151
|
Cho UH, Hetzer MW. Nuclear Periphery Takes Center Stage: The Role of Nuclear Pore Complexes in Cell Identity and Aging. Neuron 2020; 106:899-911. [PMID: 32553207 DOI: 10.1016/j.neuron.2020.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Abstract
In recent years, the nuclear pore complex (NPC) has emerged as a key player in genome regulation and cellular homeostasis. New discoveries have revealed that the NPC has multiple cellular functions besides mediating the molecular exchange between the nucleus and the cytoplasm. In this review, we discuss non-transport aspects of the NPC focusing on the NPC-genome interaction, the extreme longevity of the NPC proteins, and NPC dysfunction in age-related diseases. The examples summarized herein demonstrate that the NPC, which first evolved to enable the biochemical communication between the nucleus and the cytoplasm, now doubles as the gatekeeper of cellular identity and aging.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
152
|
Wang T, Zou Y, Huang N, Teng J, Chen J. CCDC84 Acetylation Oscillation Regulates Centrosome Duplication by Modulating HsSAS-6 Degradation. Cell Rep 2020; 29:2078-2091.e5. [PMID: 31722219 DOI: 10.1016/j.celrep.2019.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023] Open
Abstract
In animal cells, centriole number is strictly controlled in order to guarantee faithful cell division and genetic stability, but the mechanism by which the accuracy of centrosome duplication is maintained is not fully understood. Here, we show that CCDC84 constrains centriole number by modulating APC/CCdh1-mediated HsSAS-6 degradation. More importantly, CCDC84 acetylation oscillates throughout the cell cycle, and the acetylation state of CCDC84 at lysine 31 is regulated by the deacetylase SIRT1 and the acetyltransferase NAT10. Deacetylated CCDC84 is responsible for its centrosome targeting, and acetylated CCDC84 promotes HsSAS-6 ubiquitination by enhancing the binding affinity of HsSAS-6 for Cdh1. Our findings shed new light on the function of (de)acetylation in centriole number regulation as well as refine the established centrosome duplication model.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
153
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
154
|
Wu Y, Cao Y, Liu H, Yao M, Ma N, Zhang B. Remodelin, an inhibitor of NAT10, could suppress hypoxia-induced or constitutional expression of HIFs in cells. Mol Cell Biochem 2020; 472:19-31. [PMID: 32529496 DOI: 10.1007/s11010-020-03776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/31/2020] [Indexed: 01/12/2023]
Abstract
Hypoxia-inducible factors (HIFs) are key mediators expressed under hypoxic condition and involved in many kinds of disease such as cancer and abnormal angiogenesis. Thus, development of their inhibitor has been extensively explored. Here, we describe a finding that Remodelin, a specific inhibitor of NAT10, could also inhibit the expression of HIFs. The presence of Remodelin could suppress the elevated level of HIF-1α protein and its nuclear translocation induced by either treatment of cobalt chloride (CoCl2) or hypoxia in dose or time-dependent way. More importantly, Remodelin could also inhibit the constitutional expression of HIF-1α and HIF-2α in VHL mutant 786-0 cells. With using of cells with depletion of NAT10 by shRNA or Crispr-Cas9 edited, we further demonstrated that inhibition of HIFs by Remodelin should need NAT10 activity. In biological analysis, the treatment of cultured HUVECs with Remodelin could inhibit in vitro cell migration and invasion and tube-formation. Our investigation implied that Remodelin could be a new potential inhibitor of HIFs for using in angiogenesis targeting therapy in either cancers or inflammatory diseases.
Collapse
Affiliation(s)
- Yaqian Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanan Cao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Mengfei Yao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
155
|
Cao Y, Yao M, Wu Y, Ma N, Liu H, Zhang B. N-Acetyltransferase 10 Promotes Micronuclei Formation to Activate the Senescence-Associated Secretory Phenotype Machinery in Colorectal Cancer Cells. Transl Oncol 2020; 13:100783. [PMID: 32428852 PMCID: PMC7232111 DOI: 10.1016/j.tranon.2020.100783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of micronuclei (MN) is prevalent in human cancer cells and its role in activating the senescence-associated secretory phenotype (SASP) machinery has been identified recently. However, the role of MN in regulation of SASP signaling still needs to define in practical cancers. Here, we reported that in colorectal cancer cells the expression of NAT10 (N-acetyltransferase 10) could mediate MN formation through DNA replication and NAT10-positive MN could activate SASP by binding to cGAS. The chemical inhibition of NAT10 by Remodelin or genomic depletion could markedly reduce MN formation, SASP activation, and senescence in colorectal cancer cells. Cell stress such as oxidative or hypoxia could upregulate NAT10 and its associated MN formation senescence and expression of SASP factors. Statistical analysis of clinical specimens revealed correlations between NAT10 expression, MN formation, SASP signaling, and the clinicopathological features of colorectal cancer. Our data suggest that NAT10 increasing MN formation and SASP pathway activation, promoting colorectal cancer progression.
Collapse
Affiliation(s)
- Yanan Cao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Mengfei Yao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yaqian Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
156
|
Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res 2020; 48:3638-3656. [PMID: 32112098 PMCID: PMC7144926 DOI: 10.1093/nar/gkaa130] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.
Collapse
Affiliation(s)
- Hong-Yi Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 200032, China
| |
Collapse
|
157
|
Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 2020; 583:638-643. [PMID: 32555463 PMCID: PMC8130014 DOI: 10.1038/s41586-020-2418-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.
Collapse
Affiliation(s)
- Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Justin M Thomas
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kellie D Nance
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keri M Bryson
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Geraldy L S Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Chloe A Briney
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Ryan T Fuchs
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - G Brett Robb
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - Jesse Hartmann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | | | | | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jordan L Meier
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
158
|
Macquart C, Jüttner R, Morales Rodriguez B, Le Dour C, Lefebvre F, Chatzifrangkeskou M, Schmitt A, Gotthardt M, Bonne G, Muchir A. Microtubule cytoskeleton regulates Connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene. Hum Mol Genet 2020; 28:4043-4052. [PMID: 29893868 DOI: 10.1093/hmg/ddy227] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause an autosomal dominant inherited form of dilated cardiomyopathy associated with cardiac conduction disease (hereafter referred to as LMNA cardiomyopathy). Compared with other forms of dilated cardiomyopathy, mutations in LMNA are responsible for a more aggressive clinical course owing to a high rate of malignant ventricular arrhythmias. Gap junctions are intercellular channels that allow direct communication between neighboring cells, which are involved in electrical impulse propagation and coordinated contraction of the heart. For gap junctions to properly control electrical synchronization in the heart, connexin-based hemichannels must be correctly targeted to intercalated discs, Cx43 being the major connexin in the working myocytes. We here showed an altered distribution of Cx43 in a mouse model of LMNA cardiomyopathy. However, little is known on the molecular mechanisms of Cx43 remodeling in pathological context. We now show that microtubule cytoskeleton alteration and decreased acetylation of α-tubulin lead to remodeling of Cx43 in LMNA cardiomyopathy, which alters the correct communication between cardiomyocytes, ultimately leading to electrical conduction disturbances. Preventing or reversing this process could offer a strategy to repair damaged heart. Stabilization of microtubule cytoskeleton using Paclitaxel improved intraventricular conduction defects. These results indicate that microtubule cytoskeleton contributes to the pathogenesis of LMNA cardiomyopathy and that drugs stabilizing the microtubule may be beneficial for patients.
