151
|
Brzozowska MM, Havula E, Allen RB, Cox MP. Genetics, adaptation to environmental changes and archaic admixture in the pathogenesis of diabetes mellitus in Indigenous Australians. Rev Endocr Metab Disord 2019; 20:321-332. [PMID: 31278514 DOI: 10.1007/s11154-019-09505-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indigenous Australians are particularly affected by type 2 diabetes mellitus (T2D) due to both their genetic susceptibility and a range of environmental and lifestyle risk factors. Recent genetic studies link predisposition to some diseases, including T2D, to alleles acquired from archaic hominins, such as Neanderthals and Denisovans, which persist in the genomes of modern humans today. Indo-Pacific human populations, including Indigenous Australians, remain extremely underrepresented in genomic research with a paucity of data examining the impact of Denisovan or Neanderthal lineages on human phenotypes in Oceania. The few genetic studies undertaken emphasize the uniqueness and antiquity of Indigenous Australian genomes, with possibly the largest proportion of Denisovan ancestry of any population in the world. In this review, we focus on the potential contributions of ancient genes/pathways to modern human phenotypes, while also highlighting the evolutionary roles of genetic adaptation to dietary and environmental changes associated with an adopted Western lifestyle. We discuss the role of genetic and epigenetic factors in the pathogenesis of T2D in understudied Indigenous Australians, including the potential impact of archaic gene lineages on this disease. Finally, we propose that greater understanding of the underlying genetic predisposition may contribute to the clinical efficacy of diabetes management in Indigenous Australians. We suggest that improved identification of T2D risk variants in Oceania is needed. Such studies promise to clarify how genetic and phenotypic differences vary between populations and, crucially, provide novel targets for personalised medical therapies in currently marginalized groups.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, New South Wales, Australia.
- St George & Sutherland Hospital Clinical School, University of New South Wales, Sydney, Australia.
| | - Essi Havula
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Benjamin Allen
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
152
|
Harris DN, Ruczinski I, Yanek LR, Becker LC, Becker DM, Guio H, Cui T, Chilton FH, Mathias RA, O'Connor TD. Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From Africa to the New World. Genome Biol Evol 2019; 11:1417-1430. [PMID: 30942856 PMCID: PMC6514828 DOI: 10.1093/gbe/evz071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
The metabolic conversion of dietary omega-3 and omega-6 18 carbon (18C) to long chain (>20 carbon) polyunsaturated fatty acids (LC-PUFAs) is vital for human life. The rate-limiting steps of this process are catalyzed by fatty acid desaturase (FADS) 1 and 2. Therefore, understanding the evolutionary history of the FADS genes is essential to our understanding of hominin evolution. The FADS genes have two haplogroups, ancestral and derived, with the derived haplogroup being associated with more efficient LC-PUFA biosynthesis than the ancestral haplogroup. In addition, there is a complex global distribution of these haplogroups that is suggestive of Neanderthal introgression. We confirm that Native American ancestry is nearly fixed for the ancestral haplogroup, and replicate a positive selection signal in Native Americans. This positive selection potentially continued after the founding of the Americas, although simulations suggest that the timing is dependent on the allele frequency of the ancestral Beringian population. We also find that the Neanderthal FADS haplotype is more closely related to the derived haplogroup and the Denisovan clusters closer to the ancestral haplogroup. Furthermore, the derived haplogroup has a time to the most recent common ancestor of 688,474 years before present. These results support an ancient polymorphism, as opposed to Neanderthal introgression, forming in the FADS region during the Pleistocene with possibly differential selection pressures on both haplogroups. The near fixation of the ancestral haplogroup in Native American ancestry calls for future studies to explore the potential health risk of associated low LC-PUFA levels in these populations.
Collapse
Affiliation(s)
- Daniel N Harris
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lisa R Yanek
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lewis C Becker
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Diane M Becker
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heinner Guio
- Laboratorio de Biología Molecular, Instituto Nacional de Salud, Lima, Perú
| | - Tao Cui
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Floyd H Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Rasika A Mathias
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
153
|
Abstract
The dispersal of anatomically modern human populations out of Africa and across much of the rest of the world around 55 to 50 thousand years before present (ka) is recorded genetically by the multiple hominin groups they met and interbred with along the way, including the Neandertals and Denisovans. The signatures of these introgression events remain preserved in the genomes of modern-day populations, and provide a powerful record of the sequence and timing of these early migrations, with Asia proving a particularly complex area. At least 3 different hominin groups appear to have been involved in Asia, of which only the Denisovans are currently known. Several interbreeding events are inferred to have taken place east of Wallace's Line, consistent with archaeological evidence of widespread and early hominin presence in the area. However, archaeological and fossil evidence indicates archaic hominins had not spread as far as the Sahul continent (New Guinea, Australia, and Tasmania), where recent genetic evidence remains enigmatic.
Collapse
|
154
|
Richards EJ, Servedio MR, Martin CH. Searching for Sympatric Speciation in the Genomic Era. Bioessays 2019; 41:e1900047. [PMID: 31245871 PMCID: PMC8175013 DOI: 10.1002/bies.201900047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Indexed: 12/25/2022]
Abstract
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
155
|
Ackermann RR, Arnold ML, Baiz MD, Cahill JA, Cortés-Ortiz L, Evans BJ, Grant BR, Grant PR, Hallgrimsson B, Humphreys RA, Jolly CJ, Malukiewicz J, Percival CJ, Ritzman TB, Roos C, Roseman CC, Schroeder L, Smith FH, Warren KA, Wayne RK, Zinner D. Hybridization in human evolution: Insights from other organisms. Evol Anthropol 2019; 28:189-209. [PMID: 31222847 PMCID: PMC6980311 DOI: 10.1002/evan.21787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.
Collapse
Affiliation(s)
- Rebecca R. Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Marcella D. Baiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - James A. Cahill
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Liliana Cortés-Ortiz
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Ben J. Evans
- Biology Department, Life Sciences Building, McMaster University, Hamilton, Canada
| | - B. Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Peter R. Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Robyn A. Humphreys
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Clifford J. Jolly
- Center for the Study of Human Origins, Department of Anthropology, New York University, and NYCEP, New York, New York
| | - Joanna Malukiewicz
- Biodesign Institute, Arizona State University, Tempe, Arizona
- Federal University of Vicosa, Department of Animal Biology, Brazil
| | - Christopher J. Percival
- Department of Cell Biology and Anatomy and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Anthropology, Stony Brook University, New York
| | - Terrence B. Ritzman
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Anthropology, Washington University, St. Louis, Missouri
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| | - Charles C. Roseman
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lauren Schroeder
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Canada
| | - Fred H. Smith
- Department of Sociology and Anthropology, Illinois State University, Normal, Illinois
| | - Kerryn A. Warren
- Department of Archaeology, University of Cape Town, Rondebosch, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | | | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
156
|
Abstract
Context: Africa's role in the narrative of human evolution is indisputably emphasised in the emergence of Homo sapiens. However, once humans dispersed beyond Africa, the history of those who stayed remains vastly under-studied, lacking the proper attention the birthplace of both modern and archaic humans deserves. The sequencing of Neanderthal and Denisovan genomes has elucidated evidence of admixture between archaic and modern humans outside of Africa, but has not aided efforts in answering whether archaic admixture happened within Africa. Objectives: This article reviews the state of research for archaic introgression in African populations and discusses recent insights into this topic. Methods: Gathering published sources and recently released preprints, this review reports on the different methods developed for detecting archaic introgression. Particularly it discusses how relevant these are when implemented on African populations and what findings these studies have shown so far. Results: Methods for detecting archaic introgression have been predominantly developed and implemented on non-African populations. Recent preprints present new methods considering African populations. While a number of studies using these methods suggest archaic introgression in Africa, without an African archaic genome to validate these results, such findings remain as putative archaic introgression. Conclusion: In light of the caveats with implementing current archaic introgression detection methods in Africa, we recommend future studies to concentrate on unravelling the complicated demographic history of Africa through means of ancient DNA where possible and through more focused efforts to sequence modern DNA from more representative populations across the African continent.
