelli A, Marie-Orleach L, Rieseberg LH, Brochmann C. Rapid evolution of post-zygotic reproductive isolation is widespread in Arctic plant lineages. ANNALS OF BOTANY 2022; 129:171-184. [PMID: 34643673 PMCID: PMC8796670 DOI: 10.1093/aob/mcab128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The Arctic tundra, with its extreme temperatures and short growing season, is evolutionarily young and harbours one of the most species-poor floras on Earth. Arctic species often show little phenotypic and genetic divergence across circumpolar ranges. However, strong intraspecific post-zygotic reproductive isolation (RI) in terms of hybrid sterility has frequently evolved within selfing Arctic species of the genus Draba. Here we assess whether incipient biological species are common in the Arctic flora. METHODS We conducted an extensive crossing experiment including six species representing four phylogenetically distant families collected across the circumpolar Arctic. We crossed conspecific parental populations representing different spatial scales, raised 740 F1 hybrids to maturity and measured fertility under laboratory conditions. We examined genetic divergence between populations for two of these species (Cardamine bellidifolia and Ranunculus pygmaeus). KEY RESULTS In five of the six species, we find extensive reduction in pollen fertility and seed set in F1 hybrids; 219 (46 %) of the 477 F1 hybrids generated between parents separated by ≥427 km had <20 % pollen fertility. Isolation with migration (IM) and *BEAST analyses of sequences of eight nuclear genes in C. bellidifolia suggests that reproductively isolated populations of this species diverged during, or even after, the last glaciation. Likewise, Arctic populations of R. pygmaeus were genetically very similar despite exhibiting strongly reduced fertility in crosses, suggesting that RI evolved recently also in this species. CONCLUSION We show that post-zygotic RI has developed multiple times within taxonomically recognized Arctic species belonging to several distantly related lineages, and that RI may have developed over just a few millennia. Rapid and widespread evolution of incipient biological species in the Arctic flora might be associated with frequent bottlenecks due to glacial cycles, and/or selfing mating systems, which are common in the harsh Arctic environment where pollinators are scarce.
Collapse
Affiliation(s)
| | - Galina Gussarova
- Natural History Museum, University of Oslo, Oslo, Norway
- Botany Department, Faculty of Biology and Soil Science, St Petersburg, Russia
- Tromsø University Museum, University of Tromsø, Tromsø, Norway
| | - Liv Borgen
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Lucas Marie-Orleach
- Natural History Museum, University of Oslo, Oslo, Norway
- ECOBIO—Écosystèmes, Biodiversité, Évolution, Rennes, France
| | - Loren H Rieseberg
- Botany Department, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
158
|
Abstract
Non-random usage of synonymous codons, known as “codon bias”, has been described in many organisms, from bacteria to Drosophila, but little is known about it in phytoplankton. This phenomenon is thought to be driven by selection for translational efficiency. As the efficacy of selection is proportional to the effective population size, species with large population sizes, such as phytoplankton, are expected to have strong codon bias. To test this, we measured codon bias in 215 strains from Haptophyta, Chlorophyta, Ochrophyta (except diatoms that were studied previously), Dinophyta, Cryptophyta, Ciliophora, unicellular Rhodophyta and Chlorarachniophyta. Codon bias is modest in most groups, despite the astronomically large population sizes of marine phytoplankton. The strength of the codon bias, measured with the effective number of codons, is the strongest in Haptophyta and the weakest in Chlorarachniophyta. The optimal codons are GC-ending in most cases, but several shifts to AT-ending codons were observed (mainly in Ochrophyta and Ciliophora). As it takes a long time to reach a new equilibrium after such shifts, species having AT-ending codons show a lower frequency of optimal codons compared to other species. Genetic diversity, calculated for species with more than three strains sequenced, is modest, indicating that the effective population sizes are many orders of magnitude lower than the astronomically large census population sizes, which helps to explain the modest codon bias in marine phytoplankton. This study represents the first comparative analysis of codon bias across multiple major phytoplankton groups.
Collapse
|
159
|
Dittberner H, Tellier A, de Meaux J. Approximate Bayesian computation untangles signatures of contemporary and historical hybridization between two endangered species. Mol Biol Evol 2022; 39:6516021. [PMID: 35084503 PMCID: PMC8826969 DOI: 10.1093/molbev/msac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.
Collapse
Affiliation(s)
- Hannes Dittberner
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| | - Aurelien Tellier
- Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Juliette de Meaux
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| |
Collapse
|
160
|
Izuno A, Onoda Y, Amada G, Kobayashi K, Mukai M, Isagi Y, Shimizu KK. Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody species. PLoS Genet 2022; 18:e1009987. [PMID: 35061669 PMCID: PMC8782371 DOI: 10.1371/journal.pgen.1009987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation. Knowledge about how genetic barriers are formed between populations in distinct environments is valuable to understand the processes of speciation and conserve biodiversity. Metrosideros polymorpha, an endemic woody species in the Hawaiian Islands, is a good system to study developing genetic barriers in a species, because it colonized the diverse environments and diversified the morphology for a relatively short period of time. We analyzed the genomes of 70 M. polymorpha plants from a broad range of environments on the island of Hawaii to infer the current and past genetic barriers among them. Currently, M. polymorpha plants growing in different environments have substantially different genomes, especially at the genomic regions with genes putatively controlling physiology to fit in distinct environment. However, in its history, they had hybridized with one another, possibly because plants formerly growing in different environments came into close contact due to the climate changes. It is suggested that genetic barriers can easily strengthen or weaken depending on environments splitting the ecology of a species before reproductive isolation becomes complete.