Collapse
Affiliation(s)
- Coline Macquart
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Rene Jüttner
- Max-Delbrück-Center for Molecular Medicine, DE-13092 Berlin, Germany
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Caroline Le Dour
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Florence Lefebvre
- Signaling and Cardiovascular Pathophysiology, UMRS 1180, Université Paris-Sud, INSERM, Chatenay-Malabry 92216, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Alain Schmitt
- Institut Cochin, INSERM U1016-CNRS UMR 8104, Université Paris Descartes-Sorbonne Paris Cité, Paris F-75014, France
| | - Michael Gotthardt
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris 75013, France
| |
Collapse
|
159
|
Acetylation of Cytidine Residues Boosts HIV-1 Gene Expression by Increasing Viral RNA Stability. Cell Host Microbe 2020; 28:306-312.e6. [PMID: 32533923 DOI: 10.1016/j.chom.2020.05.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Epitranscriptomic RNA modifications, including methylation of adenine and cytidine residues, are now recognized as key regulators of both cellular and viral mRNA function. Moreover, acetylation of the N4 position of cytidine (ac4C) was recently reported to increase the translation and stability of cellular mRNAs. Here, we show that ac4C and N-acetyltransferase 10 (NAT10), the enzyme that adds ac4C to RNAs, have been subverted by human immunodeficiency virus 1 (HIV-1) to increase viral gene expression. HIV-1 transcripts are modified with ac4C at multiple discrete sites, and silent mutagenesis of these ac4C sites led to decreased HIV-1 gene expression. Similarly, loss of ac4C from viral transcripts due to depletion of NAT10 inhibited HIV-1 replication by reducing viral RNA stability. Interestingly, the NAT10 inhibitor remodelin could inhibit HIV-1 replication at concentrations that have no effect on cell viability, thus identifying ac4C addition as a potential target for antiviral drug development.
Collapse
|
160
|
Gómez-Domínguez D, Epifano C, de Miguel F, Castaño AG, Vilaplana-Martí B, Martín A, Amarilla-Quintana S, Bertrand AT, Bonne G, Ramón-Azcón J, Rodríguez-Milla MA, Pérez de Castro I. Consequences of Lmna Exon 4 Mutations in Myoblast Function. Cells 2020; 9:cells9051286. [PMID: 32455813 PMCID: PMC7291140 DOI: 10.3390/cells9051286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Laminopathies are causally associated with mutations on the Lamin A/C gene (LMNA). To date, more than 400 mutations in LMNA have been reported in patients. These mutations are widely distributed throughout the entire gene and are associated with a wide range of phenotypes. Unfortunately, little is known about the mechanisms underlying the effect of the majority of these mutations. This is the case of more than 40 mutations that are located at exon 4. Using CRISPR/Cas9 technology, we generated a collection of Lmna exon 4 mutants in mouse C2C12 myoblasts. These cell models included different types of exon 4 deletions and the presence of R249W mutation, one of the human variants associated with a severe type of laminopathy, LMNA-associated congenital muscular dystrophy (L-CMD). We characterized these clones by measuring their nuclear circularity, myogenic differentiation capacity in 2D and 3D conditions, DNA damage, and levels of p-ERK and p-AKT (phosphorylated Mitogen-Activated Protein Kinase 1/3 and AKT serine/threonine kinase 1). Our results indicated that Lmna exon 4 mutants showed abnormal nuclear morphology. In addition, levels and/or subcellular localization of different members of the lamin and LINC (LInker of Nucleoskeleton and Cytoskeleton) complex were altered in all these mutants. Whereas no significant differences were observed for ERK and AKT activities, the accumulation of DNA damage was associated to the Lmna p.R249W mutant myoblasts. Finally, significant myogenic differentiation defects were detected in the Lmna exon 4 mutants. These results have key implications in the development of future therapeutic strategies for the treatment of laminopathies.
Collapse
Affiliation(s)
- Déborah Gómez-Domínguez
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
| | - Carolina Epifano
- Fundación Andrés Marcio, niños contra la laminopatía, C/Núñez de Balboa, 11, E-28001 Madrid, Spain;
| | - Fernando de Miguel
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
- Universidad Europea de Madrid, C/ Tajo, s/n, E-28670 Villaviciosa de Odón, Spain
| | - Albert García Castaño
- Institute for Bioengineering of Catalonia (IBEC), C/Baldiri Reixac, 10-12, E-08028 Barcelona, Spain; (A.G.C.); (J.R.-A.)
| | - Borja Vilaplana-Martí
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
| | - Alberto Martín
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
| | - Sandra Amarilla-Quintana
- Fundación de Investigación HM Hospitales, Plaza del Conde Valle Suchil, 2, E-28015 Madrid, Spain;
| | - Anne T Bertrand
- UMRS 974, Center of Research in Myology, Institut de Myologie, Sorbonne Université, INSERM, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Gisèle Bonne
- UMRS 974, Center of Research in Myology, Institut de Myologie, Sorbonne Université, INSERM, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), C/Baldiri Reixac, 10-12, E-08028 Barcelona, Spain; (A.G.C.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Miguel A Rodríguez-Milla
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
| | - Ignacio Pérez de Castro
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo km2.2, E-28029 Madrid, Spain; (D.G.-D.); (F.d.M.); (B.V.-M.); (A.M.); (M.A.R.-M.)
- Correspondence: ; Tel.: +34-918223188
| |
Collapse
|
161
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
162
|
Martins F, Sousa J, Pereira CD, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell 2020; 19:e13143. [PMID: 32291910 PMCID: PMC7253059 DOI: 10.1111/acel.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving as a genome protective barrier and mechanotransduction interface between the cytoplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double membrane connected at specific points where the nuclear pore complexes (NPCs) form. Physiological aging might be generically defined as a functional decline across lifespan observed from the cellular to organismal level. Therefore, during aging and premature aging, several cellular alterations occur, including nuclear‐specific changes, particularly, altered nuclear transport, increased genomic instability induced by DNA damage, and telomere attrition. Here, we highlight and discuss proteins associated with nuclear transport dysfunction induced by aging, particularly nucleoporins, nuclear transport factors, and lamins. Moreover, changes in the structure of chromatin and consequent heterochromatin rearrangement upon aging are discussed. These alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, telomere attrition is addressed and correlated with altered levels of nuclear lamins and nuclear lamina‐associated proteins. Overall, the identification of molecular mechanisms underlying NE dysfunction, including upstream and downstream events, which have yet to be unraveled, will be determinant not only to our understanding of several pathologies, but as here discussed, in the aging process.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Jéssica Sousa
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Cátia D. Pereira
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Odete A. B. Cruz e Silva
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
- The Discoveries CTR Aveiro Portugal
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| |
Collapse
|
163
|
Guilbert SM, Cardoso D, Lévy N, Muchir A, Nissan X. Hutchinson-Gilford progeria syndrome: Rejuvenating old drugs to fight accelerated ageing. Methods 2020; 190:3-12. [PMID: 32278808 DOI: 10.1016/j.ymeth.2020.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
What if the next generation of successful treatments was hidden in the current pharmacopoeia? Identifying new indications for existing drugs, also called the drug repurposing or drug rediscovery process, is a highly efficient and low-cost strategy. First reported almost a century ago, drug repurposing has emerged as a valuable therapeutic option for diseases that do not have specific treatments and rare diseases, in particular. This review focuses on Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder that induces accelerated and precocious aging, for which drug repurposing has led to the discovery of several potential treatments over the past decade.