Collapse
Affiliation(s)
- Cindy Santander
- a Department of Zoology , University of Oxford , Oxford , UK
| | - Francesco Montinaro
- a Department of Zoology , University of Oxford , Oxford , UK.,b Estonian Biocentre , University of Tartu , Tartu , Estonia
| | | |
Collapse
|
157
|
Enard D, Petrov DA. Evidence that RNA Viruses Drove Adaptive Introgression between Neanderthals and Modern Humans. Cell 2019; 175:360-371.e13. [PMID: 30290142 DOI: 10.1016/j.cell.2018.08.034] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023]
Abstract
Neanderthals and modern humans interbred at least twice in the past 100,000 years. While there is evidence that most introgressed DNA segments from Neanderthals to modern humans were removed by purifying selection, less is known about the adaptive nature of introgressed sequences that were retained. We hypothesized that interbreeding between Neanderthals and modern humans led to (1) the exposure of each species to novel viruses and (2) the exchange of adaptive alleles that provided resistance against these viruses. Here, we find that long, frequent-and more likely adaptive-segments of Neanderthal ancestry in modern humans are enriched for proteins that interact with viruses (VIPs). We found that VIPs that interact specifically with RNA viruses were more likely to belong to introgressed segments in modern Europeans. Our results show that retained segments of Neanderthal ancestry can be used to detect ancient epidemics.
Collapse
Affiliation(s)
- David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
158
|
Shultz DR, Montrey M, Shultz TR. Comparing fitness and drift explanations of Neanderthal replacement. Proc Biol Sci 2019; 286:20190907. [PMID: 31185865 DOI: 10.1098/rspb.2019.0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is a general consensus among archaeologists that replacement of Neanderthals by anatomically modern humans in Europe occurred around 40-35 ka. However, the causal mechanism for this replacement continues to be debated. Proposed models have featured either fitness advantages in favour of anatomically modern humans or invoked neutral drift under various preconditions. Searching for specific fitness advantages in the archaeological record has proven difficult, as these may be obscured, absent or subject to interpretation. To bridge this gap, we rigorously compare the system-level properties of fitness- and drift-based explanations of Neanderthal replacement. Our stochastic simulations and analytical predictions show that, although both fitness and drift can produce replacement, they present important differences in (i) required initial conditions, (ii) reliability, (iii) time to replacement, and (iv) path to replacement (population histories). These results present useful opportunities for comparison with archaeological and genetic data. We find greater agreement between the available empirical evidence and the system-level properties of replacement by differential fitness, rather than by neutral drift.
Collapse
Affiliation(s)
- Daniel R Shultz
- 1 Department of Anthropology, McGill University , Montreal, Quebec , Canada.,2 Department of History, McGill University , Montreal, Quebec , Canada
| | - Marcel Montrey
- 3 Department of Psychology, McGill University , Montreal, Quebec , Canada
| | - Thomas R Shultz
- 3 Department of Psychology, McGill University , Montreal, Quebec , Canada.,4 School of Computer Science, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
159
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
160
|
Szpak M, Xue Y, Ayub Q, Tyler‐Smith C. How well do we understand the basis of classic selective sweeps in humans? FEBS Lett 2019; 593:1431-1448. [DOI: 10.1002/1873-3468.13447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Yali Xue
- The Wellcome Sanger Institute Hinxton UK
| | - Qasim Ayub
- School of Science Monash University Malaysia Bandar Sunway Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform Monash University Malaysia Genomics Facility Bandar Sunway Malaysia
| | | |
Collapse
|
161
|
Silvert M, Quintana-Murci L, Rotival M. Impact and Evolutionary Determinants of Neanderthal Introgression on Transcriptional and Post-Transcriptional Regulation. Am J Hum Genet 2019; 104:1241-1250. [PMID: 31155285 DOI: 10.1016/j.ajhg.2019.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Archaic admixture is increasingly recognized as an important source of diversity in modern humans, and Neanderthal haplotypes cover 1%-3% of the genome of present-day Eurasians. Recent work has shown that archaic introgression has contributed to human phenotypic diversity, mostly through the regulation of gene expression. Yet the mechanisms through which archaic variants alter gene expression and the forces driving the introgression landscape at regulatory regions remain elusive. Here, we explored the impact of archaic introgression on transcriptional and post-transcriptional regulation. We focused on promoters and enhancers across 127 different tissues as well as on microRNA (miRNA)-mediated regulation. Although miRNAs themselves harbor few archaic variants, we found that some of these variants may have a strong impact on miRNA-mediated gene regulation. Enhancers were by far the regulatory elements most affected by archaic introgression: up to one-third of the tissues we tested presented significant enrichments. Specifically, we found strong enrichments of archaic variants in adipose-related tissues and primary T cells, even after accounting for various genomic and evolutionary confounders such as recombination rate and background selection. Interestingly, we identified signatures of adaptive introgression at enhancers of some key regulators of adipogenesis, raising the interesting hypothesis of a possible adaptation of early Eurasians to colder climates. Collectively, this study sheds new light on the mechanisms through which archaic admixture has impacted gene regulation in Eurasians and, more generally, increases our understanding of the contribution of Neanderthals to the regulation of acquired immunity and adipose homeostasis in modern humans.
Collapse
|
162
|
Durvasula A, Sankararaman S. A statistical model for reference-free inference of archaic local ancestry. PLoS Genet 2019; 15:e1008175. [PMID: 31136573 PMCID: PMC6555542 DOI: 10.1371/journal.pgen.1008175] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/07/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023] Open
Abstract
Statistical analyses of genomic data from diverse human populations have demonstrated that archaic hominins, such as Neanderthals and Denisovans, interbred or admixed with the ancestors of present-day humans. Central to these analyses are methods for inferring archaic ancestry along the genomes of present-day individuals (archaic local ancestry). Methods for archaic local ancestry inference rely on the availability of reference genomes from the ancestral archaic populations for accurate inference. However, several instances of archaic admixture lack reference archaic genomes, making it difficult to characterize these events. We present a statistical method that combines diverse population genetic summary statistics to infer archaic local ancestry without access to an archaic reference genome. We validate the accuracy and robustness of our method in simulations. When applied to genomes of European individuals, our method recovers segments that are substantially enriched for Neanderthal ancestry, even though our method did not have access to any Neanderthal reference genomes.
Collapse
Affiliation(s)
- Arun Durvasula
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sriram Sankararaman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
163
|
Ancient admixture from an extinct ape lineage into bonobos. Nat Ecol Evol 2019; 3:957-965. [PMID: 31036897 DOI: 10.1038/s41559-019-0881-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/21/2019] [Indexed: 01/28/2023]
Abstract
Admixture is a recurrent phenomenon in humans and other great ape populations. Genetic information from extinct hominins allows us to study historical interactions with modern humans and discover adaptive functions of gene flow. Here, we investigate whole genomes from bonobo and chimpanzee populations for signatures of gene flow from unknown archaic populations, finding evidence for an ancient admixture event between bonobos and a divergent lineage. This result reveals a complex population history in our closest living relatives, probably several hundred thousand years ago. We reconstruct up to 4.8% of the genome of this 'ghost' ape, which represents genomic data of an extinct great ape population. Genes contained in archaic fragments might confer functional consequences for the immunity, behaviour and physiology of bonobos. Finally, comparing the landscapes of introgressed regions in humans and bonobos, we find that a recurrent depletion of introgression is rare, suggesting that genomic incompatibilities arose seldom in these lineages.