Collapse
Affiliation(s)
- Ayako Izuno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Gaku Amada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keito Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mana Mukai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
161
|
Kitamura S, Satoh K, Oono Y. Detection and characterization of genome-wide mutations in M1 vegetative cells of gamma-irradiated Arabidopsis. PLoS Genet 2022; 18:e1009979. [PMID: 35051177 PMCID: PMC8775353 DOI: 10.1371/journal.pgen.1009979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/04/2021] [Indexed: 11/20/2022] Open
Abstract
Radiation-induced mutations have been detected by whole-genome sequencing analyses of self-pollinated generations of mutagenized plants. However, large DNA alterations and mutations in non-germline cells were likely missed. In this study, in order to detect various types of mutations in mutagenized M1 plants, anthocyanin pigmentation was used as a visible marker of mutations. Arabidopsis seeds heterozygous for the anthocyanin biosynthetic genes were irradiated with gamma-rays. Anthocyanin-less vegetative sectors resulting from a loss of heterozygosity were isolated from the gamma-irradiated M1 plants. The whole-genome sequencing analysis of the sectors detected various mutations, including structural variations (SVs) and large deletions (≥100 bp), both of which have been less characterized in the previous researches using gamma-irradiated plant genomes of M2 or later generations. Various types of rejoined sites were found in SVs, including no-insertion/deletion (indel) sites, only-deletion sites, only-insertion sites, and indel sites, but the rejoined sites with 0–5 bp indels represented most of the SVs. Examinations of the junctions of rearrangements (SVs and large deletions), medium deletions (10–99 bp), and small deletions (2–9 bp) revealed unique features (i.e., frequency of insertions and microhomology) at the rejoined sites. These results suggest that they were formed preferentially via different processes. Additionally, mutations that occurred in putative single M1 cells were identified according to the distribution of their allele frequency. The estimated mutation frequencies and spectra of the M1 cells were similar to those of previously analyzed M2 cells, with the exception of the greater proportion of rearrangements in the M1 cells. These findings suggest there are no major differences in the small mutations (<100 bp) between vegetative and germline cells. Thus, this study generated valuable information that may help clarify the nature of gamma-irradiation-induced mutations and their occurrence in cells that develop into vegetative or reproductive tissues. Mutations that occur in plant genome are not only related to plant evolution and speciation in nature, and also useful to identify novel gene functions and to develop new cultivars. Ionizing radiations induce various types of mutations throughout genomes in individual cells of an irradiated/mutagenized plant. However, current knowledge on radiation-induced genome-wide mutations in plants relied on the analyses of self-pollinated generations (M2 or later generations) of the mutagenized plants (M1 generation). Thus, mutations that are hardly transmitted to the next generation and those occurred in non-germline cells could not be investigated. Here, using anthocyanin pigmentation as a visible marker to reduce the genomic complexity in M1 plants, we achieved reliable detection of radiation-induced genome-wide mutations. We demonstrated that rearrangements, which were hardly detected in previous analyses using M2 genomes, occurred substantially often in gamma-irradiated M1 cells. We also revealed that mutation profile of the M1 cells was comparable with that of M2 genomes reported in previous analyses, except for the higher proportion of rearrangements in the M1 genome. Together with unique features at rejoined sites of rearrangements, medium deletions, and small deletions in the M1 genome, our findings are helpful to know the nature of genome-wide mutations induced by gamma-irradiation.
Collapse
Affiliation(s)
- Satoshi Kitamura
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
- * E-mail:
| | - Katsuya Satoh
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
| | - Yutaka Oono
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
| |
Collapse
|
162
|
Context-Dependent Substitution Dynamics in Plastid DNA Across a Wide Range of Taxonomic Groups. J Mol Evol 2022; 90:44-55. [PMID: 35037071 DOI: 10.1007/s00239-021-10040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The influence of neighboring base composition, or context, on substitution bias at fourfold degenerate coding sites and in intergenic regions in plastid DNA is compared across the angiosperms, gymnosperms, ferns, liverworts, chlorophytes, stramenopiles and rhodophytes. An influence of flanking base G + C content on the relative rates of transitions and transversions is observed in all lineages and extends up to four nucleotides from the site of substitution in some. Despite finding context effects in all lineages, significant differences were observed between lineages. Overall, the data suggest that context is a general factor affecting mutation bias in plastid DNA but that the dynamics of the influence have evolved over time. It is also shown that, although there are similar effects of context on substitution bias at fourfold degenerate coding sites and at sites within intergenic regions, there are also small but significant differences, suggesting that there could be some selection on some of these sites and that there could be some difference in the mutation and/or repair process between coding and noncoding DNA.
Collapse
|
163
|
Kreiner JM, Sandler G, Stern AJ, Tranel PJ, Weigel D, Stinchcombe J, Wright SI. Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations. eLife 2022; 11:70242. [PMID: 35037853 PMCID: PMC8798060 DOI: 10.7554/elife.70242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 19 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size estimate of 8 x 107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show extreme parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. Two such forces are intra- and inter-locus allelic interactions; we report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen Isaac Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
164
|
Frequency and Spectrum of Mutations Induced by Gamma Rays Revealed by Phenotype Screening and Whole-Genome Re-Sequencing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23020654. [PMID: 35054839 PMCID: PMC8775868 DOI: 10.3390/ijms23020654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
Genetic variations are an important source of germplasm diversity, as it provides an allele resource that contributes to the development of new traits for plant breeding. Gamma rays have been widely used as a physical agent for mutation creation in plants, and their mutagenic effect has attracted extensive attention. However, few studies are available on the comprehensive mutation profile at both the large-scale phenotype mutation screening and whole-genome mutation scanning. In this study, biological effects on M1 generation, large-scale phenotype screening in M2 generation, as well as whole-genome re-sequencing of seven M3 phenotype-visible lines were carried out to comprehensively evaluate the mutagenic effects of gamma rays on Arabidopsis thaliana. A total of 417 plants with visible mutated phenotypes were isolated from 20,502 M2 plants, and the phenotypic mutation frequency of gamma rays was 2.03% in Arabidopsis thaliana. On average, there were 21.57 single-base substitutions (SBSs) and 11.57 small insertions and deletions (InDels) in each line. Single-base InDels accounts for 66.7% of the small InDels. The genomic mutation frequency was 2.78 × 10−10/bp/Gy. The ratio of transition/transversion was 1.60, and 64.28% of the C > T events exhibited the pyrimidine dinucleotide sequence; 69.14% of the small InDels were located in the sequence with 1 to 4 bp terminal microhomology that was used for DNA end rejoining, while SBSs were less dependent on terminal microhomology. Nine genes, on average, were predicted to suffer from functional alteration in each re-sequenced line. This indicated that a suitable mutation gene density was an advantage of gamma rays when trying to improve elite materials for one certain or a few traits. These results will aid the full understanding of the mutagenic effects and mechanisms of gamma rays and provide a basis for suitable mutagen selection and parameter design, which can further facilitate the development of more controlled mutagenesis methods for plant mutation breeding.