Collapse
Affiliation(s)
- Solenn M Guilbert
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Déborah Cardoso
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMRS910: Génétique médicale et Génomique fonctionnelle, Faculté de médecine Timone, Marseille, France
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, F-75013 Paris, France
| | - Xavier Nissan
- CECS, I-STEM AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 28 rue Henri Desbruères, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
164
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
165
|
Kreienkamp R, Gonzalo S. Metabolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. Cells 2020; 9:cells9020395. [PMID: 32046343 PMCID: PMC7072593 DOI: 10.3390/cells9020395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Hutchinson–Gilford Progeria Syndrome (HGPS) is a segmental premature aging disease causing patient death by early teenage years from cardiovascular dysfunction. Although HGPS does not totally recapitulate normal aging, it does harbor many similarities to the normal aging process, with patients also developing cardiovascular disease, alopecia, bone and joint abnormalities, and adipose changes. It is unsurprising, then, that as physicians and scientists have searched for treatments for HGPS, they have targeted many pathways known to be involved in normal aging, including inflammation, DNA damage, epigenetic changes, and stem cell exhaustion. Although less studied at a mechanistic level, severe metabolic problems are observed in HGPS patients. Interestingly, new research in animal models of HGPS has demonstrated impressive lifespan improvements secondary to metabolic interventions. As such, further understanding metabolism, its contribution to HGPS, and its therapeutic potential has far-reaching ramifications for this disease still lacking a robust treatment strategy.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Department of Pediatrics Residency, Washington University Medical School, St. Louis, MO 63105, USA;
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +1-314-977-9244
| |
Collapse
|
166
|
Choi J, Richards EJ. The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes. PLANT SIGNALING & BEHAVIOR 2020; 15:1694224. [PMID: 31752584 PMCID: PMC7012172 DOI: 10.1080/15592324.2019.1694224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The periphery in animal nuclei is generally considered to be a transcriptionally repressive environment. Recent studies indicate that chromatin-based mechanisms establish a similar situation in plant nuclei. We demonstrated recently that the loss of CRWN nuclear lamina proteins in Arabidopsis leads to the misregulation of a group of genes involved in plant defense. How this defense response is triggered is largely unknown. Here, we briefly review recent findings that identify several layers of chromatin-based regulation responsible for this response. Further, we introduce new data suggesting that histone H3 lysine 27 tri-methylation levels are reduced in the absence of CRWNs near genes encoding transcription factors regulating SA biosynthesis, providing an explanation for SA induction. These discoveries begin to uncover the interplay between nuclear architecture and stress response in plants.
Collapse
Affiliation(s)
- Junsik Choi
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Eric J. Richards
- Boyce Thompson Institute, Ithaca, NY, USA
- CONTACT Eric J. Richards Boyce Thompson Institute, Ithaca, NY 14853
| |
Collapse
|
167
|
Histone acetyltransferase and Polo-like kinase 3 inhibitors prevent rat galactose-induced cataract. Sci Rep 2019; 9:20085. [PMID: 31882756 PMCID: PMC6934598 DOI: 10.1038/s41598-019-56414-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Diabetic cataracts can occur at an early age, causing visual impairment or blindness. The detailed molecular mechanisms of diabetic cataract formation remain incompletely understood, and there is no well-documented prophylactic agent. Galactose-fed rats and ex vivo treatment of lenses with galactose are used as models of diabetic cataract. To assess the role of histone acetyltransferases, we conducted cataract prevention screening with known histone acetyltransferase (HAT) inhibitors. Ex vivo treatment with a HAT inhibitor strongly inhibited the formation of lens turbidity in high-galactose conditions, while addition of a histone deacetylase (HDAC) inhibitor aggravated turbidity. We conducted a microarray to identify genes differentially regulated by HATs and HDACs, leading to discovery of a novel cataract causative factor, Plk3. Plk3 mRNA levels correlated with the degree of turbidity, and Plk3 inhibition alleviated galactose-induced cataract formation. These findings indicate that epigenetically controlled Plk3 influences cataract formation. Our results demonstrate a novel approach for prevention of diabetic cataract using HAT and Plk3 inhibitors.
Collapse
|
168
|
Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res 2019; 47:8502-8520. [PMID: 31616951 PMCID: PMC6895267 DOI: 10.1093/nar/gkz545] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling enzyme with an emerging role in DNA damage response (DDR), but the underlying mechanism remains largely unknown. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1), a key chromatin-associated enzyme responsible for the synthesis of poly(ADP-ribose) (PAR) polymers in mammalian cells, interacts with and PARylates MORC2 at two residues within its conserved CW-type zinc finger domain. Following DNA damage, PARP1 recruits MORC2 to DNA damage sites and catalyzes MORC2 PARylation, which stimulates its ATPase and chromatin remodeling activities. Mutation of PARylation residues in MORC2 results in reduced cell survival after DNA damage. MORC2, in turn, stabilizes PARP1 through enhancing acetyltransferase NAT10-mediated acetylation of PARP1 at lysine 949, which blocks its ubiquitination at the same residue and subsequent degradation by E3 ubiquitin ligase CHFR. Consequently, depletion of MORC2 or expression of an acetylation-defective PARP1 mutant impairs DNA damage-induced PAR production and PAR-dependent recruitment of DNA repair proteins to DNA lesions, leading to enhanced sensitivity to genotoxic stress. Collectively, these findings uncover a previously unrecognized mechanistic link between MORC2 and PARP1 in the regulation of cellular response to DNA damage.
Collapse
Affiliation(s)
- Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
169
|
Foo MXR, Ong PF, Dreesen O. Premature aging syndromes: From patients to mechanism. J Dermatol Sci 2019; 96:58-65. [PMID: 31727429 DOI: 10.1016/j.jdermsci.2019.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Aging is an inevitable consequence of human life resulting in a gradual deterioration of cell, tissue and organismal function and an increased risk to develop chronic ailments. Premature aging syndromes, also known as progeroid syndromes, recapitulate many clinical features of normal aging and offer a unique opportunity to elucidate fundamental mechanisms that contribute to human aging. Progeroid syndromes can be broadly classified into those caused by perturbations of the nuclear lamina, a meshwork of proteins located underneath the inner nuclear membrane (laminopathies); and a second group that is caused by mutations that directly impair DNA replication and repair. We will focus mainly on laminopathies caused by incorrect processing of lamin A, an intermediate filament protein that resides at the nuclear periphery. Hutchinson-Gilford Progeria (HGPS) is an accelerated aging syndrome caused by a mutation in lamin A and one of the best studied laminopathies. HGPS patients exhibit clinical characteristics of premature aging, including alopecia, aberrant pigmentation, loss of subcutaneous fat and die in their teens as a result of atherosclerosis and cardiovascular complications. Here we summarize how cell- and mouse-based disease models provided mechanistic insights into human aging and discuss experimental strategies under consideration for the treatment of these rare genetic disorders.