Collapse
|
164
|
Bosman AM, Harvati K. A virtual assessment of the proposed suprainiac fossa on the early modern European calvaria from Cioclovina, Romania. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:567-574. [PMID: 31025315 DOI: 10.1002/ajpa.23844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/22/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The calvaria from Cioclovina (Romania) has been argued to possess some traits commonly ascribed to individuals belonging to the Neanderthal lineage, including a suprainiac fossa. However, its supranuchal morphology has only been evaluated with a qualitative analysis of the ectocranial surface. We evaluate whether the morphology of the supranuchal area of this specimen is homologous to the Neanderthal condition. MATERIALS AND METHODS We described in detail the external morphology, and, using computed tomography, investigated the internal morphology of the Cioclovina supranuchal area. We took measurements of the internal structures and calculated their relative contributions to total cranial vault thickness, which were compared to published data and evaluated with a principal component analysis (PCA). RESULTS The Cioclovina supranuchal region is characterized by superficial resorption present on the outer layer of the external table. Neither the diploic layer nor the external table decrease in relative thickness in the area above inion. In the PCA, Cioclovina falls within the convex hulls of recent modern Homo sapiens. DISCUSSION Our results show that the morphology of the Cioclovina supranuchal region does not correspond to the external and internal morphology of the typical Neanderthal suprainiac fossa. It cannot be characterized as a depression but rather as an area presenting superficial bone turnover. Together with earlier results, there is little phenotypic evidence that Cioclovina has high levels of Neanderthal ancestry. Our study demonstrates the usefulness of this quantitative method in assessing proposed Neanderthal-like suprainiac depressions in Upper Paleolithic and other fossil specimens.
Collapse
Affiliation(s)
- Abel Marinus Bosman
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Katerina Harvati
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural, and Biological Trajectories of the Human Past', Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany.,Paleoanthropology, Senckenberg Center for Human Evolution and Paleoecology, Eberhard Karls Universität Tübingen, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
165
|
|
166
|
Vyas DN, Mulligan CJ. Analyses of Neanderthal introgression suggest that Levantine and southern Arabian populations have a shared population history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:227-239. [PMID: 30889271 DOI: 10.1002/ajpa.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Modern humans are thought to have interbred with Neanderthals in the Near East soon after modern humans dispersed out of Africa. This introgression event likely took place in either the Levant or southern Arabia depending on the dispersal route out of Africa that was followed. In this study, we compare Neanderthal introgression in contemporary Levantine and southern Arabian populations to investigate Neanderthal introgression and to study Near Eastern population history. MATERIALS AND METHODS We analyzed genotyping data on >400,000 autosomal SNPs from seven Levantine and five southern Arabian populations and compared these data to those from populations from around the world including Neanderthal and Denisovan genomes. We used f4 and D statistics to estimate and compare levels of Neanderthal introgression between Levantine, southern Arabian, and comparative global populations. We also identified 1,581 putative Neanderthal-introgressed SNPs within our dataset and analyzed their allele frequencies as a means to compare introgression patterns in Levantine and southern Arabian genomes. RESULTS We find that Levantine and southern Arabian populations have similar levels of Neanderthal introgression to each other but lower levels than other non-Africans. Furthermore, we find that introgressed SNPs have very similar allele frequencies in the Levant and southern Arabia, which indicates that Neanderthal introgression is similarly distributed in Levantine and southern Arabian genomes. DISCUSSION We infer that the ancestors of contemporary Levantine and southern Arabian populations received Neanderthal introgression prior to separating from each other and that there has been extensive gene flow between these populations.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| | - Connie J Mulligan
- Department of Anthropology, University of Florida, Gainesville, Florida.,Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
167
|
Sherwood CC, Bradley BJ. Brain Evolution: Mapping the Inner Neandertal. Curr Biol 2019; 29:R95-R97. [DOI: 10.1016/j.cub.2018.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
168
|
Buckley MA, Woods NT, Tyrer JP, Mendoza-Fandiño G, Lawrenson K, Hazelett DJ, Najafabadi HS, Gjyshi A, Carvalho RS, Lyra PC, Coetzee SG, Shen HC, Yang AW, Earp MA, Yoder SJ, Risch H, Chenevix-Trench G, Ramus SJ, Phelan CM, Coetzee GA, Noushmehr H, Hughes TR, Sellers TA, Goode EL, Pharoah PD, Gayther SA, Monteiro ANA. Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus. Cancer Res 2019; 79:467-481. [PMID: 30487138 PMCID: PMC6359979 DOI: 10.1158/0008-5472.can-17-3864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/11/2018] [Accepted: 11/16/2018] [Indexed: 01/15/2023]
Abstract
Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439.
Collapse
Affiliation(s)
- Melissa A Buckley
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- University of South Florida Cancer Biology PhD Program, Tampa, Florida
| | - Nicholas T Woods
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jonathan P Tyrer
- The Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Mendoza-Fandiño
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kate Lawrenson
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dennis J Hazelett
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Urology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hamed S Najafabadi
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anxhela Gjyshi
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- University of South Florida Cancer Biology PhD Program, Tampa, Florida
| | - Renato S Carvalho
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Paulo C Lyra
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Simon G Coetzee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Howard C Shen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Ally W Yang
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Madalene A Earp
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Sean J Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Harvey Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | | | - Susan J Ramus
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Catherine M Phelan
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gerhard A Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Van Andel Institute, Grand Rapids, Michigan
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Canadian Institutes for Advanced Research, Toronto, Ontario, Canada
| | - Thomas A Sellers
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ellen L Goode
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Paul D Pharoah
- The Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Simon A Gayther
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
169
|
Petr M, Pääbo S, Kelso J, Vernot B. Limits of long-term selection against Neandertal introgression. Proc Natl Acad Sci U S A 2019; 116:1639-1644. [PMID: 30647110 PMCID: PMC6358679 DOI: 10.1073/pnas.1814338116] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several studies have suggested that introgressed Neandertal DNA was subjected to negative selection in modern humans. A striking observation in support of this is an apparent monotonic decline in Neandertal ancestry observed in modern humans in Europe over the past 45,000 years. Here, we show that this decline is an artifact likely caused by gene flow between modern human populations, which is not taken into account by statistics previously used to estimate Neandertal ancestry. When we apply a statistic that avoids assumptions about modern human demography by taking advantage of two high-coverage Neandertal genomes, we find no evidence for a change in Neandertal ancestry in Europe over the past 45,000 years. We use whole-genome simulations of selection and introgression to investigate a wide range of model parameters and find that negative selection is not expected to cause a significant long-term decline in genome-wide Neandertal ancestry. Nevertheless, these models recapitulate previously observed signals of selection against Neandertal alleles, in particular the depletion of Neandertal ancestry in conserved genomic regions. Surprisingly, we find that this depletion is strongest in regulatory and conserved noncoding regions and in the most conserved portion of protein-coding sequences.
Collapse
Affiliation(s)
- Martin Petr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
170
|
Abstract
Usually, paleoanthropology studies remains and artefacts. However, more recently, genetics offer new avenues. Information on humanisation mechanisms has been obtained from comparison with primate or archaic Homo DNA sequences. Likewise, the 1 000 Genomes Project has characterized the geographic spectrum of human genetic variation offering a basis for a genomic study of Homo sapiens phylogeny. From these studies, a model, Out of Africa, was derived. His origin is Africa, where he lived 200 000 years ago. A small fraction of the population left Africa between 50 and 100 000 years ago that have populated the rest of the world, to Europe, coastal Asia to Australia and mainland Asia to Behring Land Bridge and America. The model is supported by the decrease of genetic diversity with the distance to Eastern Africa (serial founder effect). In Europe and Asia, Homo sapiens met archaic Homo neanderthalis and H denisova. The presence of 1-3% neanderthalis sequences in modern Homo ADN indicates admixtures between these groups. Some archaic sequences are on positive selection pressure, thus suggesting that the extinct hominins might have facilitated the adaptation of H sapiens to new environments.