Collapse
|
165
|
Zhao D, Zhang Y, Lu Y, Fan L, Zhang Z, Chai M, Zheng J. Genome sequence and transcriptome of Sorbus pohuashanensis provides insights into population evolution and leaf sunburn response. J Genet Genomics 2022; 49:547-558. [PMID: 34995812 DOI: 10.1016/j.jgg.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Sorbus pohuashanensis is a potential horticulture and medicinal plant, but its genomic and genetic backgrounds remain unknown. Here, we sequenced and assembled the S. pohuashanensis (Hance) Hedl. reference genome using PacBio long reads. Based on the new reference genome, we resequenced a core collection of 22 Sorbus spp. samples, which were divided into 2 groups (G1 and G2) based on phylogenetic and PCA analyses. These phylogenetic clusters were highly consistent with their classification based on leaf shape. Natural hybridization between the G1 and G2 groups was evidenced by a sample (R21) with a highly heterozygous genotype. Nucleotide diversity (π) analysis showed that G1 had a higher diversity than G2 and that G2 originated from G1. During the evolution process, the gene families involved in photosynthesis pathways expanded and the gene families involved in energy consumption contracted. RNA-seq data suggested that flavonoid biosynthesis and heat-shock protein (HSP)-heat-shock factor (HSF) pathways play important roles in protection against sunburn. This study provides new insights into the evolution of Sorbus spp. genomes. In addition, the genomic resources, and the identified genetic variations, especially those related to stress resistance, will help future efforts to produce and breed Sorbus spp.
Collapse
Affiliation(s)
- Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, Shandong 250102, China
| | - Liqiang Fan
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhibin Zhang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Mao Chai
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
166
|
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. THE NEW PHYTOLOGIST 2022; 233:66-83. [PMID: 34455592 DOI: 10.1111/nph.17699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/20/2021] [Indexed: 05/11/2023]
Abstract
The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution.
Collapse
Affiliation(s)
- Adam Hannan Parker
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Samuel W Wilkinson
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, Institute for Sustainable Food, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
167
|
Stritt C, Gimmi EL, Wyler M, Bakali AH, Skalska A, Hasterok R, Mur LAJ, Pecchioni N, Roulin AC. Migration without interbreeding: Evolutionary history of a highly selfing Mediterranean grass inferred from whole genomes. Mol Ecol 2022; 31:70-85. [PMID: 34601787 PMCID: PMC9298040 DOI: 10.1111/mec.16207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics - and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species.
Collapse
Affiliation(s)
- Christoph Stritt
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elena L Gimmi
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michele Wyler
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Abdelmonaim H Bakali
- National Institute of Agronomy, Regional Center of Errachidia, Errachidia, Morocco
| | - Aleksandra Skalska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA - Council for Agricultural Research and Economics, Foggia, Italy
| | - Anne C Roulin
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
168
|
van Tol N, van Schendel R, Bos A, van Kregten M, de Pater S, Hooykaas PJ, Tijsterman M. Gene targeting in polymerase theta-deficient Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:112-125. [PMID: 34713516 PMCID: PMC9299229 DOI: 10.1111/tpj.15557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 05/26/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Robin van Schendel
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| | - Alex Bos
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Maartje van Kregten
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Sylvia de Pater
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Paul J.J. Hooykaas
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Marcel Tijsterman
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| |
Collapse
|
169
|
Kun Á. Is there still evolution in the human population? Biol Futur 2022; 73:359-374. [PMID: 36592324 PMCID: PMC9806833 DOI: 10.1007/s42977-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
It is often claimed that humanity has stopped evolving because modern medicine erased all selection on survival. Even if that would be true, and it is not, there would be other mechanisms of evolution which could still led to changes in allelic frequencies. Here I show, by applying basic evolutionary genetics knowledge, that we expect humanity to evolve. The results from genome sequencing projects have repeatedly affirmed that there are still recent signs of selection in our genomes. I give some examples of such adaptation. Then I briefly discuss what our evolutionary future has in store for us.
Collapse
Affiliation(s)
- Ádám Kun
- grid.5591.80000 0001 2294 6276Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary ,Parmenides Center for the Conceptual Foundations of Science, Pöcking, Germany ,grid.481817.3Institute of Evolution, Centre for Ecological Research, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| |
Collapse
|
170
|
Zhu X, Xie S, Tang K, Kalia RK, Liu N, Ma J, Bressan RA, Zhu JK. Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. STRESS BIOLOGY 2021; 1:12. [PMID: 37676538 PMCID: PMC10441993 DOI: 10.1007/s44154-021-00013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 09/08/2023]
Abstract
Much has been learned about how plants acclimate to stressful environments, but the molecular basis of stress adaptation and the potential involvement of epigenetic regulation remain poorly understood. Here, we examined if salt stress induces mutagenesis in suspension cultured plant cells and if DNA methylation affects the mutagenesis using whole genome resequencing analysis. We generated suspension cell cultures from two Arabidopsis DNA methylation-deficient mutants and wild-type plants, and subjected the cultured cells to stepwise increases in salt stress intensity over 40 culture cycles. We show that ddc (drm1 drm2 cmt3) mutant cells can adapt to grow in 175 mM NaCl-containing growth medium and exhibit higher adaptability compared to wild type Col-0 and nrpe1 cells, which can adapt to grow in only 125 mM NaCl-containing growth medium. Salt treated nrpe1 and ddc cells but not wild type cells accumulate more mutations compared with their respective untreated cells. There is no enrichment of stress responsive genes in the list of mutated genes in salt treated cells compared to the list of mutated genes in untreated cells. Our results suggest that DNA methylation prevents the induction of mutagenesis by salt stress in plant cells during stress adaptation.
Collapse
Affiliation(s)
- Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China.
