151
|
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
152
|
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci 2019; 20:ijms20081981. [PMID: 31018531 PMCID: PMC6514570 DOI: 10.3390/ijms20081981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/26/2023] Open
Abstract
The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.
Collapse
|
153
|
Mechanism for recycling tRNAs on stalled ribosomes. Nat Struct Mol Biol 2019; 26:343-349. [PMID: 31011209 DOI: 10.1038/s41594-019-0211-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 11/08/2022]
Abstract
Aberrantly stalled ribosomes initiate the ribosome-associated quality control (RQC) and mRNA surveillance pathways for the degradation of potentially toxic peptides and faulty mRNAs. During RQC, ANKZF1 (yeast Vms1p) releases ubiquitinated nascent proteins from 60S ribosomal subunits for proteasomal degradation. Here, we use a cell-free system to show that ANKZF1 and Vms1p sever polypeptidyl-tRNAs on RQC complexes by precisely cleaving off the terminal 3'CCA nucleotides universal to all tRNAs. This produces a tRNA fragment that cannot be aminoacylated until its 3'CCA end is restored. The recycling of ANKZF1-cleaved tRNAs is intact in the mammalian cytosol via a two-step process that requires the removal of a 2',3'-cyclic phosphate and TRNT1, the sole CCA-adding enzyme that mediates tRNA biogenesis in eukaryotes. TRNT1 also discriminates between properly folded tRNA substrates and aberrant tRNA substrates, selectively tagging the latter for degradation. Thus, ANKZF1 liberates peptidyl-tRNAs from stalled ribosomes such that the tRNA is checked in an obligate way for integrity before reentry into the translation cycle.
Collapse
|
154
|
Belfort M, Lambowitz AM. Group II Intron RNPs and Reverse Transcriptases: From Retroelements to Research Tools. Cold Spring Harb Perspect Biol 2019; 11:11/4/a032375. [PMID: 30936187 DOI: 10.1101/cshperspect.a032375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Group II introns, self-splicing retrotransposons, serve as both targets of investigation into their structure, splicing, and retromobility and a source of tools for genome editing and RNA analysis. Here, we describe the first cryo-electron microscopy (cryo-EM) structure determination, at 3.8-4.5 Å, of a group II intron ribozyme complexed with its encoded protein, containing a reverse transcriptase (RT), required for RNA splicing and retromobility. We also describe a method called RIG-seq using a retrotransposon indicator gene for high-throughput integration profiling of group II introns and other retrotransposons. Targetrons, RNA-guided gene targeting agents widely used for bacterial genome engineering, are described next. Finally, we detail thermostable group II intron RTs, which synthesize cDNAs with high accuracy and processivity, for use in various RNA-seq applications and relate their properties to a 3.0-Å crystal structure of the protein poised for reverse transcription. Biological insights from these group II intron revelations are discussed.
Collapse
Affiliation(s)
- Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, State University of New York, Albany, New York 12222
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
155
|
Hashimoto S, Nobuta R, Izawa T, Inada T. Translation arrest as a protein quality control system for aberrant translation of the 3'-UTR in mammalian cells. FEBS Lett 2019; 593:777-787. [PMID: 30883710 DOI: 10.1002/1873-3468.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
Read-through or mutations of a stop codon resulting in translation of the 3'-UTR produce potentially toxic C-terminally extended proteins. However, quality control mechanisms for such proteins are poorly understood in mammalian cells. Here, a comprehensive analysis of the 3'-UTRs of genes associated with hereditary diseases identified novel arrest-inducing sequences in the 3'-UTRs of 23 genes that can repress the levels of their protein products. In silico analysis revealed that the hydrophobicity of the polypeptides encoded in the 3'-UTRs is correlated with arrest efficiency. These results provide new insight into quality control mechanisms mediated by 3'-UTRs to prevent the production of C-terminally extended cytotoxic proteins.
Collapse
Affiliation(s)
- Satoshi Hashimoto
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Risa Nobuta
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| |
Collapse
|
156
|
Macías LG, Morard M, Toft C, Barrio E. Comparative Genomics Between Saccharomyces kudriavzevii and S. cerevisiae Applied to Identify Mechanisms Involved in Adaptation. Front Genet 2019; 10:187. [PMID: 30930934 PMCID: PMC6425871 DOI: 10.3389/fgene.2019.00187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
Yeasts belonging to the Saccharomyces genus play an important role in human-driven fermentations. The species S. cerevisiae has been widely studied because it is the dominant yeast in most fermentations and it has been widely used as a model eukaryotic organism. Recently, other species of the Saccharomyces genus are gaining interest to solve the new challenges that the fermentation industry are facing. One of these species is S. kudriavzevii, which exhibits interesting physiological properties compared to S. cerevisiae, such as a better adaptation to grow at low temperatures, a higher glycerol synthesis and lower ethanol production. The aim of this study is to understand the molecular basis behind these phenotypic differences of biotechnological interest by using a species-based comparative genomics approach. In this work, we sequenced, assembled and annotated two new genomes of S. kudriavzevii. We used a combination of different statistical methods to identify functional divergence, signatures of positive selection and acceleration of substitution rates at specific amino acid sites of proteins in S. kudriavzevii when compared to S. cerevisiae, and vice versa. We provide a list of candidate genes in which positive selection could be acting during the evolution of both S. cerevisiae and S. kudriavzevii clades. Some of them could be related to certain important differences in metabolism previously reported by other authors such us DAL3 and ARO4, involved in nitrogen assimilation and amino acid biosynthesis. In addition, three of those genes (FBA1, ZIP1, and RQC2) showed accelerated evolutionary rates in Sk branch. Finally, genes of the riboflavin biosynthesis were also among those genes with a significant higher rate of nucleotide substitution and those proteins have amino acid positions contributing to functional divergence.