Collapse
Affiliation(s)
- Jean-Pierre Henry
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes, CNRS UMR7057, bâtiment Condorcet, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
171
|
Sellayah D. The Impact of Early Human Migration on Brown Adipose Tissue Evolution and Its Relevance to the Modern Obesity Pandemic. J Endocr Soc 2018; 3:372-386. [PMID: 30723844 PMCID: PMC6354082 DOI: 10.1210/js.2018-00363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023] Open
Abstract
Genetic factors are believed to be primarily responsible for obesity; however, an understanding of how genes for obesity have become so prevalent in modern society has proved elusive. Several theories have attempted to explain the genetic basis for obesity, but none of these appear to factor in the interethnic variation in obesity. Emerging evidence is increasingly pointing to a link between reduced basal metabolism and ineffective brown adipose tissue (BAT) thermogenesis. In fact, BAT presence and function are strongly correlated with metabolic rates and directly influence obesity susceptibility. My colleagues and I recently theorized that ancestral exposure to cold necessitated the evolution of enhanced BAT thermogenesis, which, with today’s hypercaloric and sedentary lifestyle, becomes advantageous, because thermogenesis is energetically wasteful, raising basal metabolism and burning excess calories. The opposite may be true for the descendants of heat-adapted populations. This review further reconciles global evolutionary climatic exposures with obesity demographics to understand the genetic basis for the obesity pandemic, and new insights from the most recent studies are provided, including those assessing archaic human admixture. Key genetic variants influencing BAT thermogenesis are outlined that have also been linked with climatic exposure to cold and appear to support the theory that evolutionary factors relevant to climate may have shaped the modern obesity pandemic.
Collapse
Affiliation(s)
- Dyan Sellayah
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
172
|
|
173
|
Gunz P, Tilot AK, Wittfeld K, Teumer A, Shapland CY, van Erp TGM, Dannemann M, Vernot B, Neubauer S, Guadalupe T, Fernández G, Brunner HG, Enard W, Fallon J, Hosten N, Völker U, Profico A, Di Vincenzo F, Manzi G, Kelso J, St Pourcain B, Hublin JJ, Franke B, Pääbo S, Macciardi F, Grabe HJ, Fisher SE. Neandertal Introgression Sheds Light on Modern Human Endocranial Globularity. Curr Biol 2018; 29:120-127.e5. [PMID: 30554901 PMCID: PMC6380688 DOI: 10.1016/j.cub.2018.10.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
One of the features that distinguishes modern humans from our extinct relatives and ancestors is a globular shape of the braincase [1-4]. As the endocranium closely mirrors the outer shape of the brain, these differences might reflect altered neural architecture [4, 5]. However, in the absence of fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain elusive. To better understand the biological foundations of modern human endocranial shape, we turn to our closest extinct relatives: the Neandertals. Interbreeding between modern humans and Neandertals has resulted in introgressed fragments of Neandertal DNA in the genomes of present-day non-Africans [6, 7]. Based on shape analyses of fossil skull endocasts, we derive a measure of endocranial globularity from structural MRI scans of thousands of modern humans and study the effects of introgressed fragments of Neandertal DNA on this phenotype. We find that Neandertal alleles on chromosomes 1 and 18 are associated with reduced endocranial globularity. These alleles influence expression of two nearby genes, UBR4 and PHLPP1, which are involved in neurogenesis and myelination, respectively. Our findings show how integration of fossil skull data with archaic genomics and neuroimaging can suggest developmental mechanisms that may contribute to the unique modern human endocranial shape.
Collapse
Affiliation(s)
- Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, the Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University of Greifswald, Ellernholzstr. 1-2, 17489 Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, Ellernholzstr. 1-2, 17489 Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Walter-Rathenau Str. 48, 17475 Greifswald, Germany
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, the Netherlands
| | - Theo G M van Erp
- Clinical and Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, 5251 California Ave, Irvine, CA 92617, USA
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, the Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, 6500 GA, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, 6500 GA, Nijmegen, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ, Maastricht, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, Ludwig Maximilians University Munich, Grosshaderner Str. 2, D-82152 Martinsried, Germany
| | - James Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine, Ernst-Moritz-Arndt-University Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Antonio Profico
- Università degli Studi di Roma La Sapienza, Department of Environmental Biology, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Fabio Di Vincenzo
- Università degli Studi di Roma La Sapienza, Department of Environmental Biology, Piazzale Aldo Moro, 5, 00185, Roma, Italy; Istituto Italiano di Paleontologia Umana, Via Ulisse Aldrovandi, 18, 00197, Roma, Italy
| | - Giorgio Manzi
- Università degli Studi di Roma La Sapienza, Department of Environmental Biology, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands; Departments of Human Genetics and Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Sprague Hall - Room 312, Gillespie Neuroscience - Laboratory, Mail Code: 3960, Irvine, CA 92697, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University of Greifswald, Ellernholzstr. 1-2, 17489 Greifswald, Germany
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
174
|
Franchini P, Jones JC, Xiong P, Kneitz S, Gompert Z, Warren WC, Walter RB, Meyer A, Schartl M. Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish. Nat Commun 2018; 9:5136. [PMID: 30510159 PMCID: PMC6277394 DOI: 10.1038/s41467-018-07648-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/13/2018] [Indexed: 01/13/2023] Open
Abstract
The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome. Fish have a high diversity of sex-determining systems, but the mechanisms responsible for this are not well understood. Here, Franchini et al. show how hybridization and backcrossing have led to the evolution of a new sex chromosome in swordtail fish during 30 years of experimental evolution.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Julia C Jones
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 75123, Sweden
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, 63108, MO, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, 78666-4616, TX, USA
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany. .,Radcliffe Institute for Advanced Study, Harvard University, 9 Garden Street, Cambridge, MA, 02139, USA.
| | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Centre, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
175
|
Taskent RO, Alioglu ND, Fer E, Melike Donertas H, Somel M, Gokcumen O. Variation and Functional Impact of Neanderthal Ancestry in Western Asia. Genome Biol Evol 2018; 9:3516-3524. [PMID: 29040546 PMCID: PMC5751057 DOI: 10.1093/gbe/evx216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations.
Collapse
Affiliation(s)
| | | | - Evrim Fer
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Handan Melike Donertas
- Department of Biology, Middle East Technical University, Ankara, Turkey.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
| |
Collapse
|
176
|
Local PCA Shows How the Effect of Population Structure Differs Along the Genome. Genetics 2018; 211:289-304. [PMID: 30459280 DOI: 10.1534/genetics.118.301747] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Population structure leads to systematic patterns in measures of mean relatedness between individuals in large genomic data sets, which are often discovered and visualized using dimension reduction techniques such as principal component analysis (PCA). Mean relatedness is an average of the relationships across locus-specific genealogical trees, which can be strongly affected on intermediate genomic scales by linked selection and other factors. We show how to use local PCA to describe this intermediate-scale heterogeneity in patterns of relatedness, and apply the method to genomic data from three species, finding in each that the effect of population structure can vary substantially across only a few megabases. In a global human data set, localized heterogeneity is likely explained by polymorphic chromosomal inversions. In a range-wide data set of Medicago truncatula, factors that produce heterogeneity are shared between chromosomes, correlate with local gene density, and may be caused by linked selection, such as background selection or local adaptation. In a data set of primarily African Drosophila melanogaster, large-scale heterogeneity across each chromosome arm is explained by known chromosomal inversions thought to be under recent selection and, after removing samples carrying inversions, remaining heterogeneity is correlated with recombination rate and gene density, again suggesting a role for linked selection. The visualization method provides a flexible new way to discover biological drivers of genetic variation, and its application to data highlights the strong effects that linked selection and chromosomal inversions can have on observed patterns of genetic variation.