Collapse
Affiliation(s)
- Mattheus Xing Rong Foo
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore
| | - Peh Fern Ong
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore
| | - Oliver Dreesen
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore.
| |
Collapse
|
170
|
Graziano S, Kreienkamp R, Coll-Bonfill N, Gonzalo S. Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus 2019; 9:258-275. [PMID: 29637811 PMCID: PMC5973265 DOI: 10.1080/19491034.2018.1454168] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian nuclei are equipped with a framework of intermediate filaments that function as a karyoskeleton. This nuclear scaffold, formed primarily by lamins (A-type and B-type), maintains the spatial and functional organization of the genome and of sub-nuclear compartments. Over the past decade, a body of evidence has highlighted the significance of these structural nuclear proteins in the maintenance of nuclear architecture and mechanical stability, as well as genome function and integrity. The importance of these structures is now unquestioned given the wide range of degenerative diseases that stem from LMNA gene mutations, including muscular dystrophy disorders, peripheral neuropathies, lipodystrophies, and premature aging syndromes. Here, we review our knowledge about how alterations in nuclear lamins, either by mutation or reduced expression, impact cellular mechanisms that maintain genome integrity. Despite the fact that DNA replication is the major source of DNA damage and genomic instability in dividing cells, how alterations in lamins function impact replication remains minimally explored. We summarize recent studies showing that lamins play a role in DNA replication, and that the DNA damage that accumulates upon lamins dysfunction is elicited in part by deprotection of replication forks. We also discuss the emerging model that DNA damage and replication stress are “sensed” at the cytoplasm by proteins that normally survey this space in search of foreign nucleic acids. In turn, these cytosolic sensors activate innate immune responses, which are materializing as important players in aging and cancer, as well as in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Simona Graziano
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ray Kreienkamp
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Nuria Coll-Bonfill
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Susana Gonzalo
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
171
|
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 2019; 9:246-257. [PMID: 29619863 PMCID: PMC5973194 DOI: 10.1080/19491034.2018.1460045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a sporadic, autosomal dominant disorder characterized by premature and accelerated aging symptoms leading to death at the mean age of 14.6 years usually due to cardiovascular complications. HGPS is caused by a de novo point mutation in the LMNA gene encoding the intermediate filament proteins lamins A and C which are structural components of the nuclear lamina. This mutation leads to the production of a truncated toxic form of lamin A, issued from aberrant splicing and called progerin. Progerin accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. HGPS cells and animal preclinical models have provided insights into the molecular and cellular pathways that underlie the disease and have also highlighted possible mechanisms involved in normal aging. This review reports recent medical advances and treatment approaches for patients affected with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France
| | - Diane Frankel
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | | | - Patrice Roll
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | - Annachiara De Sandre-Giovannoli
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| | - Nicolas Lévy
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| |
Collapse
|
172
|
Guimbal S, Morel A, Guérit D, Chardon M, Blangy A, Vives V. Dock5 is a new regulator of microtubule dynamic instability in osteoclasts. Biol Cell 2019; 111:271-283. [PMID: 31461543 DOI: 10.1111/boc.201900014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Osteoclast resorption is dependent on a podosome-rich structure called sealing zone. It tightly attaches the osteoclast to the bone creating a favourable acidic microenvironment for bone degradation. This adhesion structure needs to be stabilised by microtubules whose acetylation is maintained by down-regulation of deacetylase HDAC6 and/or of microtubule destabilising kinase GSK3β activities. We already established that Dock5 is a guanine nucleotide exchange factor for Rac1. As a consequence, Dock5 inhibition results in a decrease of the GTPase activity associated with impaired podosome assembly into sealing zones and resorbing activity in osteoclasts. More, administration of C21, a chemical compound that directly inhibits the exchange activity of Dock5, disrupts osteoclast podosome organisation and protects mice against bone degradation in models recapitulating major osteolytic diseases. RESULTS In this report, we show that Dock5 knockout osteoclasts also present a reduced acetylated tubulin level leading to a decreased length and duration of microtubule growth phases, whereas their growth speed remains unaffected. Dock5 does not act by direct interaction with the polymerised tubulin. Using specific Rac inhibitors, we showed that Dock5 regulates microtubule dynamic instability through Rac-dependent and -independent pathways. The latter involves GSK3β inhibitory serine 9 phosphorylation downstream of Akt activation but not HDAC6 activity. CONCLUSION We showed that Dock5 is a new regulator of microtubule dynamic instability in osteoclast. SIGNIFICANCE Dock5 dual role in the regulation of the actin cytoskeleton and microtubule, which both need to be intact for bone resorption, reinforces the fact that it is an interesting therapeutic target for osteolytic pathologies.
Collapse
Affiliation(s)
- Sarah Guimbal
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Morel
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - David Guérit
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Manon Chardon
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Anne Blangy
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| | - Virginie Vives
- Centre de Recherche de Biologie Cellulaire (CRBM), CNRS UMR 5237, Montpellier, Cedex 5, 34293, France.,Montpellier University, Montpellier, Cedex 5, 34095, France
| |
Collapse
|
173
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
174
|
Tscherner M, Kuchler K. A Histone Acetyltransferase Inhibitor with Antifungal Activity against CTG clade Candida Species. Microorganisms 2019; 7:E201. [PMID: 31311209 PMCID: PMC6680905 DOI: 10.3390/microorganisms7070201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
Candida species represent one of the most frequent causes of hospital-acquired infections in immunocompromised patient cohorts. Due to a very limited set of antifungals available and an increasing prevalence of drug resistance, the discovery of novel antifungal targets is essential. Targeting chromatin modifiers as potential antifungal targets has gained attention recently, mainly due to their role in regulating virulence in Candida species. Here, we describe a novel activity for the histone acetyltransferase inhibitor Cyclopentylidene-[4-(4-chlorophenyl)thiazol-2-yl)hydrazone (CPTH2) as a specific inhibitor of CTG clade Candida species. Furthermore, we show that CPTH2 has fungicidal activity and protects macrophages from Candida-mediated death. Thus, this work could provide a starting point for the development of novel antifungals specific to CTG clade Candida species.
Collapse
Affiliation(s)
- Michael Tscherner
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria.
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria.
| |
Collapse
|
175
|
Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, Du X. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res 2019; 46:9601-9616. [PMID: 30165671 PMCID: PMC6182161 DOI: 10.1093/nar/gky777] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Anabolism and catabolism are tightly regulated according to the cellular energy supply. Upon energy stress, ribosomal RNA (rRNA) biogenesis is inhibited, and autophagy is induced. However, the mechanism linking rRNA biogenesis and autophagy is unclear. Here, we demonstrate that the nucleolar protein NAT10 plays a role in the transition between rRNA biogenesis and autophagy. Under normal conditions, NAT10 is acetylated to activate rRNA biogenesis and inhibit autophagy induction. Mechanistic studies demonstrate that NAT10 binds to and acetylates the autophagy regulator Che-1 at K228 to suppress the Che-1-mediated transcriptional activation of downstream genes Redd1 and Deptor under adequate energy supply conditions. Upon energy stress, NAT10 is deacetylated by Sirt1, leading to suppression of NAT10-activated rRNA biogenesis. In addition, deacetylation of NAT10 abolishes the NAT10-mediated transcriptional repression of Che-1, leading to the release of autophagy inhibition. Collectively, we demonstrate that the acetylation status of NAT10 is important for the anabolism-catabolism transition in response to energy stress, providing a novel mechanism by which nucleolar proteins control rRNA synthesis and autophagy in response to the cellular energy supply.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shiying Cai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
176
|
Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and Cell-Cycle Arrest. Dev Cell 2019; 49:920-935.e5. [PMID: 31105008 PMCID: PMC6581604 DOI: 10.1016/j.devcel.2019.04.020] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Whether cell forces or extracellular matrix (ECM) can impact genome integrity is largely unclear. Here, acute perturbations (∼1 h) to actomyosin stress or ECM elasticity cause rapid and reversible changes in lamin-A, DNA damage, and cell cycle. The findings are especially relevant to organs such as the heart because DNA damage permanently arrests cardiomyocyte proliferation shortly after birth and thereby eliminates regeneration after injury including heart attack. Embryonic hearts, cardiac-differentiated iPS cells (induced pluripotent stem cells), and various nonmuscle cell types all show that actomyosin-driven nuclear rupture causes cytoplasmic mis-localization of DNA repair factors and excess DNA damage. Binucleation and micronuclei increase as telomeres shorten, which all favor cell-cycle arrest. Deficiencies in lamin-A and repair factors exacerbate these effects, but lamin-A-associated defects are rescued by repair factor overexpression and also by contractility modulators in clinical trials. Contractile cells on stiff ECM normally exhibit low phosphorylation and slow degradation of lamin-A by matrix-metalloprotease-2 (MMP2), and inhibition of this lamin-A turnover and also actomyosin contractility are seen to minimize DNA damage. Lamin-A is thus stress stabilized to mechano-protect the genome.