Collapse
Affiliation(s)
- Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| |
Collapse
|
157
|
Ikeuchi K, Izawa T, Inada T. Recent Progress on the Molecular Mechanism of Quality Controls Induced by Ribosome Stalling. Front Genet 2019; 9:743. [PMID: 30705686 PMCID: PMC6344382 DOI: 10.3389/fgene.2018.00743] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate gene expression is a prerequisite for all cellular processes. Cells actively promote correct protein folding, which prevents the accumulation of abnormal and non-functional proteins. Translation elongation is the fundamental step in gene expression to ensure cellular functions, and abnormal translation arrest is recognized and removed by the quality controls. Recent studies demonstrated that ribosome plays crucial roles as a hub for gene regulation and quality controls. Ribosome-interacting factors are critical for the quality control mechanisms responding to abnormal translation arrest by targeting its products for degradation. Aberrant mRNAs are produced by errors in mRNA maturation steps and cause aberrant translation and are eliminated by the quality control system. In this review, we focus on recent progress on two quality controls, Ribosome-associated Quality Control (RQC) and No-Go Decay (NGD), for abnormal translational elongation. These quality controls recognize aberrant ribosome stalling and induce rapid degradation of aberrant polypeptides and mRNAs thereby maintaining protein homeostasis and preventing the protein aggregation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiaki Izawa
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshifumi Inada
- Gene Regulation Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
158
|
Ikeuchi K, Tesina P, Matsuo Y, Sugiyama T, Cheng J, Saeki Y, Tanaka K, Becker T, Beckmann R, Inada T. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. EMBO J 2019; 38:embj.2018100276. [PMID: 30609991 DOI: 10.15252/embj.2018100276] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 01/17/2023] Open
Abstract
Ribosome stalling triggers quality control pathways targeting the mRNA (NGD: no-go decay) and the nascent polypeptide (RQC: ribosome-associated quality control). RQC requires Hel2-dependent uS10 ubiquitination and the RQT complex in yeast. Here, we report that Hel2-dependent uS10 ubiquitination and Slh1/Rqt2 are crucial for RQC and NGD induction within a di-ribosome (disome) unit, which consists of the leading stalled ribosome and the following colliding ribosome. Hel2 preferentially ubiquitinated a disome over a monosome on a quality control inducing reporter mRNA in an in vitro translation reaction. Cryo-EM analysis of the disome unit revealed a distinct structural arrangement suitable for recognition and modification by Hel2. The absence of the RQT complex or uS10 ubiquitination resulted in the elimination of NGD within the disome unit. Instead, we observed Hel2-mediated cleavages upstream of the disome, governed by initial Not4-mediated monoubiquitination of eS7 and followed by Hel2-mediated K63-linked polyubiquitination. We propose that Hel2-mediated ribosome ubiquitination is required both for canonical NGD (NGDRQC +) and RQC coupled to the disome and that RQC-uncoupled NGD outside the disome (NGDRQC -) can occur in a Not4-dependent manner.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Petr Tesina
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, Munich, Germany
| | - Yoshitaka Matsuo
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takato Sugiyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, Munich, Germany
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Thomas Becker
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, Munich, Germany
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
159
|
Yi X, Verbeke EJ, Chang Y, Dickinson DJ, Taylor DW. Electron microscopy snapshots of single particles from single cells. J Biol Chem 2018; 294:1602-1608. [PMID: 30541924 PMCID: PMC6364765 DOI: 10.1074/jbc.ra118.006686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.
Collapse
Affiliation(s)
- Xiunan Yi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Eric J Verbeke
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Yiran Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712.
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712; LIVESTRONG Cancer Institute, Dell Medical School, Austin, Texas 78712.
| |
Collapse
|
160
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
161
|
Stein KC, Frydman J. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis. J Biol Chem 2018; 294:2076-2084. [PMID: 30504455 DOI: 10.1074/jbc.rev118.002814] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generating a functional proteome requires the ribosome to carefully regulate disparate co-translational processes that determine the fate of nascent polypeptides. With protein synthesis being energetically expensive, the ribosome must balance the costs of efficiently making a protein with those of properly folding it. Emerging as a primary means of regulating this trade-off is the nonuniform rate of translation elongation that defines translation kinetics. The varying speeds with which the ribosome progresses along a transcript have been implicated in several aspects of protein biogenesis, including co-translational protein folding and translational fidelity, as well as gene expression by mediating mRNA decay and protein quality control pathways. The optimal translation kinetics required to efficiently execute these processes can be distinct. Thus, the ribosome is tasked with tightly regulating translation kinetics to balance these processes while maintaining adaptability for changing cellular conditions. In this review, we first discuss the regulatory role of translation elongation in protein biogenesis and what factors influence elongation kinetics. We then describe how changes in translation kinetics signal downstream pathways that dictate the fate of nascent polypeptides. By regulating these pathways, the kinetics of translation elongation has emerged as a critical tool for driving gene expression and maintaining proteostasis through varied mechanisms, including nascent chain folding and binding different ribosome-associated machinery. Indeed, a growing number of examples demonstrate the important role of local changes in elongation kinetics in modulating the pathophysiology of human disease.