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajwant K Kalia
- Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences 830011, Urumqi, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
171
|
Snyman M, Huynh TV, Smith MT, Xu S. The genome-wide rate and spectrum of EMS-induced heritable mutations in the microcrustacean Daphnia: on the prospect of forward genetics. Heredity (Edinb) 2021; 127:535-545. [PMID: 34667306 DOI: 10.1038/s41437-021-00478-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Forward genetic screening using the alkylating mutagen ethyl methanesulfonate (EMS) is an effective method for identifying phenotypic mutants of interest, which can be further genetically dissected to pinpoint the causal genetic mutations. An accurate estimate of the rate of EMS-induced heritable mutations is fundamental for determining the mutant sample size of a screening experiment that aims to saturate all the genes in a genome with mutations. This study examines the genome-wide EMS-induced heritable base-substitutions in three species of the freshwater microcrustacean Daphnia to help guide screening experiments. Our results show that the 10 mM EMS treatment induces base substitutions at an average rate of 1.17 × 10-6/site/generation across the three species, whereas a significantly higher average mutation rate of 1.75 × 10-6 occurs at 25 mM. The mutation spectrum of EMS-induced base substitutions at both concentration is dominated by G:C to A:T transitions. Furthermore, we find that female Daphnia exposed to EMS (F0 individuals) can asexually produce unique mutant offspring (F1) for at least 3 consecutive broods, suggestive of multiple broods as F1 mutants. Lastly, we estimate that about 750 F1s are needed for all genes in the Daphnia genome to be mutated at least once with a 95% probability. We also recommend 4-5 F2s should be collected from each F1 mutant through sibling crossing so that all induced mutations could appear in the homozygous state in the F2 population at 70-80% probability.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Trung V Huynh
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Matthew T Smith
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
172
|
Ke F, Vasseur L, Yi H, Yang L, Wei X, Wang B, Kang M. Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists. Mol Ecol 2021; 31:104-118. [PMID: 34664755 DOI: 10.1111/mec.16226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Interpreting the formation of genomic variation landscape, especially genomic regions with elevated differentiation (i.e. islands), is fundamental to a better understanding of the genomic consequences of adaptation and speciation. Edaphic islands provide excellent systems for understanding the interplay of gene flow and selection in driving population divergence and speciation. However, discerning the relative contribution of these factors that modify patterns of genomic variation remains difficult. We analysed 132 genomes from five recently divergent species in Primulina genus, with four species distributed in Karst limestone habitats and the fifth one growing in Danxia habitats. We demonstrated that both gene flow and linked selection have contributed to genome-wide variation landscape, where genomic regions with elevated differentiation (i.e., islands) were largely derived by divergent sorting of ancient polymorphism. Specifically, we identified several lineage-specific genomic islands that might have facilitated adaptation of P. suichuanensis to Danxia habitats. Our study is amongst the first cases disentangling evolutionary processes that shape genomic variation of plant specialists, and demonstrates the important role of ancient polymorphism in the formation of genomic islands that potentially mediate adaptation and speciation of endemic plants in special soil habitats.
Collapse
Affiliation(s)
- Fushi Ke
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
173
|
Zhou XJ, Li JT, Wang HL, Han JW, Zhang K, Dong SW, Zhang YZ, Ya HY, Cheng YW, Sun SS. The chromosome-scale genome assembly, annotation and evolution of Rhododendron henanense subsp. lingbaoense. Mol Ecol Resour 2021; 22:988-1001. [PMID: 34652864 DOI: 10.1111/1755-0998.13529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Rhododendron henanense subsp. lingbaoense (hereafter referred to as R. henanense) is an endemic species naturally distributed in the Henan province, China, with high horticultural, ornamental and medicinal value. Herein, we report a de novo genome assembly for R. henanense using a combination of PacBio long read and Illumina short read sequencing technologies. In total, we assembled 634.07 Mb with a contig N50 of 2.5 Mb, representing ~96.93% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of R. henanense genome were assembled, covering ~98.21% of the genome assembly. The genome was composed of ~65.76% repetitive sequences and 31,098 protein-coding genes, 88.77% of which could be functionally annotated. Rhododendron henanense displayed a high level of synteny with other Rhododendron species from the Hymenanthes subgenus. Our data also suggests that R. henanense genes related to stress responses have undergone expansion, which may underly the unique abiotic and biotic stress resistance of the species. This alpine Rhododendron chromosome-scale genome assembly provides fundamental molecular resources for germplasm conservation, breeding efforts, evolutionary studies, and elucidating the unique biological characteristics of R. henanense.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Jian-Tao Li
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Hai-Liang Wang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Jun-Wang Han
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Kai Zhang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Shuai-Wei Dong
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Yan-Zhao Zhang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Hui-Yuan Ya
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Yan-Wei Cheng
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Shan-Shan Sun
- Life Science College, Luoyang Normal University, Luoyang, China
| |
Collapse
|
174
|
Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat Commun 2021; 12:5869. [PMID: 34620872 PMCID: PMC8497519 DOI: 10.1038/s41467-021-26108-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mutations are the source of genetic variation and the substrate for evolution. Genome-wide mutation rates appear to be affected by selection and are probably adaptive. Mutation rates are also known to vary along genomes, possibly in response to epigenetic modifications, but causality is only assumed. In this study we determine the direct impact of epigenetic modifications and temperature stress on mitotic mutation rates in a fungal pathogen using a mutation accumulation approach. Deletion mutants lacking epigenetic modifications confirm that histone mark H3K27me3 increases whereas H3K9me3 decreases the mutation rate. Furthermore, cytosine methylation in transposable elements (TE) increases the mutation rate 15-fold resulting in significantly less TE mobilization. Also accessory chromosomes have significantly higher mutation rates. Finally, we find that temperature stress substantially elevates the mutation rate. Taken together, we find that epigenetic modifications and environmental conditions modify the rate and the location of spontaneous mutations in the genome and alter its evolutionary trajectory.
Collapse
|
175
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
176
|
Teixeira TM, Nazareno AG. One Step Away From Extinction: A Population Genomic Analysis of A Narrow Endemic, Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2021; 12:730258. [PMID: 34630476 PMCID: PMC8496504 DOI: 10.3389/fpls.2021.730258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Intraspecific genetic variation plays a fundamental role in maintaining the evolutionary potential of wild populations. Hence, the assessment of genetic diversity patterns becomes essential to guide biodiversity conservation policies, particularly for threatened species. To inform management strategies for conservation of Mimosa catharinensis - a narrow endemic, critically endangered plant species - we identified 1,497 unlinked SNP markers derived from a reduced representation sequencing method (i.e., double digest restriction site associated DNA sequencing, or ddRADseq). This set of molecular markers was employed to assess intrapopulation genetic parameters and the demographic history of one extremely small population of M. catharinensis (N=33) located in the Brazilian Atlantic Forest. Contrary to what is expected for narrow endemic and threatened species with small population sizes, we observed a moderate level of genetic diversity for M. catharinensis [uH E(0%missing data)=0.205, 95% CI (0.160, 0.250); uH E(30%missing data)=0.233, 95% CI (0.174, 0.292)]. Interestingly, M. catharinensis, which is a lianescent shrub with no indication of seed production for at least two decades, presented high levels of outcrossing [t (0%missing data)=0.883, SE±0.0483; t (30%missing data)=0.909, SE±0.011] and an apparent absence of inbreeding [F (0%missing data)=-0.145, 95% CI (-0.189, -0.101); F (30%missing data)=-0.105, 95% CI (-0.199, -0.011)]. However, the reconstruction of demographic history of M. catharinensis indicated that the population should be suffered a recent bottleneck. Our population genomic study tackles a central issue in evolution and conservation biology and we expect that it will be useful to help safeguard the remaining genetic diversity reported for this unique genetic resource.