Collapse
|
177
|
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91:435-451. [PMID: 30888661 DOI: 10.1007/978-981-13-3681-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural nuclear proteins known as "lamins" (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named "progerin". To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
178
|
Liu Z, Liu X, Li Y, Ren P, Zhang C, Wang L, Du X, Xing B. miR-6716-5p promotes metastasis of colorectal cancer through downregulating NAT10 expression. Cancer Manag Res 2019; 11:5317-5332. [PMID: 31239781 PMCID: PMC6559146 DOI: 10.2147/cmar.s197733] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Human N-acetyltransferase 10 (NAT10) plays pivotal roles in cellular biological processes, such as senescence, autophagy and cytokinesis. The expression of NAT10 is dysregulated in colorectal cancer (CRC) and is associated with the prognosis of patients. However, it remains unclear how NAT10 is regulated in CRC. Methods: The microRNA(miRNA) regulating NAT10 was predicted by bioinformatics analysis and further validated by real-time quantitative PCR(RT-qPCR),Western blot and dual luciferase reporter assays. The expression of the miRNA regulating NAT10 in CRC tissues was examined using RT-qPCR. Cell proliferation, cell apoptosis, cell migration and cell invasion assays were performed after transfection with miRNA mimic and inhibitor. Results: Here, we report that miR-6716-5p inhibits the expression of NAT10 in CRC. The NAT10 protein level was downregulated by the miR-6716-5p mimic, and was upregulated by the miR-6716-5p inhibitor in CRC cell lines. In addition, miR-6716-5p bound to the 3ʹ-untranslated region of NAT10 mRNA and decreased NAT10 mRNA levels. Significantly, the miR-6716-5p level was higher in the tumor tissues of the CRC patients with liver metastasis than that in the non-metastatic CRC patients. In addition, the miR-6716-5p level was correlated with poor overall survival of CRC patients with liver metastasis. The miR-6716-5p inhibitor inhibited CRC cell migration and invasion. Consistently, the miR-6716-5p mimic significantly promoted cell migration and invasion, and this effect is dependent on NAT10. However, miR-6716-5p had no effect on CRC cell proliferation and apoptosis. We found that miR-6716-5p negatively regulated E-cadherin protein levels. In addition, E-cadherin was upregulated by NAT10 in CRC cells, confirming that miR-6716-5p downregulated E-cadherin levels by inhibiting NAT10 expression. Conclusion: We demonstrated that miR-6716-5p acts as a crucial regulator of NAT10 to promote cell migration and invasion in CRC by inhibiting NAT10 expression. Our data suggest that miR-6716-5p/NAT10 might act as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Yuan Li
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Pengwei Ren
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Lijun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
179
|
Duan J, Zhang Q, Hu X, Lu D, Yu W, Bai H. N 4-acetylcytidine is required for sustained NLRP3 inflammasome activation via HMGB1 pathway in microglia. Cell Signal 2019; 58:44-52. [PMID: 30853521 DOI: 10.1016/j.cellsig.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 01/12/2023]
Abstract
Persistent inflammasome activation contributes to chronic, low grade inflammation. However, it is unclear how the inflammasome activation is sustained after initiation. Here we reported that N4-acetylcytidine (N4A), a nucleoside metabolite, activated microglia and sustained NLRP3 inflammasome activation by inducing HMGB1 signaling. Released HMGB1 through N4A activated NFκB and induced NLRP3 expression. HMGB1 silencing abolished N4A-stimulated NFκB activation, NLRP3 and persistent HMGB1 expression. In addition, inhibiting NLRP3 expression by RNAi abrogated N4A-mediated HMGB1 expression. Lack of NLRP3 inflammasome adaptor named apoptosis-associated speck-like protein containing a CARD (ASC) abrogated N4A-induced HMGB1 expression, NFκB activation, and NLRP3 expression. Taken together, our results reveal a novel role of N4A in activation of NLRP3 inflamasome via HMGB1 feedback.
Collapse
Affiliation(s)
- JuanJuan Duan
- Department of Neurology, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China; Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, China.
| | - Xiaohong Hu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, China
| | - Deqin Lu
- Department of Pathology, Guizhou Medical University, Guiyang 550004, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, China.
| | - Hua Bai
- Department of Neurology, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China; Medical Laboratory Center, Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, China; Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
180
|
Zhang Y, Wan X, Wang HH, Pan MH, Pan ZN, Sun SC. RAB35 depletion affects spindle formation and actin-based spindle migration in mouse oocyte meiosis. ACTA ACUST UNITED AC 2019; 25:359-372. [DOI: 10.1093/molehr/gaz027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/28/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Mammalian oocyte maturation involves a unique asymmetric cell division, in which meiotic spindle formation and actin filament-mediated spindle migration to the oocyte cortex are key processes. Here, we report that the vesicle trafficking regulator, RAB35 GTPase, is involved in regulating cytoskeleton dynamics in mouse oocytes. RAB35 GTPase mainly accumulated at the meiotic spindle periphery and cortex during oocyte meiosis. Depletion of RAB35 by morpholino microinjection led to aberrant polar body extrusion and asymmetric division defects in almost half the treated oocytes. We also found that RAB35 affected SIRT2 and αTAT for tubulin acetylation, which further modulated microtubule stability and meiotic spindle formation. Additionally, we found that RAB35 associated with RHOA in oocytes and modulated the ROCK–cofilin pathway for actin assembly, which further facilitated spindle migration for oocyte asymmetric division. Importantly, microinjection of Myc-Rab35 cRNA into RAB35-depleted oocytes could significantly rescue these defects. In summary, our results suggest that RAB35 GTPase has multiple roles in spindle stability and actin-mediated spindle migration in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
181
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
182
|
A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin. Cell Rep 2019; 22:2006-2015. [PMID: 29466729 PMCID: PMC5848491 DOI: 10.1016/j.celrep.2018.01.090] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/22/2017] [Accepted: 01/30/2018] [Indexed: 12/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by a truncated lamin A protein (progerin) that drives cellular and organismal decline. HGPS patient-derived fibroblasts accumulate genomic instability, but its underlying mechanisms and contribution to disease remain poorly understood. Here, we show that progerin-induced replication stress (RS) drives genomic instability by eliciting replication fork (RF) stalling and nuclease-mediated degradation. Rampant RS is accompanied by upregulation of the cGAS/STING cytosolic DNA sensing pathway and activation of a robust STAT1-regulated interferon (IFN)-like response. Reducing RS and the IFN-like response, especially with calcitriol, improves the fitness of progeria cells and increases the efficiency of cellular reprogramming. Importantly, other compounds that improve HGPS phenotypes reduce RS and the IFN-like response. Our study reveals mechanisms underlying progerin toxicity, including RS-induced genomic instability and activation of IFN-like responses, and their relevance for cellular decline in HGPS.