Collapse
Affiliation(s)
| | - Judith Frydman
- From the Departments of Biology and .,Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
162
|
Simms CL, Kim KQ, Yan LL, Qiu J, Zaher HS. Interactions between the mRNA and Rps3/uS3 at the entry tunnel of the ribosomal small subunit are important for no-go decay. PLoS Genet 2018; 14:e1007818. [PMID: 30475795 PMCID: PMC6283612 DOI: 10.1371/journal.pgen.1007818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/06/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022] Open
Abstract
No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD. In all organisms, optimum cellular fitness depends on the ability of cells to recognize and degrade aberrant molecules. Messenger RNA is subject to alterations and, as a result, often presents roadblocks for the translating ribosomes. It is not surprising, then, that organisms evolved pathways to resolve these valuable stuck ribosomes. In eukaryotes, this process is called no-go decay (NGD) because it is coupled with decay of mRNAs that are associated with ribosomes that do not ‘go’. This decay process initiates with cleavage of the mRNA near the stall site, but some important details about this reaction are lacking. Here, we show that the ribosome itself is very central to the cleavage reaction. In particular, we identified a pair of residues of a ribosomal protein to be important for cleavage efficiency. These observations are consistent with prior structural studies showing that the residues make intimate contacts with the incoming mRNA in the entry tunnel. Altogether our data provide important clues about this quality-control pathway and suggest that the endonuclease not only recognizes stalled ribosomes but may have coevolved with the translation machinery to take advantage of certain residues of the ribosome to fulfill its function.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Genes, Fungal
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Peptide Chain Elongation, Translational
- Protein Conformation
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small/genetics
- Ribosome Subunits, Small/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Ubiquitination
Collapse
Affiliation(s)
- Carrie L. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kyusik Q. Kim
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jessica Qiu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
163
|
Wang J, Zhou J, Yang Q, Grayhack EJ. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. eLife 2018; 7:39637. [PMID: 30465652 PMCID: PMC6301793 DOI: 10.7554/elife.39637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Reading frame maintenance is critical for accurate translation. We show that the conserved eukaryotic/archaeal protein Mbf1 acts with ribosomal proteins Rps3/uS3 and eukaryotic Asc1/RACK1 to prevent frameshifting at inhibitory CGA-CGA codon pairs in the yeast Saccharomyces cerevisiae. Mutations in RPS3 that allow frameshifting implicate eukaryotic conserved residues near the mRNA entry site. Mbf1 and Rps3 cooperate to maintain the reading frame of stalled ribosomes, while Asc1 also mediates distinct events that result in recruitment of the ribosome quality control complex and mRNA decay. Frameshifting occurs through a +1 shift with a CGA codon in the P site and involves competition between codons entering the A site, implying that the wobble interaction of the P site codon destabilizes translation elongation. Thus, eukaryotes have evolved unique mechanisms involving both a universally conserved ribosome component and two eukaryotic-specific proteins to maintain the reading frame at ribosome stalls. Proteins perform all the chemical reactions needed to keep a cell alive; thus, it is essential to assemble them correctly. They are made by molecular machines called ribosomes, which follow a sequence of instructions written in genetic code in molecules known as mRNAs. Ribosomes essentially read the genetic code three letters at a time; each triplet either codes for the insertion of one of 20 building blocks into the emerging protein, or serves as a signal to stop the process. It is critical that, after reading one triplet, the ribosome moves precisely three letters to read the next triplet. If, for example, the ribosome shifted just two letters instead of three – a phenomenon known as “frameshifting” – it would completely change the building blocks that were used to make the protein. This could lead to atypical or aberrant proteins that either do not work or are even toxic to the cell. For a variety of reasons, ribosomes will often stall before they have finished building a protein. When this happens, the ribosome is more likely to frameshift. Cells commonly respond to stalled ribosomes by recruiting other molecules that work as quality control systems, some of which can disassemble the ribosome and break down the mRNA. In budding yeast, one part of the ribosome – named Asc1 – plays a key role in recruiting these quality control systems and in mRNA breakdown. If this component is removed, stalled ribosomes frameshift more frequently and, as a result, aberrant proteins accumulate in the cell. Since the Asc1 recruiter protein sits on the outside of the ribosome, it seemed likely that it might act through other factors to stop the ribosome from frameshifting when it stalls. However, it was unknown if such factors exist, what they are, or how they might work. Now, Wang et al. have identified two additional yeast proteins, named Mbf1 and Rps3, which cooperate to stop the ribosome from frameshifting after it stalls. Rps3, like Asc1, is a component of the ribosome, while Mbf1 is not. It appears that Rps3 likely stops frameshifting via an interaction with the incoming mRNA, because a region of Rps3 near the mRNA entry site to the ribosome is important for its activity. Further experiments then showed that the known Asc1-mediated breakdown of mRNAs did not depend on Mbf1 and Rps3, but also assists in stopping frameshifting. Thus, frameshifting of stalled ribosomes is prevented via two distinct ways: one that directly involves Mbf1 and Rps3 and one that is promoted by Asc1, which reduces the amounts of mRNAs on which ribosomes frameshift. These newly identified factors may provide insights into the precisely controlled protein-production machinery in the cell and into roles of the quality control systems. An improved understanding of mechanisms that prevent frameshifting could eventually lead to better treatments for some human diseases that result when these processes go awry, which include certain neurological conditions.
Collapse
Affiliation(s)
- Jiyu Wang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| | - Jie Zhou
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Qidi Yang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Center for RNA Biology, University of Rochester, Rochester, New York
| |
Collapse
|
164
|
Herzik MA, Fraser JS, Lander GC. A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality. Structure 2018; 27:344-358.e3. [PMID: 30449687 DOI: 10.1016/j.str.2018.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
There does not currently exist a standardized indicator of how well cryo-EM-derived models represent the density from which they were generated. We present a straightforward methodology that utilizes freely available tools to generate a suite of independent models and to evaluate their convergence in an EM density. These analyses provide both a quantitative and qualitative assessment of the precision of the models and their representation of the density, respectively, while concurrently providing a platform for assessing both global and local EM map quality. We further use standardized datasets to provide an expected deviation within a suite of models refined against EM maps reported to be at 5 Å resolution or better. Associating multiple atomic models with a deposited EM map provides a rapid and accessible reporter of convergence, a strong indicator of highly resolved molecular detail, and is an important step toward an FSC-independent assessment of map and model quality.