Collapse
|
177
|
Akhtari FS, Havener TM, Fukudo M, Jack JR, McLeod HL, Wiltshire T, Motsinger-Reif AA. The influence of Neanderthal alleles on cytotoxic response. PeerJ 2018; 6:e5691. [PMID: 30386687 PMCID: PMC6202974 DOI: 10.7717/peerj.5691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Various studies have shown that people of Eurasian origin contain traces of DNA inherited from interbreeding with Neanderthals. Recent studies have demonstrated that these Neanderthal variants influence a range of clinically important traits and diseases. Thus, understanding the genetic factors responsible for the variability in individual response to drug or chemical exposure is a key goal of pharmacogenomics and toxicogenomics, as dose responses are clinically and epidemiologically important traits. It is well established that ethnic and racial differences are important in dose response traits, but to our knowledge the influence of Neanderthal ancestry on response to xenobiotics is unknown. Towards this aim, we examined if Neanderthal ancestry plays a role in cytotoxic response to anti-cancer drugs and toxic environmental chemicals. We identified common Neanderthal variants in lymphoblastoid cell lines (LCLs) derived from the globally diverse 1000 Genomes Project and Caucasian cell lines from the Children's Hospital of Oakland Research Institute. We analyzed the effects of these Neanderthal alleles on cytotoxic response to 29 anti-cancer drugs and 179 environmental chemicals at varying concentrations using genome-wide data. We identified and replicated single nucleotide polymorphisms (SNPs) from these association results, including a SNP in the SNORD-113 cluster. Our results also show that the Neanderthal alleles cumulatively lead to increased sensitivity to both the anti-cancer drugs and the environmental chemicals. Our results demonstrate the influence of Neanderthal ancestry-informative markers on cytotoxic response. These results could be important in identifying biomarkers for personalized medicine or in dissecting the underlying etiology of dose response traits.
Collapse
Affiliation(s)
- Farida S Akhtari
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
| | - Tammy M Havener
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - John R Jack
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America.,Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| | - Howard L McLeod
- The DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Tim Wiltshire
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.,Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Alison A Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America.,Department of Statistics, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
178
|
Chiang CWK, Mangul S, Robles C, Sankararaman S. A Comprehensive Map of Genetic Variation in the World's Largest Ethnic Group-Han Chinese. Mol Biol Evol 2018; 35:2736-2750. [PMID: 30169787 PMCID: PMC6693441 DOI: 10.1093/molbev/msy170] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As are most non-European populations, the Han Chinese are relatively understudied in population and medical genetics studies. From low-coverage whole-genome sequencing of 11,670 Han Chinese women we present a catalog of 25,057,223 variants, including 548,401 novel variants that are seen at least 10 times in our data set. Individuals from this data set came from 24 out of 33 administrative divisions across China (including 19 provinces, 4 municipalities, and 1 autonomous region), thus allowing us to study population structure, genetic ancestry, and local adaptation in Han Chinese. We identified previously unrecognized population structure along the East-West axis of China, demonstrated a general pattern of isolation-by-distance among Han Chinese, and reported unique regional signals of admixture, such as European influences among the Northwestern provinces of China. Furthermore, we identified a number of highly differentiated, putatively adaptive, loci (e.g., MTHFR, ADH7, and FADS, among others) that may be driven by immune response, climate, and diet in the Han Chinese. Finally, we have made available allele frequency estimates stratified by administrative divisions across China in the Geography of Genetic Variant browser for the broader community. By leveraging the largest currently available genetic data set for Han Chinese, we have gained insights into the history and population structure of the world's largest ethnic group.
Collapse
Affiliation(s)
- Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Serghei Mangul
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA
- Institute for Quantitative and Computational Bioscience, University of California Los Angeles, Los Angeles, CA
| | - Christopher Robles
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Sriram Sankararaman
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
179
|
O'Leary CE, Schneider C, Locksley RM. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 2018; 37:47-72. [PMID: 30379593 DOI: 10.1146/annurev-immunol-042718-041505] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Collapse
Affiliation(s)
- Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.,University of California, San Francisco, Howard Hughes Medical Institute, San Francisco, California 94143, USA
| |
Collapse
|
180
|
Kim BY, Wei X, Fitz-Gibbon S, Lohmueller KE, Ortego J, Gugger PF, Sork VL. RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak species (Quercussect.Quercus: Fagaceae). Mol Ecol 2018; 27:4556-4571. [DOI: 10.1111/mec.14869] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/25/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Bernard Y. Kim
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Xinzeng Wei
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Key Laboratory of Aquatic Botany and Watershed Ecology; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan Hubei China
| | - Sorel Fitz-Gibbon
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Department of Human Genetics; David Geffen School of Medicine; University of California; Los Angeles California
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana, EBD-CSIC; Seville Spain
| | - Paul F. Gugger
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Appalachian Laboratory; University of Maryland Center for Environmental Science; Frostburg Maryland
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California at Los Angeles; Los Angeles California
- Institute of the Environment and Sustainability; University of California; Los Angeles California
| |
Collapse
|
181
|
Steinrücken M, Spence JP, Kamm JA, Wieczorek E, Song YS. Model-based detection and analysis of introgressed Neanderthal ancestry in modern humans. Mol Ecol 2018; 27:3873-3888. [PMID: 29603507 PMCID: PMC6165692 DOI: 10.1111/mec.14565] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Genetic evidence has revealed that the ancestors of modern human populations outside Africa and their hominin sister groups, notably Neanderthals, exchanged genetic material in the past. The distribution of these introgressed sequence tracts along modern-day human genomes provides insight into the selective forces acting on them and the role of introgression in the evolutionary history of hominins. Studying introgression patterns on the X-chromosome is of particular interest, as sex chromosomes are thought to play a special role in speciation. Recent studies have developed methods to localize introgressed ancestries, reporting long regions that are depleted of Neanderthal introgression and enriched in genes, suggesting negative selection against the Neanderthal variants. On the other hand, enriched Neanderthal ancestry in hair- and skin-related genes suggests that some introgressed variants facilitated adaptation to new environments. Here, we present a model-based introgression detection method called dical-admix. We demonstrate its efficiency and accuracy through extensive simulations and apply it to detect tracts of Neanderthal introgression in modern human individuals from the 1000 Genomes Project. Our findings are largely concordant with previous studies, consistent with weak selection against Neanderthal ancestry. We find evidence that selection against Neanderthal ancestry was due to higher genetic load in Neanderthals resulting from small effective population size, rather than widespread Dobzhansky-Müller incompatibilities (DMIs) that could contribute to reproductive isolation. Moreover, we confirm the previously reported low level of introgression on the X-chromosome, but find little evidence that DMIs contributed to this pattern.