Collapse
Affiliation(s)
- Thais M. Teixeira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alison G. Nazareno
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
177
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
178
|
Zhang Y, Shen Q, Leng L, Zhang D, Chen S, Shi Y, Ning Z, Chen S. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nat Commun 2021; 12:5508. [PMID: 34535649 PMCID: PMC8448860 DOI: 10.1038/s41467-021-25681-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Perilla is a young allotetraploid Lamiaceae species widely used in East Asia as herb and oil plant. Here, we report the high-quality, chromosome-scale genomes of the tetraploid (Perilla frutescens) and the AA diploid progenitor (Perilla citriodora). Comparative analyses suggest post Neolithic allotetraploidization within 10,000 years, and nucleotide mutation in tetraploid is 10% more than in diploid, both of which are dominated by G:C → A:T transitions. Incipient diploidization is characterized by balanced swaps of homeologous segments, and subsequent homeologous exchanges are enriched towards telomeres, with excess of replacements of AA genes by fractionated BB homeologs. Population analyses suggest that the crispa lines are close to the nascent tetraploid, and involvement of acyl-CoA: lysophosphatidylcholine acyltransferase gene for high α-linolenic acid content of seed oil is revealed by GWAS. These resources and findings provide insights into incipient diploidization and basis for breeding improvement of this medicinal plant.
Collapse
Affiliation(s)
- Yujun Zhang
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Shen
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China ,grid.464326.1Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China ,grid.411866.c0000 0000 8848 7685Present Address: Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Leng
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong Zhang
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Chen
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zemin Ning
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Hinxton, UK
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
179
|
Choi JY, Dai X, Alam O, Peng JZ, Rughani P, Hickey S, Harrington E, Juul S, Ayroles JF, Purugganan MD, Stacy EA. Ancestral polymorphisms shape the adaptive radiation of Metrosideros across the Hawaiian Islands. Proc Natl Acad Sci U S A 2021; 118:e2023801118. [PMID: 34497122 PMCID: PMC8449318 DOI: 10.1073/pnas.2023801118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 01/05/2023] Open
Abstract
Some of the most spectacular adaptive radiations begin with founder populations on remote islands. How genetically limited founder populations give rise to the striking phenotypic and ecological diversity characteristic of adaptive radiations is a paradox of evolutionary biology. We conducted an evolutionary genomics analysis of genus Metrosideros, a landscape-dominant, incipient adaptive radiation of woody plants that spans a striking range of phenotypes and environments across the Hawaiian Islands. Using nanopore-sequencing, we created a chromosome-level genome assembly for Metrosideros polymorpha var. incana and analyzed whole-genome sequences of 131 individuals from 11 taxa sampled across the islands. Demographic modeling and population genomics analyses suggested that Hawaiian Metrosideros originated from a single colonization event and subsequently spread across the archipelago following the formation of new islands. The evolutionary history of Hawaiian Metrosideros shows evidence of extensive reticulation associated with significant sharing of ancestral variation between taxa and secondarily with admixture. Taking advantage of the highly contiguous genome assembly, we investigated the genomic architecture underlying the adaptive radiation and discovered that divergent selection drove the formation of differentiation outliers in paired taxa representing early stages of speciation/divergence. Analysis of the evolutionary origins of the outlier single nucleotide polymorphisms (SNPs) showed enrichment for ancestral variations under divergent selection. Our findings suggest that Hawaiian Metrosideros possesses an unexpectedly rich pool of ancestral genetic variation, and the reassortment of these variations has fueled the island adaptive radiation.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003;
| | - Xiaoguang Dai
- Oxford Nanopore Technologies Inc., New York, NY 10013
| | - Ornob Alam
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Julie Z Peng
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | | | - Scott Hickey
- Oxford Nanopore Technologies Inc., San Francisco, CA 94501
| | | | - Sissel Juul
- Oxford Nanopore Technologies Inc., New York, NY 10013
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Elizabeth A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89119;
- College of Agriculture, Forestry, and Natural Resource Management, University of Hawaii Hilo, Hilo, HI 96720
| |
Collapse
|
180
|
Daron J, Bravo IG. Variability in Codon Usage in Coronaviruses Is Mainly Driven by Mutational Bias and Selective Constraints on CpG Dinucleotide. Viruses 2021; 13:v13091800. [PMID: 34578381 PMCID: PMC8473333 DOI: 10.3390/v13091800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human-emerged virus of the 21st century from the Coronaviridae family, causing the ongoing coronavirus disease 2019 (COVID-19) pandemic. Due to the high zoonotic potential of coronaviruses, it is critical to unravel their evolutionary history of host species breadth, host-switch potential, adaptation and emergence, to identify viruses posing a pandemic risk in humans. We present here a comprehensive analysis of the composition and codon usage bias of the 82 Orthocoronavirinae members, infecting 47 different avian and mammalian hosts. Our results clearly establish that synonymous codon usage varies widely among viruses, is only weakly dependent on their primary host, and is dominated by mutational bias towards AU-enrichment and by CpG avoidance. Indeed, variation in GC3 explains around 34%, while variation in CpG frequency explains around 14% of total variation in codon usage bias. Further insight on the mutational equilibrium within Orthocoronavirinae revealed that most coronavirus genomes are close to their neutral equilibrium, the exception being the three recently infecting human coronaviruses, which lie further away from the mutational equilibrium than their endemic human coronavirus counterparts. Finally, our results suggest that, while replicating in humans, SARS-CoV-2 is slowly becoming AU-richer, likely until attaining a new mutational equilibrium.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Correspondence:
| | - Ignacio G. Bravo
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Center for Research on the Ecology and Evolution of Diseases (CREES), 34394 Montpellier, France
| |
Collapse
|
181
|
Zhang J, Peng Z, Liu Q, Yang G, Zhou L, Li W, Wang H, Chen Z, Guo T. Time Course Analysis of Genome-Wide Identification of Mutations Induced by and Genes Expressed in Response to Carbon Ion Beam Irradiation in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12091391. [PMID: 34573373 PMCID: PMC8469171 DOI: 10.3390/genes12091391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Heavy-ion irradiation is a powerful mutagen and is widely used for mutation breeding. In this study, using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques, we comprehensively characterized these dynamic changes caused by mutations at three time points (48, 96, and 144 h after irradiation) and the expression profiles of rice seeds irradiated with C ions at two doses. Subsequent WGS analysis revealed that more mutations were detected in response to 40 Gy carbon ion beam (CIB) irradiation than 80 Gy of CIB irradiation at the initial stage (48 h post-irradiation). In the mutants generated from both irradiation doses, single-base substitutions (SBSs) were the most frequent type of mutation induced by CIB irradiation. Among the mutations, the predominant ones were C:T and A:G transitions. CIB irradiation also induced many short InDel mutations. RNA-seq analysis at the three time points showed that the number of differentially expressed genes (DEGs) was highest at 48 h post-irradiation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs showed that the "replication and repair" pathway was enriched specifically 48 h post-irradiation. These results indicate that the DNA damage response (DDR) and the mechanism of DNA repair tend to quickly start within the initial stage (48 h) after irradiation.