Collapse
Affiliation(s)
- Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
165
|
Ribosomes and cryo-EM: a duet. Curr Opin Struct Biol 2018; 52:1-7. [DOI: 10.1016/j.sbi.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022]
|
166
|
Kuroha K, Zinoviev A, Hellen CUT, Pestova TV. Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1. Mol Cell 2018; 72:286-302.e8. [PMID: 30244831 DOI: 10.1016/j.molcel.2018.08.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
The ribosome-associated quality control (RQC) pathway degrades nascent chains (NCs) arising from interrupted translation. First, recycling factors split stalled ribosomes, yielding NC-tRNA/60S ribosome-nascent chain complexes (60S RNCs). 60S RNCs associate with NEMF, which recruits the E3 ubiquitin ligase Listerin that ubiquitinates NCs. The mechanism of subsequent ribosomal release of Ub-NCs remains obscure. We found that, in non-ubiquitinated 60S RNCs and 80S RNCs formed on non-stop mRNAs, tRNA is not firmly fixed in the P site, which allows peptidyl-tRNA hydrolase Ptrh1 to cleave NC-tRNA, suggesting the existence of a pathway involving release of non-ubiquitinated NCs. Association with NEMF and Listerin and ubiquitination of NCs results in accommodation of NC-tRNA, rendering 60S RNCs resistant to Ptrh1 but susceptible to ANKZF1, which induces specific cleavage in the tRNA acceptor arm, releasing proteasome-degradable Ub-NCs linked to four 3'-terminal tRNA nucleotides. We also found that TCF25, a poorly characterized RQC component, ensures preferential formation of the K48-ubiquitin linkage.
Collapse
Affiliation(s)
- Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
167
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
168
|
Conservation of mRNA quality control factor Ski7 and its diversification through changes in alternative splicing and gene duplication. Proc Natl Acad Sci U S A 2018; 115:E6808-E6816. [PMID: 29967155 DOI: 10.1073/pnas.1801997115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotes maintain fidelity of gene expression by preferential degradation of aberrant mRNAs that arise by errors in RNA processing reactions. In Saccharomyces cerevisiae, Ski7 plays an important role in this mRNA quality control by mediating mRNA degradation by the RNA exosome. Ski7 was initially thought to be restricted to Saccharomyces cerevisiae and close relatives because the SKI7 gene and its paralog HBS1 arose by whole genome duplication (WGD) in a recent ancestor. We have recently shown that the preduplication gene was alternatively spliced and that Ski7 function predates WGD. Here, we use transcriptome analysis of diverse eukaryotes to show that diverse eukaryotes use alternative splicing of SKI7/HBS1 to encode two proteins. Although alternative splicing affects the same intrinsically disordered region of the protein, the pattern of splice site usage varies. This alternative splicing event arose in an early eukaryote that is a common ancestor of plants, animals, and fungi. Remarkably, through changes in alternative splicing and gene duplication, the Ski7 protein has diversified such that different species express one of four distinct Ski7-like proteins. We also show experimentally that the Saccharomyces cerevisiae SKI7 gene has undergone multiple changes that are incompatible with the Hbs1 function and may also have undergone additional changes to optimize mRNA quality control. The combination of transcriptome analysis in diverse eukaryotes and genetic analysis in yeast clarifies the mechanism by which a Ski7-like protein is expressed across eukaryotes and provides a unique view of changes in alternative splicing patterns of one gene over long evolutionary time.
Collapse
|
169
|
Zurita Rendón O, Fredrickson EK, Howard CJ, Van Vranken J, Fogarty S, Tolley ND, Kalia R, Osuna BA, Shen PS, Hill CP, Frost A, Rutter J. Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 2018; 9:2197. [PMID: 29875445 PMCID: PMC5989216 DOI: 10.1038/s41467-018-04564-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl–tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin–proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC. The ribosome-associated quality control complex (RQC) functions to disassemble stalled ribosomes. Here the authors find that the tRNA hydrolase Vms1 is involved in the release of nascent peptide from stalled ribosomes.
Collapse
Affiliation(s)
- Olga Zurita Rendón
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Eric K Fredrickson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA
| | - Jonathan Van Vranken
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Sarah Fogarty
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Neal D Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Raghav Kalia
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA
| | - Beatriz A Osuna
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Peter S Shen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Adam Frost
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA. .,California Institute for Quantitative Biomedical Research, San Francisco, CA, 94158, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Jared Rutter
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815-6789, USA. .,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
170
|
Samluk L, Chroscicki P, Chacinska A. Mitochondrial protein import stress and signaling. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
171
|
Kasteri J, Das D, Zhong X, Persaud L, Francis A, Muharam H, Sauane M. Translation Control by p53. Cancers (Basel) 2018; 10:cancers10050133. [PMID: 29734756 PMCID: PMC5977106 DOI: 10.3390/cancers10050133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
The translation of mRNAs plays a critical role in the regulation of gene expression and therefore, in the regulation of cell proliferation, differentiation and apoptosis. Unrestricted initiation of translation causes malignant transformation and plays a key role in the maintenance and progression of cancers. Translation initiation is regulated by the ternary complex and the eukaryotic initiation factor 4F (eIF4F) complex. The p53 tumor suppressor protein is the most well studied mammalian transcription factor that mediates a variety of anti-proliferative processes. Post-transcriptional mechanisms of gene expression in general and those of translation in particular play a major role in shaping the protein composition of the cell. The p53 protein regulates transcription and controls eIF4F, the ternary complex and the synthesis of ribosomal components, including the down-regulation of rRNA genes. In summary, the induction of p53 regulates protein synthesis and translational control to inhibit cell growth.
Collapse
Affiliation(s)
- Justina Kasteri
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Dibash Das
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Xuelin Zhong
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Leah Persaud
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Ashleigh Francis
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Hilal Muharam
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| |
Collapse
|
172
|
Abstract
C-terminal polylysine (PL) can be synthesized from the polyadenine tail of prematurely cleaved mRNAs or when a read-though of a stop codon happens. Due to the highly positive charge, PL stalls in the electrostatically negative ribosomal exit channel. The stalled polypeptide recruits the Ribosome-associated quality control (RQC) complex which processes and extracts the nascent chain. Dysfunction of the RQC leads to the accumulation of PL-tagged proteins, induction of a stress response, and cellular toxicity. Not much is known about the PL-specific aspect of protein quality control. Using quantitative mass spectrometry, we uncovered the post-ribosomal PL-processing machinery in human cytosol. It encompasses key cytosolic complexes of the proteostasis network, such as chaperonin TCP-1 ring complexes (TRiC) and half-capped 19S-20S proteasomes. Furthermore, we found that the nuclear transport machinery associates with PL, which suggests a novel mechanism by which faulty proteins can be compartmentalized in the cell. The enhanced nuclear import of a PL-tagged polypeptide confirmed this implication, which leads to questions regarding the biological rationale behind it.