Collapse
Affiliation(s)
- Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago
- Department of Biostatistics and Epidemiology, University of
Massachusetts, Amherst
- Department of EECS, University of California, Berkeley
| | - Jeffrey P. Spence
- Computational Biology Graduate Group, University of California,
Berkeley
| | - John A. Kamm
- Department of Statistics, University of California, Berkeley
| | | | - Yun S. Song
- Department of EECS, University of California, Berkeley
- Department of Statistics, University of California, Berkeley
- Chan Zuckerberg Biohub, San Francisco
| |
Collapse
|
182
|
Social Structure Facilitated the Evolution of Care-giving as a Strategy for Disease Control in the Human Lineage. Sci Rep 2018; 8:13997. [PMID: 30262928 PMCID: PMC6160448 DOI: 10.1038/s41598-018-31568-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Humans are the only species to have evolved cooperative care-giving as a strategy for disease control. A synthesis of evidence from the fossil record, paleogenomics, human ecology, and disease transmission models, suggests that care-giving for the diseased evolved as part of the unique suite of cognitive and socio-cultural specializations that are attributed to the genus Homo. Here we demonstrate that the evolution of hominin social structure enabled the evolution of care-giving for the diseased. Using agent-based modeling, we simulate the evolution of care-giving in hominin networks derived from a basal primate social system and the three leading hypotheses of ancestral human social organization, each of which would have had to deal with the elevated disease spread associated with care-giving. We show that (1) care-giving is an evolutionarily stable strategy in kin-based cooperatively breeding groups, (2) care-giving can become established in small, low density groups, similar to communities that existed before the increases in community size and density that are associated with the advent of agriculture in the Neolithic, and (3) once established, care-giving became a successful method of disease control across social systems, even as community sizes and densities increased. We conclude that care-giving enabled hominins to suppress disease spread as social complexity, and thus socially-transmitted disease risk, increased.
Collapse
|
183
|
Skov L, Hui R, Shchur V, Hobolth A, Scally A, Schierup MH, Durbin R. Detecting archaic introgression using an unadmixed outgroup. PLoS Genet 2018; 14:e1007641. [PMID: 30226838 PMCID: PMC6161914 DOI: 10.1371/journal.pgen.1007641] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/28/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
Human populations outside of Africa have experienced at least two bouts of introgression from archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both these introgressions. Here we present a new approach to detect segments of individual genomes of archaic origin without using an archaic reference genome. The approach is based on a hidden Markov model that identifies genomic regions with a high density of single nucleotide variants (SNVs) not seen in unadmixed populations. We show using simulations that this provides a powerful approach to identifying segments of archaic introgression with a low rate of false detection, given data from a suitable outgroup population is available, without the archaic introgression but containing a majority of the variation that arose since initial separation from the archaic lineage. Furthermore our approach is able to infer admixture proportions and the times both of admixture and of initial divergence between the human and archaic populations. We apply the model to detect archaic introgression in 89 Papuans and show how the identified segments can be assigned to likely Neanderthal or Denisovan origin. We report more Denisovan admixture than previous studies and find a shift in size distribution of fragments of Neanderthal and Denisovan origin that is compatible with a difference in admixture time. Furthermore, we identify small amounts of Denisova ancestry in South East Asians and South Asians. The genetic history of present-day individuals includes episodes of mating between divergent groups, which have led to 'introgressed' genetic material persisting in modern genome sequences. Perhaps the most notable examples of such events in humans are the introgressions from Neanderthals into non-Africans 50,000 or so years ago, and from a related archaic group known as Denisovans into the ancestors of indigenous people from Papua-New Guinea and Australia. Methods to identify introgressions and the genomic regions that derive from them generally involve the use of reference genome sequences for the source populations. However, there are advantages in having methods independent of reference sequences, both to reduce bias and to detect possible introgression from groups for which we currently lack a reference genome. In this paper we describe such an approach, in a statistical framework which exploits the fact that introgressed regions will contain a high density of genetic variants that are private to the group receiving the divergent material. We apply this method to 89 Papuan genome sequences, estimating times of introgression and initial divergence between archaic and modern humans, and compare it to other related methods.
Collapse
Affiliation(s)
- Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
- * E-mail: (LS); (RD)
| | - Ruoyun Hui
- Department of Genetics, University of Cambridge, Cambridge United Kingdom
| | - Vladimir Shchur
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Asger Hobolth
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge United Kingdom
| | | | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (LS); (RD)
| |
Collapse
|
184
|
Abstract
The first decade of ancient genomics has revolutionized the study of human prehistory and evolution. We review new insights based on prehistoric modern human genomes, including greatly increased resolution of the timing and structure of the out-of-Africa expansion, the diversification of present-day non-African populations, and the earliest expansions of those populations into Eurasia and America. Prehistoric genomes now document population transformations on every inhabited continent—in particular the effect of agricultural expansions in Africa, Europe, and Oceania—and record a history of natural selection that shapes present-day phenotypic diversity. Despite these advances, much remains unknown, in particular about the genomic histories of Asia (the most populous continent) and Africa (the continent that contains the most genetic diversity). Ancient genomes from these and other regions, integrated with a growing understanding of the genomic basis of human phenotypic diversity, will be in focus during the next decade of research in the field.
Collapse
Affiliation(s)
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19103, USA
| |
Collapse
|
185
|
Sato DX, Kawata M. Positive and balancing selection on SLC18A1 gene associated with psychiatric disorders and human-unique personality traits. Evol Lett 2018; 2:499-510. [PMID: 30283697 PMCID: PMC6145502 DOI: 10.1002/evl3.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of genetic variants susceptible to psychiatric disorders is one of the intriguing evolutionary enigmas. The present study detects three psychiatric disorder‐relevant genes (CLSTN2, FAT1, and SLC18A1) that have been under positive selection during the human evolution. In particular, SLC18A1 (vesicular monoamine transporter 1; VMAT1) gene has a human‐unique variant (rs1390938, Thr136Ile), which is associated with bipolar disorders and/or the anxiety‐related personality traits. 136Ile shows relatively high (20–61%) frequency in non‐African populations, and Tajima's D reports a significant peak around the Thr136Ile site, suggesting that this polymorphism has been positively maintained by balancing selection in non‐African populations. Moreover, Coalescent simulations predict that 136Ile originated around 100,000 years ago, the time being generally associated with the Out‐of‐Africa migration of modern humans. Our study sheds new light on a gene in monoamine pathway as a strong candidate contributing to human‐unique psychological traits.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University Sendai 980-8578 Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
186
|
High-throughput inference of pairwise coalescence times identifies signals of selection and enriched disease heritability. Nat Genet 2018; 50:1311-1317. [PMID: 30104759 PMCID: PMC6145075 DOI: 10.1038/s41588-018-0177-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/21/2018] [Indexed: 12/19/2022]
Abstract
Interest in reconstructing demographic histories has motivated the development of methods to estimate locus-specific pairwise coalescence times from whole-genome sequence data. Here we introduce a powerful new method, ASMC, that can estimate coalescence times using only SNP array data, and is orders of magnitude faster than previous approaches. We applied ASMC to detect recent positive selection in 113,851 phased British samples from the UK Biobank, and detected 12 genome-wide significant signals, including 6 novel loci. We also applied ASMC to sequencing data from 498 Dutch individuals to detect background selection at deeper time scales. We detected strong heritability enrichment in regions of high background selection in an analysis of 20 independent diseases and complex traits using stratified LD score regression, conditioned on a broad set of functional annotations (including other background selection annotations). These results underscore the widespread effects of background selection on the genetic architecture of complex traits.