Collapse
Affiliation(s)
- Jian Zhang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Ziai Peng
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Qiling Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (L.Z.); (W.L.)
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (L.Z.); (W.L.)
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Z.P.); (Q.L.); (G.Y.); (H.W.); (Z.C.)
- Correspondence: ; Tel./Fax: +86-20-3860-4903
| |
Collapse
|
182
|
Li M, Zheng Z, Liu J, Yang Y, Ren G, Ru D, Zhang S, Du X, Ma T, Milne R, Liu J. Evolutionary origin of a tetraploid Allium species on the Qinghai-Tibet Plateau. Mol Ecol 2021; 30:5780-5795. [PMID: 34487579 DOI: 10.1111/mec.16168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
Extinct taxa may be detectable if they were ancestors to extant hybrid species, which retain their genetic signature. In this study, we combined phylogenomics, population genetics and fluorescence in situ hybridization (GISH and FISH) analyses to trace the origin of the alpine tetraploid Allium tetraploideum (2n = 4x = 32), one of the five known members in the subgenus Cyathophora. We found that A. tetraploideum was an obvious allotetrapoploid derived from ancestors including at least two closely related diploid species, A. farreri and A. cyathophorum, from which it differs by multiple ecological and genomic attributes. However, these two species cannot account for the full genome of A. tetraploideum, indicating that at least one extinct diploid is also involved in its ancestry. Furthermore, A. tetraploideum appears to have arisen via homoploid hybrid speciation (HHS) from two extinct allotetraploid parents, which derived in turn from the aforementioned diploids. Other modes of origin were possible, but all were even more complex and involved additional extinct ancestors. Our study together highlights how some polyploid species might have very complex origins, involving both HHS and polyploid speciation and also extinct ancestors.
Collapse
Affiliation(s)
- Minjie Li
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juncheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dafu Ru
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.,Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
183
|
López-Cortegano E, Craig RJ, Chebib J, Samuels T, Morgan AD, Kraemer SA, Böndel KB, Ness RW, Colegrave N, Keightley PD. De Novo Mutation Rate Variation and Its Determinants in Chlamydomonas. Mol Biol Evol 2021; 38:3709-3723. [PMID: 33950243 PMCID: PMC8383909 DOI: 10.1093/molbev/msab140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10-10, and is highly variable between MA lines, ranging from μ = 0.35 × 10-10 to μ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rory J Craig
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jobran Chebib
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby Samuels
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Katharina B Böndel
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
184
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
185
|
The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. Int J Mol Sci 2021; 22:ijms22168618. [PMID: 34445323 PMCID: PMC8395315 DOI: 10.3390/ijms22168618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
In plants, the gene expression and associated phenotypes can be modulated by dynamic changes in DNA methylation, occasionally being fixed in certain genomic loci and inherited stably as epialleles. Epiallelic variations in a population can occur as methylation changes at an individual cytosine position, methylation changes within a stretch of genomic regions, and chromatin changes in certain loci. Here, we focus on methylated regions, since it is unclear whether variations at individual methylated cytosines can serve any regulatory function, and the evidence for heritable chromatin changes independent of genetic changes is limited. While DNA methylation is known to affect and regulate wide arrays of plant phenotypes, most epialleles in the form of methylated regions have not been assigned any biological function. Here, we review how epialleles can be established in plants, serve a regulatory function, and are involved in adaptive processes. Recent studies suggest that most epialleles occur as byproducts of genetic variations, mainly from structural variants and Transposable Element (TE) activation. Nevertheless, epialleles that occur spontaneously independent of any genetic variations have also been described across different plant species. Here, we discuss how epialleles that are dependent and independent of genetic architecture are stabilized in the plant genome and how methylation can regulate a transcription relative to its genomic location.
Collapse
|
186
|
Denkena J, Johannes F, Colomé-Tatché M. Region-level epimutation rates in Arabidopsis thaliana. Heredity (Edinb) 2021; 127:190-202. [PMID: 33966050 PMCID: PMC8322157 DOI: 10.1038/s41437-021-00441-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Failure to maintain DNA methylation patterns during plant development can occasionally give rise to so-called "spontaneous epimutations". These stochastic methylation changes are sometimes heritable across generations and thus accumulate in plant genomes over time. Recent evidence indicates that spontaneous epimutations have a major role in shaping patterns of methylation diversity in plant populations. Using single CG dinucleotides as units of analysis, previous work has shown that the epimutation rate is several orders of magnitude higher than the genetic mutation rate. While these large rate differences have obvious implications for understanding genome-methylome co-evolution, the functional relevance of single CG methylation changes remains questionable. In contrast to single CG, solid experimental evidence has linked methylation gains and losses in larger genomic regions with transcriptional variation and heritable phenotypic effects. Here we show that such region-level changes arise stochastically at about the same rate as those at individual CG sites, are only marginal dependent on region size and cytosine density, but strongly dependent on chromosomal location. We also find consistent evidence that region-level epimutations are not restricted to CG contexts but also frequently occur in non-CG regions at the genome-wide scale. Taken together, our results support the view that many differentially methylated regions (DMRs) in natural populations originate from epimutation events and may not be effectively tagged by proximal SNPs. This possibility reinforces the need for epigenome-wide association studies (EWAS) in plants as a way to identify the epigenetic basis of complex traits.