Collapse
|
183
|
Nucleus–cytoplasm cross‐talk in the aging brain. J Neurosci Res 2019; 98:247-261. [DOI: 10.1002/jnr.24446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
184
|
Cellular and Animal Models of Striated Muscle Laminopathies. Cells 2019; 8:cells8040291. [PMID: 30934932 PMCID: PMC6523539 DOI: 10.3390/cells8040291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms—lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.
Collapse
|
185
|
Abstract
An emergent theme in cancer biology is that dysregulated energy metabolism may directly influence oncogenic gene expression. This is due to the fact that many enzymes involved in gene regulation use cofactors derived from primary metabolism, including acetyl-CoA, S-adenosylmethionine, and 2-ketoglutarate. While this phenomenon was first studied through the prism of histone and DNA modifications (the epigenome), recent work indicates metabolism can also impact gene regulation by disrupting the balance of RNA post-transcriptional modifications (the epitranscriptome). Here we review recent studies that explore how metabolic regulation of writers and erasers of the epitranscriptome (FTO, TET2, NAT10, MTO1, and METTL16) helps shape gene expression through three distinct mechanisms: cofactor inhibition, cofactor depletion, and writer localization. Our brief survey underscores similarities and differences between the metabolic regulation of the epigenome and epitranscriptome, and highlights fertile ground for future investigation.
Collapse
Affiliation(s)
- Justin M. Thomas
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Pedro J. Batista
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
186
|
Abstract
Posttranscriptional modifications of RNA represent an emerging class of regulatory elements in human biology. Improved methods for studying how these elements are controlled and where they occur has the potential to transform our understanding of gene expression in development and disease. Here we describe a chemical method for nucleotide resolution sequencing of N4-acetylcytidine (ac4C), a highly conserved modified nucleobase whose formation is catalyzed by the essential cytidine acetyltransferase enzyme NAT10. This approach enables the sensitive, PCR-amplifiable detection of individual ac4C sites from nanograms of unfractionated cellular RNA. The sensitive and quantitative nature of this assay provides a powerful tool to understand how cytidine acetylation is targeted, profile RNA acetyltransferase dynamics, and validate the sites and stoichiometry of ac4C in novel RNA species.
Collapse
|
187
|
Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging. Proc Natl Acad Sci U S A 2019; 116:3578-3583. [PMID: 30808750 DOI: 10.1073/pnas.1809683116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies of the accelerated aging disorder Hutchinson-Gilford progeria syndrome (HGPS) can potentially reveal cellular defects associated with physiological aging. HGPS results from expression and abnormal nuclear envelope association of a farnesylated, truncated variant of prelamin A called "progerin." We surveyed the diffusional mobilities of nuclear membrane proteins to identify proximal effects of progerin expression. The mobilities of three proteins-SUN2, nesprin-2G, and emerin-were reduced in fibroblasts from children with HGPS compared with those in normal fibroblasts. These proteins function together in nuclear movement and centrosome orientation in fibroblasts polarizing for migration. Both processes were impaired in fibroblasts from children with HGPS and in NIH 3T3 fibroblasts expressing progerin, but were restored by inhibiting protein farnesylation. Progerin affected both the coupling of the nucleus to actin cables and the oriented flow of the cables necessary for nuclear movement and centrosome orientation. Progerin overexpression increased levels of SUN1, which couples the nucleus to microtubules through nesprin-2G and dynein, and microtubule association with the nucleus. Reducing microtubule-nuclear connections through SUN1 depletion or dynein inhibition rescued the polarity defects. Nuclear movement and centrosome orientation were also defective in fibroblasts from normal individuals over 60 y, and both defects were rescued by reducing the increased level of SUN1 in these cells or inhibiting dynein. Our results identify imbalanced nuclear engagement of the cytoskeleton (microtubules: high; actin filaments: low) as the basis for intrinsic cell polarity defects in HGPS and physiological aging and suggest that rebalancing the connections can ameliorate the defects.
Collapse
|
188
|
Combined loss of LAP1B and LAP1C results in an early onset multisystemic nuclear envelopathy. Nat Commun 2019; 10:605. [PMID: 30723199 PMCID: PMC6363790 DOI: 10.1038/s41467-019-08493-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023] Open
Abstract
Nuclear envelopathies comprise a heterogeneous group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations affecting lamina-associated polypeptide 1 (LAP1) result in two discrete phenotypes of muscular dystrophy and progressive dystonia with cerebellar atrophy. We report 7 patients presenting at birth with severe progressive neurological impairment, bilateral cataract, growth retardation and early lethality. All the patients are homozygous for a nonsense mutation in the TOR1AIP1 gene resulting in the loss of both protein isoforms LAP1B and LAP1C. Patient-derived fibroblasts exhibit changes in nuclear envelope morphology and large nuclear-spanning channels containing trapped cytoplasmic organelles. Decreased and inefficient cellular motility is also observed in these fibroblasts. Our study describes the complete absence of both major human LAP1 isoforms, underscoring their crucial role in early development and organogenesis. LAP1-associated defects may thus comprise a broad clinical spectrum depending on the availability of both isoforms in the nuclear envelope throughout life.