Collapse
|
187
|
Tucci S, Vohr SH, McCoy RC, Vernot B, Robinson MR, Barbieri C, Nelson BJ, Fu W, Purnomo GA, Sudoyo H, Eichler EE, Barbujani G, Visscher PM, Akey JM, Green RE. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science 2018; 361:511-516. [PMID: 30072539 PMCID: PMC6709593 DOI: 10.1126/science.aar8486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Flores Island, Indonesia, was inhabited by the small-bodied hominin species Homo floresiensis, which has an unknown evolutionary relationship to modern humans. This island is also home to an extant human pygmy population. Here we describe genome-scale single-nucleotide polymorphism data and whole-genome sequences from a contemporary human pygmy population living on Flores near the cave where H. floresiensis was found. The genomes of Flores pygmies reveal a complex history of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins. Modern individuals bear the signatures of recent positive selection encompassing the FADS (fatty acid desaturase) gene cluster, likely related to diet, and polygenic selection acting on standing variation that contributed to their short-stature phenotype. Thus, multiple independent instances of hominin insular dwarfism occurred on Flores.
Collapse
Affiliation(s)
- Serena Tucci
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Rajiv C McCoy
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew R Robinson
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Génopode, Quatier Sorge, Lausanne, Switzerland
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Brad J Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gludhug A Purnomo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Guido Barbujani
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua M Akey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
188
|
Seixas FA, Boursot P, Melo-Ferreira J. The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol 2018; 19:91. [PMID: 30056805 PMCID: PMC6065068 DOI: 10.1186/s13059-018-1471-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The extent to which selection determines interspecific patterns of genetic exchange enlightens the role of adaptation in evolution and speciation. Often reported extensive interspecific introgression could be selection-driven, but also result from demographic processes, especially in cases of invasive species replacements, which can promote introgression at their invasion front. Because invasion and selective sweeps similarly mold variation, population genetics evidence for selection can only be gathered in an explicit demographic framework. The Iberian hare, Lepus granatensis, displays in its northern range extensive mitochondrial DNA introgression from L. timidus, an arctic/boreal species that it replaced locally after the last glacial maximum. We use whole-genome sequencing to infer geographic and genomic patterns of nuclear introgression and fit a neutral model of species replacement with hybridization, allowing us to evaluate how selection influenced introgression genome-wide, including for mtDNA. RESULTS Although the average nuclear and mtDNA introgression patterns contrast strongly, they fit a single demographic model of post-glacial invasive replacement of timidus by granatensis. Outliers of elevated introgression include several genes related to immunity, spermatogenesis, and mitochondrial metabolism. Introgression is reduced on the X chromosome and in low recombining regions. CONCLUSIONS General nuclear and mtDNA patterns of introgression can be explained by purely demographic processes. Hybrid incompatibilities and interplay between selection and recombination locally modulate levels of nuclear introgression. Selection promoted introgression of some genes involved in conflicts, either interspecific (parasites) or possibly cytonuclear. In the latter case, nuclear introgression could mitigate the potential negative effects of alien mtDNA on mitochondrial metabolism and male-specific traits.
Collapse
Affiliation(s)
- Fernando A Seixas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France.
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
189
|
Dannemann M, Racimo F. Something old, something borrowed: admixture and adaptation in human evolution. Curr Opin Genet Dev 2018; 53:1-8. [PMID: 29894925 DOI: 10.1016/j.gde.2018.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
The sequencing of ancient DNA from archaic humans-Neanderthals and Denisovans-has revealed that modern and archaic humans interbred at least twice during the Pleistocene. The field of human paleogenomics has now turned its attention towards understanding the nature of this genetic legacy in the gene pool of present-day humans. What exactly did modern humans obtain from interbreeding with Neanderthals and Denisovans? Was the introgressed genetic material beneficial, neutral or maladaptive? Can differences in phenotypes among present-day human populations be explained by archaic human introgression? These questions are of prime importance for our understanding of recent human evolution, but will require careful computational modeling and extensive functional assays before they can be answered in full. Here, we review the recent literature characterizing introgressed DNA and the likely biological consequences for their modern human carriers. We focus particularly on archaic human haplotypes that were beneficial to modern humans as they expanded across the globe, and on ways to understand how populations harboring these haplotypes evolved over time.
Collapse
Affiliation(s)
- Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fernando Racimo
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark.
| |
Collapse
|
190
|
|
191
|
|
192
|
Abstract
In this article, we attempt to integrate recent advances in our understanding of the relations between culture and genes into an emerging field—cultural genomics—and discuss its promises and theoretical and methodological challenges. We first provide a brief review of previous conceptualizations about the relations between culture and genes and then argue that recent advances in molecular evolution research has allowed us to reframe the discussion away from parallel genetic and cultural evolution to focus on the interactions between the two. After outlining the key issues involved in cultural genomics (unit of analysis, timescale, mechanisms, and direction of influence), we provide examples of research for the different levels of interactions between culture and genes. We then discuss ideological, theoretical, and methodological challenges in cultural genomics and propose tentative solutions.
Collapse
|
193
|
Banerjee N, Polushina T, Bettella F, Giddaluru S, Steen VM, Andreassen OA, Le Hellard S. Recently evolved human-specific methylated regions are enriched in schizophrenia signals. BMC Evol Biol 2018; 18:63. [PMID: 29747567 PMCID: PMC5946405 DOI: 10.1186/s12862-018-1177-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 04/11/2018] [Indexed: 01/10/2023] Open
Abstract
Background One explanation for the persistence of schizophrenia despite the reduced fertility of patients is that it is a by-product of recent human evolution. This hypothesis is supported by evidence suggesting that recently-evolved genomic regions in humans are involved in the genetic risk for schizophrenia. Using summary statistics from genome-wide association studies (GWAS) of schizophrenia and 11 other phenotypes, we tested for enrichment of association with GWAS traits in regions that have undergone methylation changes in the human lineage compared to Neanderthals and Denisovans, i.e. human-specific differentially methylated regions (DMRs). We used analytical tools that evaluate polygenic enrichment of a subset of genomic variants against all variants. Results Schizophrenia was the only trait in which DMR SNPs showed clear enrichment of association that passed the genome-wide significance threshold. The enrichment was not observed for Neanderthal or Denisovan DMRs. The enrichment seen in human DMRs is comparable to that for genomic regions tagged by Neanderthal Selective Sweep markers, and stronger than that for Human Accelerated Regions. The enrichment survives multiple testing performed through permutation (n = 10,000) and bootstrapping (n = 5000) in INRICH (p < 0.01). Some enrichment of association with height was observed at the gene level. Conclusions Regions where DNA methylation modifications have changed during recent human evolution show enrichment of association with schizophrenia and possibly with height. Our study further supports the hypothesis that genetic variants conferring risk of schizophrenia co-occur in genomic regions that have changed as the human species evolved. Since methylation is an epigenetic mark, potentially mediated by environmental changes, our results also suggest that interaction with the environment might have contributed to that association. Electronic supplementary material The online version of this article (10.1186/s12862-018-1177-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niladri Banerjee
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tatiana Polushina
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Francesco Bettella
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT - K.G. Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sudheer Giddaluru
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Vidar M Steen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT - K.G. Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Medicine, Laboratory Building, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
194
|
Schumer M, Xu C, Powell DL, Durvasula A, Skov L, Holland C, Blazier JC, Sankararaman S, Andolfatto P, Rosenthal GG, Przeworski M. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 2018; 360:656-660. [PMID: 29674434 PMCID: PMC6069607 DOI: 10.1126/science.aar3684] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
To investigate the consequences of hybridization between species, we studied three replicate hybrid populations that formed naturally between two swordtail fish species, estimating their fine-scale genetic map and inferring ancestry along the genomes of 690 individuals. In all three populations, ancestry from the "minor" parental species is more common in regions of high recombination and where there is linkage to fewer putative targets of selection. The same patterns are apparent in a reanalysis of human and archaic admixture. These results support models in which ancestry from the minor parental species is more likely to persist when rapidly uncoupled from alleles that are deleterious in hybrids. Our analyses further indicate that selection on swordtail hybrids stems predominantly from deleterious combinations of epistatically interacting alleles.