Collapse
Affiliation(s)
- Johanna Denkena
- grid.4567.00000 0004 0483 2525Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frank Johannes
- grid.6936.a0000000123222966Department of Molecular Life Sciences, Hans Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich, Freising, Germany
| | - Maria Colomé-Tatché
- grid.4567.00000 0004 0483 2525Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany ,grid.5252.00000 0004 1936 973XBiomedical Center, Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
187
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
188
|
Yao N, Schmitz RJ, Johannes F. Epimutations Define a Fast-Ticking Molecular Clock in Plants. Trends Genet 2021; 37:699-710. [PMID: 34016450 PMCID: PMC8282728 DOI: 10.1016/j.tig.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Stochastic gains and losses of DNA methylation at CG dinucleotides are a frequent occurrence in plants. These spontaneous 'epimutations' occur at a rate that is 100 000 times higher than the genetic mutation rate, are effectively neutral at the genome-wide scale, and are stably inherited across mitotic and meiotic cell divisions. Mathematical models have been extraordinarily successful at describing how epimutations accumulate in plant genomes over time, making this process one of the most predictable epigenetic phenomena to date. Here, we propose that their high rate and effective neutrality make epimutations a powerful new molecular clock for timing evolutionary events of the recent past and for age dating of long-lived perennials such as trees.
Collapse
Affiliation(s)
- Nan Yao
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, Garching, Germany; Population Epigenetics and Epigenomics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
189
|
Geng Y, Guan Y, Qiong L, Lu S, An M, Crabbe MJC, Qi J, Zhao F, Qiao Q, Zhang T. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biol 2021; 19:143. [PMID: 34294107 PMCID: PMC8296595 DOI: 10.1186/s12915-021-01079-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. Results We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32–18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. Conclusions Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01079-0.
Collapse
Affiliation(s)
- Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Yabin Guan
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.,School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - La Qiong
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
| | - Shugang Lu
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Miao An
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK.,Institute of Biomedical and Environmental Science & Technology, School of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.,School of Life Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ji Qi
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fangqing Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qin Qiao
- School of Agriculture, Yunnan University, Kunming, 650504, China.
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
190
|
Krasovec M, Rickaby REM, Filatov DA. Evolution of Mutation Rate in Astronomically Large Phytoplankton Populations. Genome Biol Evol 2021; 12:1051-1059. [PMID: 32645145 PMCID: PMC7486954 DOI: 10.1093/gbe/evaa131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic diversity is expected to be proportional to population size, yet, there is a well-known, but unexplained lack of genetic diversity in large populations-the "Lewontin's paradox." Larger populations are expected to evolve lower mutation rates, which may help to explain this paradox. Here, we test this conjecture by measuring the spontaneous mutation rate in a ubiquitous unicellular marine phytoplankton species Emiliania huxleyi (Haptophyta) that has modest genetic diversity despite an astronomically large population size. Genome sequencing of E. huxleyi mutation accumulation lines revealed 455 mutations, with an unusual GC-biased mutation spectrum. This yielded an estimate of the per site mutation rate µ = 5.55×10-10 (CI 95%: 5.05×10-10 - 6.09×10-10), which corresponds to an effective population size Ne ∼ 2.7×106. Such a modest Ne is surprising for a ubiquitous and abundant species that accounts for up to 10% of global primary productivity in the oceans. Our results indicate that even exceptionally large populations do not evolve mutation rates lower than ∼10-10 per nucleotide per cell division. Consequently, the extreme disparity between modest genetic diversity and astronomically large population size in the plankton species cannot be explained by an unusually low mutation rate.
Collapse
Affiliation(s)
- Marc Krasovec
- Department of Plant Sciences, University of Oxford, United Kingdom
| | | | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, United Kingdom
| |
Collapse
|
191
|
The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 2021; 12:4247. [PMID: 34253727 PMCID: PMC8275611 DOI: 10.1038/s41467-021-24528-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYB, SAUR) controlling cell growth, differentiation and metabolism underpin the plant's longevity and tolerance to temperature, nutrient and water stress.
Collapse
|
192
|
Chen JY, Xie FF, Cui YZ, Chen CB, Lu WJ, Hu XD, Hua QZ, Zhao J, Wu ZJ, Gao D, Zhang ZK, Jiang WK, Sun QM, Hu GB, Qin YH. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. HORTICULTURE RESEARCH 2021; 8:164. [PMID: 34230458 PMCID: PMC8260669 DOI: 10.1038/s41438-021-00612-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Pitaya (Hylocereus) is the most economically important fleshy-fruited tree of the Cactaceae family that is grown worldwide, and it has attracted significant attention because of its betalain-abundant fruits. Nonetheless, the lack of a pitaya reference genome significantly hinders studies focused on its evolution, as well as the potential for genetic improvement of this crop. Herein, we employed various sequencing approaches, namely, PacBio-SMRT, Illumina HiSeq paired-end, 10× Genomics, and Hi-C (high-throughput chromosome conformation capture) to provide a chromosome-level genomic assembly of 'GHB' pitaya (H. undatus, 2n = 2x = 22 chromosomes). The size of the assembled pitaya genome was 1.41 Gb, with a scaffold N50 of ~127.15 Mb. In total, 27,753 protein-coding genes and 896.31 Mb of repetitive sequences in the H. undatus genome were annotated. Pitaya has undergone a WGT (whole-genome triplication), and a recent WGD (whole-genome duplication) occurred after the gamma event, which is common to the other species in Cactaceae. A total of 29,328 intact LTR-RTs (~696.45 Mb) were obtained in H. undatus, of which two significantly expanded lineages, Ty1/copia and Ty3/gypsy, were the main drivers of the expanded genome. A high-density genetic map of F1 hybrid populations of 'GHB' × 'Dahong' pitayas (H. monacanthus) and their parents were constructed, and a total of 20,872 bin markers were identified (56,380 SNPs) for 11 linkage groups. More importantly, through transcriptomic and WGCNA (weighted gene coexpression network analysis), a global view of the gene regulatory network, including structural genes and the transcription factors involved in pitaya fruit betalain biosynthesis, was presented. Our data present a valuable resource for facilitating molecular breeding programs of pitaya and shed novel light on its genomic evolution, as well as the modulation of betalain biosynthesis in edible fruits.
Collapse
Affiliation(s)
- Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Fang-Fang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Can-Bin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Xiao-di Hu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Qing-Zhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Jing Zhao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi-Jiang Wu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, 530007, Nanning, Guangxi, China
| | - Dan Gao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi-Ke Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wen-Kai Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Qing-Ming Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA)/Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640, Guangzhou, China.
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
193
|
The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021; 12:4044. [PMID: 34193872 PMCID: PMC8245649 DOI: 10.1038/s41467-021-24364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
What determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing. How natural selection shapes the rate and molecular spectrum of mutations is debated. Yeast mutation accumulation experiments identify a gene promoting mutagenesis and show stabilizing selection maintaining the mutation rate above the drift barrier. Selection also preserves the mutation spectrum.