Collapse
|
189
|
Kreienkamp R, Billon C, Bedia‐Diaz G, Albert CJ, Toth Z, Butler AA, McBride‐Gagyi S, Ford DA, Baldan A, Burris TP, Gonzalo S. Doubled lifespan and patient-like pathologies in progeria mice fed high-fat diet. Aging Cell 2019; 18:e12852. [PMID: 30548460 PMCID: PMC6351834 DOI: 10.1111/acel.12852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a devastating premature aging disease. Mouse models have been instrumental for understanding HGPS mechanisms and for testing therapies, which to date have had only marginal benefits in mice and patients. Barriers to developing effective therapies include the unknown etiology of progeria mice early death, seemingly unrelated to the reported atherosclerosis contributing to HGPS patient mortality, and mice not recapitulating the severity of human disease. Here, we show that progeria mice die from starvation and cachexia. Switching progeria mice approaching death from regular diet to high-fat diet (HFD) rescues early lethality and ameliorates morbidity. Critically, feeding the mice only HFD delays aging and nearly doubles lifespan, which is the greatest lifespan extension recorded in progeria mice. The extended lifespan allows for progeria mice to develop degenerative aging pathologies of a severity that emulates the human disease. We propose that starvation and cachexia greatly influence progeria phenotypes and that nutritional/nutraceutical strategies might help modulate disease progression. Importantly, progeria mice on HFD provide a more clinically relevant animal model to study mechanisms of HGPS pathology and to test therapies.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| | - Cyrielle Billon
- Center for Clinical Pharmacology Washington University School of Medicine and St. Louis College of Pharmacy St Louis Missouri
| | - Gonzalo Bedia‐Diaz
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| | - Carolyn J. Albert
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| | - Zacharie Toth
- Department of Orthopedic Surgery St Louis University School of Medicine St Louis Missouri
| | - Andrew A. Butler
- Department of Pharmacology and Physiology St Louis University School of Medicine St Louis Missouri
| | - Sara McBride‐Gagyi
- Department of Orthopedic Surgery St Louis University School of Medicine St Louis Missouri
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| | - Angel Baldan
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| | - Thomas P. Burris
- Center for Clinical Pharmacology Washington University School of Medicine and St. Louis College of Pharmacy St Louis Missouri
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology St Louis University School of Medicine St Louis Missouri
| |
Collapse
|
190
|
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54:61-83. [PMID: 30822165 PMCID: PMC6424622 DOI: 10.1080/10409238.2019.1570075] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - David A. Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
191
|
Hutchinson-Gilford Progeria Syndrome-Current Status and Prospects for Gene Therapy Treatment. Cells 2019; 8:cells8020088. [PMID: 30691039 PMCID: PMC6406247 DOI: 10.3390/cells8020088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies—a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS is characterized by the presence of aging-associated symptoms, including lack of subcutaneous fat, alopecia, swollen veins, growth retardation, age spots, joint contractures, osteoporosis, cardiovascular pathology, and death due to heart attacks and strokes in childhood. LMNA codes for two major, alternatively spliced transcripts, give rise to lamin A and lamin C proteins. Mutations in the LMNA gene alone, depending on the nature and location, may result in the expression of abnormal protein or loss of protein expression and cause at least 11 disease phenotypes, differing in severity and affected tissue. LMNA gene-related HGPS is caused by a single mutation in the LMNA gene in exon 11. The mutation c.1824C > T results in activation of the cryptic donor splice site, which leads to the synthesis of progerin protein lacking 50 amino acids. The accumulation of progerin is the reason for appearance of the phenotype. In this review, we discuss current knowledge on the molecular mechanisms underlying the development of HGPS and provide a critical analysis of current research trends in this field. We also discuss the mouse models available so far, the current status of treatment of the disease, and future prospects for the development of efficient therapies, including gene therapy for HGPS.
Collapse
|
192
|
Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, Hardy J, Jackson SP, Livesey FJ. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep 2019; 26:582-593.e5. [PMID: 30650353 PMCID: PMC6335264 DOI: 10.1016/j.celrep.2018.12.085] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/12/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Abstract
The neuronal microtubule-associated protein tau, MAPT, is central to the pathogenesis of many dementias. Autosomal-dominant mutations in MAPT cause inherited frontotemporal dementia (FTD), but the underlying pathogenic mechanisms are unclear. Using human stem cell models of FTD due to MAPT mutations, we find that tau becomes hyperphosphorylated and mislocalizes to cell bodies and dendrites in cortical neurons, recapitulating a key early event in FTD. Mislocalized tau in the cell body leads to abnormal microtubule movements in FTD-MAPT neurons that grossly deform the nuclear membrane. This results in defective nucleocytoplasmic transport, which is corrected by microtubule depolymerization. Neurons in the post-mortem human FTD-MAPT cortex have a high incidence of nuclear invaginations, indicating that tau-mediated nuclear membrane dysfunction is an important pathogenic process in FTD. Defects in nucleocytoplasmic transport in FTD point to important commonalities in the pathogenic mechanisms of tau-mediated dementias and ALS-FTD due to TDP-43 and C9orf72 mutations.
Collapse
Affiliation(s)
- Francesco Paonessa
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Lewis D Evans
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Ravi Solanki
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK
| | - Delphine Larrieu
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Stephen P Jackson
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Frederick J Livesey
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Alzheimer's Research UK Stem Cell Research Centre, University of Cambridge, CB2 1QN, UK; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
193
|
Wang HH, Zhang Y, Tang F, Pan MH, Wan X, Li XH, Sun SC. Rab23/Kif17 regulate oocyte meiotic progression by modulating tubulin acetylation and actin dynamics. Development 2019; 146:dev.171280. [DOI: 10.1242/dev.171280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Cytoskeletal dynamics are involved in multiple cellular processes during oocyte meiosis, including spindle organization, actin-based spindle migration, and polar body extrusion. Here, we report that the vesicle trafficking protein Rab23, a GTPase, drives the motor protein Kif17 and that this is important for spindle organization and actin dynamics during mouse oocyte meiosis. GTP-bound Rab23 accumulated at the spindle and promoted migration of Kif17 to the spindle poles. Depletion of Rab23 or Kif17 caused polar body extrusion failure. Further analysis showed that depletion of Rab23/Kif17 perturbed spindle formation and chromosome alignment, possibly by affecting tubulin acetylation. Kif17 regulated tubulin acetylation by associating with αTAT and Sirt2, and depletion of Kif17 altered expression of these proteins. Moreover, depletion of Kif17 decreased the level of cytoplasmic actin, which abrogated spindle migration to the cortex. The tail domain of Kif17 associated with constituents of the RhoA-ROCK-LIMK-cofilin pathway to modulate assembly of actin filaments. Taken together, our results demonstrate that the Rab23-Kif17-cargo complex regulates tubulin acetylation for spindle organization and drives actin-mediated spindle migration during meiosis.
Collapse
Affiliation(s)
- Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
194
|
Abstract
Structural links from the nucleus to the cytoskeleton and to the extracellular environment play a role in direct mechanosensing by nuclear factors. Here, we highlight recent studies that illustrate nuclear mechanosensation processes ranging from DNA repair and nuclear protein phospho-modulation to chromatin reorganization, lipase activation by dilation, and reversible rupture with the release of nuclear factors. Recent progresses demonstrate that these mechanosensing processes lead to modulation of gene expression such as those involved in the regulation of cytoskeletal programs and introduce copy number variations. The nuclear lamina protein lamin A has a recurring role, and various biophysical analyses prove helpful in clarifying mechanisms. The various recent observations provide further motivation to understand the regulation of nuclear mechanosensing pathways in both physiological and pathological contexts.
Collapse
|
195
|
Crasto S, Di Pasquale E. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front Cell Dev Biol 2018; 6:172. [PMID: 30619852 PMCID: PMC6306496 DOI: 10.3389/fcell.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Laminopathies are a group of rare degenerative disorders that manifest with a wide spectrum of clinical phenotypes, including both systemic multi-organ disorders, such as the Hutchinson-Gilford Progeria Syndrome (HGPS), and tissue-restricted diseases, such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and lipodystrophies, often overlapping. Despite their clinical heterogeneity, which remains an open question, laminopathies are commonly caused by mutations in the LMNA gene, encoding the nuclear proteins Lamin A and C. These two proteins are main components of the nuclear lamina and are involved in several biological processes. Besides the well-known structural function in the nucleus, their role in regulating chromatin organization and transcription has emerged in the last decade, supporting the hypothesis that the disruption of this layer of regulation may be mechanism underlying the disease. Indeed, recent studies that show various epigenetic defects in cells carrying LMNA mutations, such as loss of heterochromatin, changes in gene expression and chromatin remodeling, strongly support this view. However, those findings are restricted to few cell types in humans, mainly because of the limited accessibility of primary cells and the difficulties to culture them ex-vivo. On the other hand, animal models might fail to recapitulate phenotypic hallmarks of the disease as of humans. To fill this gap, models based on induced pluripotent stem cell (iPSCs) technology have been recently generated that allowed investigations on diverse cells types, such as mesenchymal stem cells (MSCs), vascular and smooth muscle cells and cardiomyocytes, and provided a platform for investigating mechanisms underlying the pathogenesis of laminopathies in a cell-type specific human context. Nevertheless, studies on iPSC-based models of laminopathy have expanded only in the last few years and, with the advancement of reprogramming and differentiation protocols, their number is expecting to further increase over time. This review will give an overview of models developed thus far, with a focus on the novel insights on epigenetic mechanisms underlying the disease in different human cellular contexts. Perspectives and future directions of the field will be also given, highlighting the potential of those models for preclinical studies for identifying molecular targets and their translational impact on patients' cure.