Collapse
Affiliation(s)
- Molly Schumer
- Howard Hughes Medical Institute (HHMI), Boston, MA, USA.
- Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
| | - Chenling Xu
- Center for Computational Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Daniel L Powell
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Arun Durvasula
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Chris Holland
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - John C Blazier
- Department of Biology, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Genome Sciences and Society, College Station, TX, USA
| | - Sriram Sankararaman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
195
|
Akkuratov EE, Gelfand MS, Khrameeva EE. Neanderthal and Denisovan ancestry in Papuans: A functional study. J Bioinform Comput Biol 2018; 16:1840011. [DOI: 10.1142/s0219720018400115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of complete nuclear genomes of Neanderthal and Denisovan stimulated studies about their relationship with modern humans demonstrating, in particular, that DNA alleles from both Neanderthal and Denisovan genomes are present in genomes of modern humans. The Papuan genome is a unique object because it contains both Neanderthal and Denisovan alleles. Here, we have shown that the Papuan genomes contain different gene functional groups inherited from each of the ancient people. The Papuan genomes demonstrate a relative prevalence of Neanderthal alleles in genes responsible for the regulation of transcription and neurogenesis. The enrichment of specific functional groups with Denisovan alleles is less pronounced; these groups are responsible for bone and tissue remodeling. This analysis shows that introgression of alleles from Neanderthals and Denisovans to Papuans occurred independently and retention of these alleles may carry specific adaptive advantages.
Collapse
Affiliation(s)
- Evgeny E. Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| | - Mikhail S. Gelfand
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute for Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, National Research University – Higher School of Economics, Moscow, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina E. Khrameeva
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute for Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
196
|
Key FM, Abdul-Aziz MA, Mundry R, Peter BM, Sekar A, D'Amato M, Dennis MY, Schmidt JM, Andrés AM. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet 2018; 14:e1007298. [PMID: 29723195 PMCID: PMC5933706 DOI: 10.1371/journal.pgen.1007298] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/07/2018] [Indexed: 01/22/2023] Open
Abstract
Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.
Collapse
Affiliation(s)
- Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Muslihudeen A Abdul-Aziz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Roger Mundry
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, California, United States of America
| | - Mauro D'Amato
- BioDonostia Health Research Institute and IKERBASQUE, Basque Foundation for Science, San Sebastian, Spain
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, California, United States of America
| | - Joshua M Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
197
|
Abstract
The complete sequencing of archaic and modern human genomes has revolutionized the study of human history and evolution. The application of paleogenomics has answered questions that were beyond the scope of archaeology alone-definitively proving admixture between archaic and modern humans. Despite the remarkable progress made in the study of archaic-modern human admixture, many outstanding questions remain. Here, we review some of these questions, which include how frequent archaic-modern human admixture was in history, to what degree drift and selection are responsible for the loss and retention of introgressed sequences in modern human genomes, and how surviving archaic sequences affect human phenotypes.
Collapse
Affiliation(s)
- Aaron B. Wolf
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua M. Akey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
198
|
Sutcliffe B, Chariton AA, Harford AJ, Hose GC, Stephenson S, Greenfield P, Midgley DJ, Paulsen IT. Insights from the Genomes of Microbes Thriving in Uranium-Enriched Sediments. MICROBIAL ECOLOGY 2018; 75:970-984. [PMID: 29128951 DOI: 10.1007/s00248-017-1102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Elevated uranium dose (4 g kg-1) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified. Genomic reconstruction and metabolic examination of these taxa reveal a host of divergent life strategies and putative niche partitioning. Resistance-nodulation-division heavy metal efflux (RND-HME) transporters are implicated as potential uranium tolerance strategies among the bacterial taxa. Potential interactions, uranium tolerance and ecologically relevant catabolism are presented in a conceptual model of life in this environment.
Collapse
Affiliation(s)
- Brodie Sutcliffe
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | | - Andrew J Harford
- Supervising Scientist Branch, Department of the Environment and Energy, Darwin, NT, Australia
| | - Grant C Hose
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - Paul Greenfield
- Macquarie University, Sydney, NSW, 2109, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO BOX 52, North Ryde, NSW, 1670, Australia
| | | |
Collapse
|
199
|
Sharbrough J, Havird JC, Noe GR, Warren JM, Sloan DB. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes. Genome Biol Evol 2018; 9:1567-1581. [PMID: 28854627 PMCID: PMC5509035 DOI: 10.1093/gbe/evx114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Some human populations interbred with Neanderthals and Denisovans, resulting in substantial contributions to modern-human genomes. Therefore, it is now possible to use genomic data to investigate mechanisms that shaped historical gene flow between humans and our closest hominin relatives. More generally, in eukaryotes, mitonuclear interactions have been argued to play a disproportionate role in generating reproductive isolation. There is no evidence of mtDNA introgression into modern human populations, which means that all introgressed nuclear alleles from archaic hominins must function on a modern-human mitochondrial background. Therefore, mitonuclear interactions are also potentially relevant to hominin evolution. We performed a detailed accounting of mtDNA divergence among hominin lineages and used population-genomic data to test the hypothesis that mitonuclear incompatibilities have preferentially restricted the introgression of nuclear genes with mitochondrial functions. We found a small but significant underrepresentation of introgressed Neanderthal alleles at such nuclear loci. Structural analyses of mitochondrial enzyme complexes revealed that these effects are unlikely to be mediated by physically interacting sites in mitochondrial and nuclear gene products. We did not detect any underrepresentation of introgressed Denisovan alleles at mitochondrial-targeted loci, but this may reflect reduced power because locus-specific estimates of Denisovan introgression are more conservative. Overall, we conclude that genes involved in mitochondrial function may have been subject to distinct selection pressures during the history of introgression from archaic hominins but that mitonuclear incompatibilities have had, at most, a small role in shaping genome-wide introgression patterns, perhaps because of limited functional divergence in mtDNA and interacting nuclear genes.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
200
|
Okada Y, Momozawa Y, Sakaue S, Kanai M, Ishigaki K, Akiyama M, Kishikawa T, Arai Y, Sasaki T, Kosaki K, Suematsu M, Matsuda K, Yamamoto K, Kubo M, Hirose N, Kamatani Y. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun 2018; 9:1631. [PMID: 29691385 PMCID: PMC5915442 DOI: 10.1038/s41467-018-03274-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Understanding natural selection is crucial to unveiling evolution of modern humans. Here, we report natural selection signatures in the Japanese population using 2234 high-depth whole-genome sequence (WGS) data (25.9×). Using rare singletons, we identify signals of very recent selection for the past 2000–3000 years in multiple loci (ADH cluster, MHC region, BRAP-ALDH2, SERHL2). In large-scale genome-wide association study (GWAS) dataset (n = 171,176), variants with selection signatures show enrichment in heterogeneity of derived allele frequency spectra among the geographic regions of Japan, highlighted by two major regional clusters (Hondo and Ryukyu). While the selection signatures do not show enrichment in archaic hominin-derived genome sequences, they overlap with the SNPs associated with the modern human traits. The strongest overlaps are observed for the alcohol or nutrition metabolism-related traits. Our study illustrates the value of high-depth WGS to understand evolution and their relationship with disease risk. Recent natural selection left signals in human genomes. Here, Okada et al. generate high-depth whole-genome sequence (WGS) data (25.9×) from 2,234 Japanese people of the BioBank Japan Project (BBJ), and identify signals of recent natural selection which overlap variants associated with human traits.
Collapse
Affiliation(s)
- Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan. .,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan.
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-8655, Japan
| | - Masahiro Kanai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|