Collapse
|
173
|
Verma R, Reichermeier KM, Burroughs AM, Oania RS, Reitsma JM, Aravind L, Deshaies RJ. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 2018; 557:446-451. [PMID: 29632312 PMCID: PMC6226276 DOI: 10.1038/s41586-018-0022-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/08/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Rati Verma
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Amgen Discovery Research, Thousand Oaks, CA, USA
| | - Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Genentech, South San Francisco, CA, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Robert S Oania
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Raymond J Deshaies
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Amgen Discovery Research, Thousand Oaks, CA, USA.
| |
Collapse
|
174
|
Boone M, De Koker A, Callewaert N. Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 2018; 46:2701-2721. [PMID: 29514322 PMCID: PMC5888575 DOI: 10.1093/nar/gky167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
175
|
Zuzow N, Ghosh A, Leonard M, Liao J, Yang B, Bennett EJ. Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches. Mol Biol Cell 2018. [PMID: 29540532 PMCID: PMC5935074 DOI: 10.1091/mbc.e17-12-0714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous genetic and biochemical studies from Saccharomyces cerevisiae have identified a critical ribosome-associated quality control complex (RQC) that facilitates resolution of stalled ribosomal complexes. While components of the mammalian RQC have been examined in vitro, a systematic characterization of RQC protein interactions in mammalian cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demonstrate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-mediated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mitogen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S. cerevisiae and that Ltn1 has RQC-independent functions.
Collapse
Affiliation(s)
- Nathan Zuzow
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Arit Ghosh
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jeffrey Liao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Bing Yang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
176
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
177
|
Kreft SG, Deuerling E. Vms1: A Cytosolic CAT-Tailing Antagonist to Protect Mitochondria. Trends Cell Biol 2018; 28:3-5. [DOI: 10.1016/j.tcb.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
|
178
|
Limoncelli KA, Merrikh CN, Moore MJ. ASC1 and RPS3: new actors in 18S nonfunctional rRNA decay. RNA (NEW YORK, N.Y.) 2017; 23:1946-1960. [PMID: 28956756 PMCID: PMC5689013 DOI: 10.1261/rna.061671.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
In budding yeast, inactivating mutations within the 40S ribosomal subunit decoding center lead to 18S rRNA clearance by a quality control mechanism known as nonfunctional 18S rRNA decay (18S NRD). We previously showed that 18S NRD is functionally related to No-Go mRNA Decay (NGD), a pathway for clearing translation complexes stalled on aberrant mRNAs. Whereas the NGD factors Dom34p and Hbs1p contribute to 18S NRD, their genetic deletion (either singly or in combination) only partially stabilizes mutant 18S rRNA. Here we identify Asc1p (aka RACK1) and Rps3p, both stable 40S subunit components, as additional 18S NRD factors. Complete stabilization of mutant 18S rRNA in dom34Δ;asc1Δ and hbs1Δ;asc1Δ strains indicates the existence of two genetically separable 18S NRD pathways. A small region of the Rps3p C-terminal tail known to be subject to post-translational modification is also crucial for 18S NRD. We combine these findings with the effects of mutations in the 5' → 3' and 3' → 5' decay machinery to propose a model wherein multiple targeting and decay pathways kinetically contribute to 18S NRD.
Collapse
Affiliation(s)
- Kelly A Limoncelli
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Christopher N Merrikh
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
179
|
Buskirk AR, Green R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0183. [PMID: 28138069 DOI: 10.1098/rstb.2016.0183] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosomes translate genetic information into polypeptides in several basic steps: initiation, elongation, termination and recycling. When ribosomes are arrested during elongation or termination, the cell's capacity for protein synthesis is reduced. There are numerous quality control systems in place to distinguish between paused ribosomes that need some extra input to proceed and terminally stalled ribosomes that need to be rescued. Here, we discuss similarities and differences in the systems for resolution of pauses and rescue of arrested ribosomes in bacteria and eukaryotes, and how ribosome profiling has transformed our ability to decipher these molecular events.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
180
|
Abstract
Maintenance of mitochondrial function during stress conditions is vital for cellular survival. In this issue of Molecular Cell, Nielson et al. (2017) characterize a unique domain within Vms1 that allows this protein quality control component to specifically recognize damaged or stressed compartments within the mitochondrial network.
Collapse
Affiliation(s)
- Lilian Lamech
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
181
|
Abstract
Ribosome stalling results in the production of truncated proteins that can cause proteotoxic stress if not efficiently degraded. A recent paper by Izawa et al. (2017) identifies Vms1 as a key player in the regulation of ribosome quality control specifically on mitochondria-localized ribosomes, ultimately preventing protein aggregate accumulation within mitochondria.
Collapse
Affiliation(s)
- Lilian Lamech
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
182
|
Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control. Nat Struct Mol Biol 2017; 24:1107-1115. [PMID: 29083413 DOI: 10.1038/nsmb.3495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Assembly of fully functional ribosomes is a prerequisite for failsafe translation. This explains why maturing preribosomal subunits have to pass through an array of quality-control checkpoints, including nuclear export, to ensure that only properly assembled ribosomes engage in translation. Despite these safeguards, we found that nuclear pre-60S particles unable to remove a transient structure composed of ITS2 pre-rRNA and associated assembly factors, termed the 'foot', escape to the cytoplasm, where they can join with mature 40S subunits to catalyze protein synthesis. However, cells harboring these abnormal ribosomes show translation defects indicated by the formation of 80S ribosomes poised with pre-60S subunits carrying tRNAs in trapped hybrid states. To overcome this translational stress, the cytoplasmic surveillance machineries RQC and Ski-exosome target these malfunctioning ribosomes. Thus, pre-60S subunits that escape nuclear quality control can enter translation, but are caught by cytoplasmic surveillance mechanisms.