Collapse
|
194
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
195
|
Ferron F, Sama B, Decroly E, Canard B. The enzymes for genome size increase and maintenance of large (+)RNA viruses. Trends Biochem Sci 2021; 46:866-877. [PMID: 34172362 DOI: 10.1016/j.tibs.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
With sizes <50 kb, viral RNA genomes are at the crossroads of genetic, biophysical, and biochemical stability in their host cell. Here, we analyze the enzymatic assets accompanying large RNA genome viruses, mostly based on recent scientific advances in Coronaviridae. We argue that, in addition to the presence of an RNA exonuclease (ExoN), two markers for the large size of viral RNA genomes are (i) the presence of one or more RNA methyltransferases (MTases) and (ii) a specific architecture of the RNA-dependent RNA polymerase active site. We propose that RNA genome expansion and maintenance are driven by an evolutionary ménage-à-trois made of fast and processive RNA polymerases, RNA repair ExoNs, and RNA MTases that relates to the transition between RNA- to DNA-based life.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, Case 925, 163, Avenue de Luminy, 13009 Marseille, France; European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Bhawna Sama
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, Case 925, 163, Avenue de Luminy, 13009 Marseille, France
| | - Etienne Decroly
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, Case 925, 163, Avenue de Luminy, 13009 Marseille, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, Case 925, 163, Avenue de Luminy, 13009 Marseille, France; European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany.
| |
Collapse
|
196
|
Zou Z, Zhang J. Are Nonsynonymous Transversions Generally More Deleterious than Nonsynonymous Transitions? Mol Biol Evol 2021; 38:181-191. [PMID: 32805043 PMCID: PMC7783172 DOI: 10.1093/molbev/msaa200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that, due to the structure of the genetic code, nonsynonymous transitions are less likely than transversions to cause radical changes in amino acid physicochemical properties so are on average less deleterious. This view was supported by some but not all mutagenesis experiments. Because laboratory measures of fitness effects have limited sensitivities and relative frequencies of different mutations in mutagenesis studies may not match those in nature, we here revisit this issue using comparative genomics. We extend the standard codon model of sequence evolution by adding the parameter η that quantifies the ratio of the fixation probability of transitional nonsynonymous mutations to that of transversional nonsynonymous mutations. We then estimate η from the concatenated alignment of all protein-coding DNA sequences of two closely related genomes. Surprisingly, η ranges from 0.13 to 2.0 across 90 species pairs sampled from the tree of life, with 51 incidences of η < 1 and 30 incidences of η >1 that are statistically significant. Hence, whether nonsynonymous transversions are overall more deleterious than nonsynonymous transitions is species-dependent. Because the corresponding groups of amino acid replacements differ between nonsynonymous transitions and transversions, η is influenced by the relative exchangeabilities of amino acid pairs. Indeed, an extensive search reveals that the large variation in η is primarily explainable by the recently reported among-species disparity in amino acid exchangeabilities. These findings demonstrate that genome-wide nucleotide substitution patterns in coding sequences have species-specific features and are more variable among evolutionary lineages than are currently thought.
Collapse
Affiliation(s)
- Zhengting Zou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Corresponding author: E-mail: .Associate editor: Jeffrey Townsend
| |
Collapse
|
197
|
Xu W, Li Y, Li Y, Liu C, Wang Y, Xia G, Wang M. Asymmetric Somatic Hybridization Affects Synonymous Codon Usage Bias in Wheat. Front Genet 2021; 12:682324. [PMID: 34178040 PMCID: PMC8226224 DOI: 10.3389/fgene.2021.682324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Asymmetric somatic hybridization is an efficient strategy for crop breeding by introducing exogenous chromatin fragments, which leads to whole genomic shock and local chromosomal shock that induces genome-wide genetic variation including indel (insertion and deletion) and nucleotide substitution. Nucleotide substitution causes synonymous codon usage bias (SCUB), an indicator of genomic mutation and natural selection. However, how asymmetric somatic hybridization affects SCUB has not been addressed. Here, we explored this issue by comparing expressed sequence tags of a common wheat cultivar and its asymmetric somatic hybrid line. Asymmetric somatic hybridization affected SCUB and promoted the bias to A- and T-ending synonymous codon (SCs). SCUB frequencies in chromosomes introgressed with exogenous fragments were comparable to those in chromosomes without exogenous fragments, showing that exogenous fragments had no local chromosomal effect. Asymmetric somatic hybridization affected SCUB frequencies in indel-flanking sequences more strongly than in non-flanking sequences, and this stronger effect was present in both chromosomes with and without exogenous fragments. DNA methylation-driven SCUB shift was more pronounced than other SC pairs. SCUB shift was similar among seven groups of allelic chromosomes as well as three sub-genomes. Our work demonstrates that the SCUB shift induced by asymmetric somatic hybridization is attributed to the whole genomic shock, and DNA methylation is a putative force of SCUB shift during asymmetric somatic hybridization. Asymmetric somatic hybridization provides an available method for deepening the nature of SCUB shift and genetic variation induced by genomic shock.
Collapse
Affiliation(s)
- Wenjing Xu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yingchun Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yajing Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Chun Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
198
|
Kühl MA, Stich B, Ries DC. Mutation-Simulator: fine-grained simulation of random mutations in any genome. Bioinformatics 2021; 37:568-569. [PMID: 32780803 PMCID: PMC8088320 DOI: 10.1093/bioinformatics/btaa716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/11/2023] Open
Abstract
Summary Mutation-Simulator allows the introduction of various types of sequence alterations in reference sequences, with reasonable compute-time even for large eukaryotic genomes. Its intuitive system for fine-grained control over mutation rates along the sequence enables the mimicking of natural mutation patterns. Using standard file formats for input and output data, it can easily be integrated into any development and benchmarking workflow for high-throughput sequencing applications. Availability and implementation Mutation-Simulator is written in Python 3 and the source code, documentation, help and use cases are available on the Github page at https://github.com/mkpython3/Mutation-Simulator. It is free for use under the GPL 3 license.
Collapse
Affiliation(s)
- M A Kühl
- Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - B Stich
- Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - D C Ries
- Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
199
|
Noshay JM, Springer NM. Stories that can't be told by SNPs; DNA methylation variation in plant populations. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101989. [PMID: 33445144 DOI: 10.1016/j.pbi.2020.101989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
Epigenetic variation has been observed in many plant populations. This variation can influence qualitative and quantitative traits. A key question is whether there is novel information in the epigenome that is not captured by SNP-based genetic markers. The answer likely varies depending on the sources and stability of epigenetic variation as well as the type of population being studied. We consider the epigenetic variation in several plant systems and how this relates to potential for hidden information that could increase our understanding of phenotypic variation.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
200
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|