Collapse
Affiliation(s)
- Silvia Crasto
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
196
|
Rozié A, Santos C, Fabing I, Calsou P, Britton S, Génisson Y, Ballereau S. Alkyne-Tagged Analogue of Jaspine B: New Tool for Identifying Jaspine B Mode of Action. Chembiochem 2018; 19:2438-2442. [PMID: 30303294 DOI: 10.1002/cbic.201800496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 11/06/2022]
Abstract
The first biologically relevant clickable probe related to the antitumor marine lipid jaspine B is reported. The concise synthetic route to both enantiomers relied on the supercritical fluid chromatography (SFC) enantiomeric resolution of racemic materials. The eutomeric dextrogyre derivative represents the first jaspine B analogue with enhanced cytotoxicity with IC50 down to 30 nm. These enantiomeric probes revealed a chiralitydependent cytoplasmic imaging of U2OS cancer cells by in situ click labeling.
Collapse
Affiliation(s)
- Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Cécile Santos
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Isabelle Fabing
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Stéphanie Ballereau
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
197
|
Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181006. [PMID: 30662724 PMCID: PMC6304123 DOI: 10.1098/rsos.181006] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
Background: Potential prognostic biomarker candidates for hepatocellular carcinoma (HCC) are abundant, but their generalizability is unexplored. We cross-validated markers of overall survival (OS) and vascular invasion in independent datasets. Methods: The literature search yielded 318 genes related to survival and 52 related to vascular invasion. Validation was performed in three datasets (RNA-seq, n = 371; Affymetrix arrays, n = 91; Illumina gene chips, n = 135) by uni- and multivariate Cox regression and Mann-Whitney U-test, separately for Asian and Caucasian patients. Results: One hundred and eighty biomarkers remained significant in Asian and 128 in Caucasian subjects at p < 0.05. After multiple testing correction BIRC5 (p = 1.9 × 10-10), CDC20 (p = 2.5 × 10-9) and PLK1 (p = 3 × 10-9) endured as best performing genes in Asian patients; however, none remained significant in the Caucasian cohort. In a multivariate analysis, significance was reached by stage (p = 0.0018) and expression of CENPH (p = 0.0038) and CDK4 (p = 0.038). KIF18A was the only gene predicting vascular invasion in the Affymetrix and Illumina cohorts (p = 0.003 and p = 0.025, respectively). Conclusion: Overall, about half of biomarker candidates failed to retain prognostic value and none were better than stage predicting OS. Impact: Our results help to eliminate biomarkers with limited capability to predict OS and/or vascular invasion.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ádám Nagy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Author for correspondence: Balázs Győrffy e-mail:
| |
Collapse
|
198
|
Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, Hosogane M, Sinclair WR, Nanan KK, Mandler MD, Fox SD, Zengeya TT, Andresson T, Meier JL, Coller J, Oberdoerffer S. Acetylation of Cytidine in mRNA Promotes Translation Efficiency. Cell 2018; 175:1872-1886.e24. [PMID: 30449621 DOI: 10.1016/j.cell.2018.10.030] [Citation(s) in RCA: 514] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023]
Abstract
Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.
Collapse
Affiliation(s)
- Daniel Arango
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Najwa Alhusaini
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allissa A Dillman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Thomas J Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Masaki Hosogane
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wilson R Sinclair
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Kyster K Nanan
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mariana D Mandler
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen D Fox
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Thomas T Zengeya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jeffery Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
199
|
Xia Y, Ivanovska IL, Zhu K, Smith L, Irianto J, Pfeifer CR, Alvey CM, Ji J, Liu D, Cho S, Bennett RR, Liu AJ, Greenberg RA, Discher DE. Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J Cell Biol 2018; 217:3796-3808. [PMID: 30171044 PMCID: PMC6219729 DOI: 10.1083/jcb.201711161] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/24/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
The nucleus is physically linked to the cytoskeleton, adhesions, and extracellular matrix-all of which sustain forces, but their relationships to DNA damage are obscure. We show that nuclear rupture with cytoplasmic mislocalization of multiple DNA repair factors correlates with high nuclear curvature imposed by an external probe or by cell attachment to either aligned collagen fibers or stiff matrix. Mislocalization is greatly enhanced by lamin A depletion, requires hours for nuclear reentry, and correlates with an increase in pan-nucleoplasmic foci of the DNA damage marker γH2AX. Excess DNA damage is rescued in ruptured nuclei by cooverexpression of multiple DNA repair factors as well as by soft matrix or inhibition of actomyosin tension. Increased contractility has the opposite effect, and stiff tumors with low lamin A indeed exhibit increased nuclear curvature, more frequent nuclear rupture, and excess DNA damage. Additional stresses likely play a role, but the data suggest high curvature promotes nuclear rupture, which compromises retention of DNA repair factors and favors sustained damage.
Collapse
Affiliation(s)
- Yuntao Xia
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Irena L. Ivanovska
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Kuangzheng Zhu
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Lucas Smith
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Jerome Irianto
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Charlotte R. Pfeifer
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Cory M. Alvey
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA,Graduate Group, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Jiazheng Ji
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Dazhen Liu
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Sangkyun Cho
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA
| | - Rachel R. Bennett
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Graduate Group, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Andrea J. Liu
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Graduate Group, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Roger A. Greenberg
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dennis E. Discher
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA ,Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA,Graduate Group, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA,Correspondence to Dennis E. Discher:
| |
Collapse
|
200
|
Thomas JM, Briney CA, Nance KD, Lopez JE, Thorpe AL, Fox SD, Bortolin-Cavaille ML, Sas-Chen A, Arango D, Oberdoerffer S, Cavaille J, Andresson T, Meier JL. A Chemical Signature for Cytidine Acetylation in RNA. J Am Chem Soc 2018; 140:12667-12670. [PMID: 30252461 PMCID: PMC8054311 DOI: 10.1021/jacs.8b06636] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N4-acetylcytidine (ac4C) is a highly conserved modified RNA nucleobase whose formation is catalyzed by the disease-associated N-acetyltransferase 10 (NAT10). Here we report a sensitive chemical method to localize ac4C in RNA. Specifically, we characterize the susceptibility of ac4C to borohydride-based reduction and show this reaction can cause introduction of noncognate base pairs during reverse transcription (RT). Combining borohydride-dependent misincorporation with ac4C's known base-sensitivity provides a unique chemical signature for this modified nucleobase. We show this unique reactivity can be used to quantitatively analyze cellular RNA acetylation, study adapters responsible for ac4C targeting, and probe the timing of RNA acetylation during ribosome biogenesis. Overall, our studies provide a chemical foundation for defining an expanding landscape of cytidine acetyltransferase activity and its impact on biology and disease.
Collapse
Affiliation(s)
- Justin M. Thomas
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kellie D. Nance
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey E. Lopez
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Abigail L. Thorpe
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | | | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Arango
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jerome Cavaille
- Laboratoire de Biologie Moléculaire Eucaryote, Toulouse 31062, France
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|