Collapse
|
183
|
Izawa T, Park SH, Zhao L, Hartl FU, Neupert W. Cytosolic Protein Vms1 Links Ribosome Quality Control to Mitochondrial and Cellular Homeostasis. Cell 2017; 171:890-903.e18. [PMID: 29107329 DOI: 10.1016/j.cell.2017.10.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/15/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
Eukaryotic cells have evolved extensive protein quality-control mechanisms to remove faulty translation products. Here, we show that yeast cells continually produce faulty mitochondrial polypeptides that stall on the ribosome during translation but are imported into the mitochondria. The cytosolic protein Vms1, together with the E3 ligase Ltn1, protects against the mitochondrial toxicity of these proteins and maintains cell viability under respiratory conditions. In the absence of these factors, stalled polypeptides aggregate after import and sequester critical mitochondrial chaperone and translation machinery. Aggregation depends on C-terminal alanyl/threonyl sequences (CAT-tails) that are attached to stalled polypeptides on 60S ribosomes by Rqc2. Vms1 binds to 60S ribosomes at the mitochondrial surface and antagonizes Rqc2, thereby facilitating import, impeding aggregation, and directing aberrant polypeptides to intra-mitochondrial quality control. Vms1 is a key component of a rescue pathway for ribosome-stalled mitochondrial polypeptides that are inaccessible to ubiquitylation due to coupling of translation and translocation.
Collapse
Affiliation(s)
- Toshiaki Izawa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Division of Cell Biology, Biomedical Center, Faculty of Medicine, University of Munich, Großhaderner Strasse 9, 82152 Martinsried, Germany
| | - Sae-Hun Park
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Liang Zhao
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Walter Neupert
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Division of Cell Biology, Biomedical Center, Faculty of Medicine, University of Munich, Großhaderner Strasse 9, 82152 Martinsried, Germany.
| |
Collapse
|
184
|
Guydosh NR, Kimmig P, Walter P, Green R. Regulated Ire1-dependent mRNA decay requires no-go mRNA degradation to maintain endoplasmic reticulum homeostasis in S. pombe. eLife 2017; 6:29216. [PMID: 28945192 PMCID: PMC5650469 DOI: 10.7554/elife.29216] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022] Open
Abstract
The unfolded protein response (UPR) monitors and adjusts the protein folding capacity of the endoplasmic reticulum (ER). In S. pombe, the ER membrane-resident kinase/endoribonuclease Ire1 utilizes a mechanism of selective degradation of ER-bound mRNAs (RIDD) to maintain homeostasis. We used a genetic screen to identify factors critical to the Ire1-mediated UPR and found several proteins, Dom34, Hbs1 and Ski complex subunits, previously implicated in ribosome rescue and mRNA no-go-decay (NGD). Ribosome profiling in ER-stressed cells lacking these factors revealed that Ire1-mediated cleavage of ER-associated mRNAs results in ribosome stalling and mRNA degradation. Stalled ribosomes iteratively served as a ruler to template precise, regularly spaced upstream mRNA cleavage events. This clear signature uncovered hundreds of novel target mRNAs. Our results reveal that the UPR in S. pombe executes RIDD in an intricate interplay between Ire1, translation, and the NGD pathway, and establish a critical role for NGD in maintaining ER homeostasis. Most proteins need to fold into a specific shape in order to work properly. As such, cells have developed a number of ways to sense and respond to stressful conditions that cause their proteins to fold incorrectly. One place this happens is within a network of tubes inside the cell called the endoplasmic reticulum; this is where proteins that are destined for the cell surface or other compartments in the cell become folded. The endoplasmic reticulum has a limited capacity to fold proteins. When it is overwhelmed, the cell temporarily stops making the proteins that use up this capacity. This action makes up part of a larger set of responses collectively referred to as the “unfolded protein response”. During the unfolded protein response, the production of some proteins is turned off when an enzyme called Ire1 cuts the transcript molecules that contain the instructions to build these proteins. Cutting these transcripts, however, creates a problem: it interrupts the translation of the transcript by the ribosome, the molecular machine that reads the genetic code to build proteins. Usually, a ribosome only comes off of a transcript when it arrives at a specific stop signal. Yet, ribosomes that run to the ends of broken transcripts never reach this signal and instead have to be rescued. If left without rescue, these stalled ribosomes could never be used again for translation of other transcripts, and the cell would lose the ability to make more proteins. Guydosh, Kimmig et al. searched for new genes in the yeast Schizosaccharomyces pombe that are involved in the part of the unfolded protein response that occurs after the actions of the Ire1 enzyme. This search revealed that cells missing so-called ribosome rescue proteins (namely Dom34 and Hbs1) grow slowly under conditions that cause proteins to fold incorrectly. Guydosh, Kimmig et al. then looked to see where on the transcripts the ribosomes stall and remain un-rescued in the absence of these ribosome rescue proteins. These sites corresponded to places that were cut by Ire1, the majority of which were previously unknown. Together these findings indicate that ribosome rescue is a key part of the unfolded protein response in S. pombe because it removes ribosomes that stall at the broken ends of transcript molecules cut by the Ire1 enzyme. An efficient and well-controlled response to conditions that cause proteins to fold incorrectly is important for human health. Loss of this control can lead to disorders as diverse as atherosclerosis, cancer and neurological diseases. By revealing that the unfolded protein response uses the ribosome rescue pathway, the findings improve our understanding of these health conditions and may open the door to new research and treatments.
Collapse
Affiliation(s)
- Nicholas R Guydosh
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States.,Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Philipp Kimmig
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
185
|
Simms CL, Yan LL, Zaher HS. Ribosome Collision Is Critical for Quality Control during No-Go Decay. Mol Cell 2017; 68:361-373.e5. [PMID: 28943311 DOI: 10.1016/j.molcel.2017.08.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.
Collapse
Affiliation(s)
- Carrie L Simms
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
186
|
Zheng J, Yang J, Choe YJ, Hao X, Cao X, Zhao Q, Zhang Y, Franssens V, Hartl FU, Nyström T, Winderickx J, Liu B. Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochem Biophys Res Commun 2017; 493:708-717. [PMID: 28864412 DOI: 10.1016/j.bbrc.2017.08.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
Abstract
The subcellular localization of polyQ-expanded huntingtin exon1 (Httex1) modulates polyQ toxicity in models of Huntington's disease. Using genome-wide screens in a yeast model system, we report that the ribosome quality control (RQC) machinery, recently implicated in neurodegeneration, is a key determinant for the nucleocytoplasmic distribution of Httex1-103Q. Deletion of the RQC genes, LTN1 or RQC1, caused the accumulation of Httex1-103Q in the nucleus through a process that required the CAT-tail tagging activity of Rqc2 and transport via the nuclear pore complex. We provide evidence that nuclear accumulation of Httex1-103Q enhances its cytotoxicity, suggesting that the RQC machinery plays an important role in protecting cells against the adverse effects of polyQ expansion proteins.
Collapse
Affiliation(s)
- Ju Zheng
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden; Department of Biology, Functional Biology, KU Leuven, 3001, Heverlee, Belgium
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Young-Jun Choe
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Xiuling Cao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Qian Zhao
- School of Life Sciences, Shandong University of Technology, 266 New Village West Road, Zhangdian District, Zibo, Shandong, China
| | - Yuejie Zhang
- School of Life Sciences, Shandong University of Technology, 266 New Village West Road, Zhangdian District, Zibo, Shandong, China
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001, Heverlee, Belgium
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001, Heverlee, Belgium
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden.
| |
Collapse
|
187
|
Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 2017; 8:159. [PMID: 28757607 PMCID: PMC5534433 DOI: 10.1038/s41467-017-00188-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/08/2017] [Indexed: 11/08/2022] Open
Abstract
Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1.
Collapse
|
188
|
Kostova KK, Hickey KL, Osuna BA, Hussmann JA, Frost A, Weinberg DE, Weissman JS. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 2017; 357:414-417. [PMID: 28751611 PMCID: PMC5673106 DOI: 10.1126/science.aam7787] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates.
Collapse
Affiliation(s)
- Kamena K Kostova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey L Hickey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey A Hussmann
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
189
|
Osuna BA, Howard CJ, KC S, Frost A, Weinberg DE. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. eLife 2017; 6:e27949. [PMID: 28718767 PMCID: PMC5562442 DOI: 10.7554/elife.27949] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities-Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation-can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins.
Collapse
Affiliation(s)
- Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Subheksha KC
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- Sandler Faculty Fellows Program, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
190
|
Joazeiro CAP. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 2017; 33:343-368. [PMID: 28715909 DOI: 10.1146/annurev-cellbio-111315-125249] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- ZMBH, University of Heidelberg, 69120 Heidelberg, Germany; .,The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
191
|
Garzia A, Jafarnejad SM, Meyer C, Chapat C, Gogakos T, Morozov P, Amiri M, Shapiro M, Molina H, Tuschl T, Sonenberg N. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat Commun 2017; 8:16056. [PMID: 28685749 PMCID: PMC5504347 DOI: 10.1038/ncomms16056] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. Translation of aberrant mRNAs causes ribosome stalling and translation arrest, followed by recycling of the stalled ribosome complex. Here the authors show that the Zinc Finger Protein 598 (ZNF598/Hel2) is implicated in sensing faulty translation of prematurely polyadenylated mRNAs through the recognition of AAA codons.
Collapse
Affiliation(s)
- Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Seyed Mehdi Jafarnejad
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Tasos Gogakos
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Pavel Morozov
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Maayan Shapiro
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
192
|
Protein quality control at the ribosome: focus on RAC, NAC and RQC. Essays Biochem 2017; 60:203-212. [PMID: 27744336 DOI: 10.1042/ebc20160011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
The biogenesis of new polypeptides by ribosomes and their subsequent correct folding and localization to the appropriate cellular compartments are essential key processes to maintain protein homoeostasis. These complex mechanisms are governed by a repertoire of protein biogenesis factors that directly bind to the ribosome and chaperone nascent polypeptide chains as soon as they emerge from the ribosomal tunnel exit. This nascent chain 'welcoming committee' regulates multiple co-translational processes including protein modifications, folding, targeting and degradation. Acting at the front of the protein production line, these ribosome-associated protein biogenesis factors lead the way in the cellular proteostasis network to ensure proteome integrity. In this article, I focus on three different systems in eukaryotes that are critical for the maintenance of protein homoeostasis by controlling the birth, life and death of nascent polypeptide chains.
Collapse
|
193
|
Defenouillère Q, Fromont-Racine M. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr Genet 2017; 63:997-1005. [PMID: 28528489 DOI: 10.1007/s00294-017-0708-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023]
Abstract
Proteostasis in eukaryotes is maintained by compartment-specific quality control pathways, which enable the refolding or the degradation of defective polypeptides to prevent the toxicity that may arise from their aggregation. Among these processes, translational protein quality control is performed by the Ribosome-bound Quality Control complex (RQC), which recognizes nascent peptides translated from aberrant mRNAs, polyubiquitylates these aberrant peptides, extracts them from the stalled 60S subunit and finally escorts them to the proteasome for degradation. In this review, we focus on the mechanism of action of the RQC complex from stalled 60S binding to aberrant peptide delivery to the proteasome and describe the cellular consequences of a deficiency in the RQC pathway, such as aberrant protein aggregation. In addition, this review covers the recent discoveries concerning the role of cytosolic chaperones, as well as Tom1, to prevent the accumulation of aberrant protein aggregates in case of a deficiency in the RQC pathway.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, 75724, Paris Cedex 15, France. .,Membrane Trafficking, Ubiquitin and Signaling, Institut Jacques Monod, UMR7592 CNRS/Université Paris-Diderot, 15 Rue Hélène Brion, Bât. Buffon, 75205, Paris Cedex 13, France.
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, 75724, Paris Cedex 15, France
| |
Collapse
|
194
|
Guydosh NR, Green R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA (NEW YORK, N.Y.) 2017; 23:749-761. [PMID: 28193672 PMCID: PMC5393183 DOI: 10.1261/rna.060418.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 05/07/2023]
Abstract
Translation of poly(A) tails leads to mRNA cleavage but the mechanism and global pervasiveness of this "nonstop/no-go" decay process is not understood. Here we performed ribosome profiling (in a yeast strain lacking exosome function) of short 15-18 nucleotides mRNA footprints to identify ribosomes stalled at 3' ends of mRNA decay intermediates. In this background, we found mRNA cleavage extending hundreds of nucleotides upstream of ribosome stalling in poly(A) and predominantly in one reading frame. These observations suggest that decay-triggering endonucleolytic cleavage is closely associated with the ribosome. Surprisingly, ribosomes appeared to accumulate (i.e., stall) in the transcriptome when as few as three consecutive ORF-internal lysine codons were positioned in the A, P, and E sites though significant mRNA degradation was not observed. Endonucleolytic cleavage was found, however, at sites of premature polyadenylation (encoding polylysine) and rescue of the ribosomes stalled at these sites was dependent on Dom34. These results suggest this process may be critical when changes in the polyadenylation site occur during development, tumorigenesis, or when translation termination/recycling is impaired.
Collapse
Affiliation(s)
- Nicholas R Guydosh
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
195
|
Sitron CS, Park JH, Brandman O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (NEW YORK, N.Y.) 2017; 23:798-810. [PMID: 28223409 PMCID: PMC5393187 DOI: 10.1261/rna.060897.117] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/17/2023]
Abstract
Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.
Collapse
Affiliation(s)
- Cole S Sitron
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Joseph H Park
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
196
|
Malyutin AG, Musalgaonkar S, Patchett S, Frank J, Johnson AW. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J 2017; 36:854-868. [PMID: 28179369 PMCID: PMC5376978 DOI: 10.15252/embj.201696012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.
Collapse
Affiliation(s)
- Andrey G Malyutin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
197
|
Defenouillère Q, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation. Mol Biol Cell 2017; 28:1165-1176. [PMID: 28298488 PMCID: PMC5415013 DOI: 10.1091/mbc.e16-10-0746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
Abstract
The RQC complex involved in protein quality control mechanisms also exists as a ribosome-unbound complex during the escort of aberrant peptides to the proteasome. The E3 ubiquitin ligase Tom1 is a newly identified partner of this light version of the RQC complex and is required for aggregate prevention. Protein quality control mechanisms eliminate defective polypeptides to ensure proteostasis and to avoid the toxicity of protein aggregates. In eukaryotes, the ribosome-bound quality control (RQC) complex detects aberrant nascent peptides that remain stalled in 60S ribosomal particles due to a dysfunction in translation termination. The RQC complex polyubiquitylates aberrant polypeptides and recruits a Cdc48 hexamer to extract them from 60S particles in order to escort them to the proteasome for degradation. Whereas the steps from stalled 60S recognition to aberrant peptide polyubiquitylation by the RQC complex have been described, the mechanism leading to proteasomal degradation of these defective translation products remains unknown. We show here that the RQC complex also exists as a ribosome-unbound complex during the escort of aberrant peptides to the proteasome. In addition, we identify a new partner of this light version of the RQC complex, the E3 ubiquitin ligase Tom1. Tom1 interacts with aberrant nascent peptides and is essential to limit their accumulation and aggregation in the absence of Rqc1; however, its E3 ubiquitin ligase activity is not required. Taken together, these results reveal new roles for Tom1 in protein quality control, aggregate prevention, and, therefore, proteostasis maintenance.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France.,Sorbonne Universités, UPMC Paris 6, Complexité Du Vivant, 75252 Paris Cedex 05, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - John Mouaikel
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, F-75724 Paris Cedex 15, France
| |
Collapse
|
198
|
Juszkiewicz S, Hegde RS. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol Cell 2017; 65:743-750.e4. [PMID: 28065601 PMCID: PMC5316413 DOI: 10.1016/j.molcel.2016.11.039] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
Diverse cellular stressors have been observed to trigger site-specific ubiquitination on several ribosomal proteins. However, the ubiquitin ligases, biochemical consequences, and physiologic pathways linked to these modifications are not known. Here, we show in mammalian cells that the ubiquitin ligase ZNF598 is required for ribosomes to terminally stall during translation of poly(A) sequences. ZNF598-mediated stalling initiated the ribosome-associated quality control (RQC) pathway for degradation of nascent truncated proteins. Biochemical ubiquitination reactions identified two sites of mono-ubiquitination on the 40S protein eS10 as the primary ribosomal target of ZNF598. Cells lacking ZNF598 activity or containing ubiquitination-resistant eS10 ribosomes failed to stall efficiently on poly(A) sequences. In the absence of stalling, read-through of poly(A) produces a poly-lysine tag, which might alter the localization and solubility of the associated protein. Thus, ribosome ubiquitination can modulate translation elongation and impacts co-translational quality control to minimize production of aberrant proteins. Poly(A), not poly-basic tracts, are the main trigger of ribosome stalling in mammals The ubiquitin ligase ZNF598 is required to stall ribosomes during poly(A) translation ZNF598 primarily mono-ubiquitinates two lysines on the 40S ribosomal protein eS10 ZNF598 deletion or mutation of its eS10 target permits increased poly(A) translation
Collapse
|
199
|
Inada T. The Ribosome as a Platform for mRNA and Nascent Polypeptide Quality Control. Trends Biochem Sci 2017; 42:5-15. [DOI: 10.1016/j.tibs.2016.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
200
|
Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, Hexem E, Peelor FF, Miller BF, Hamilton KL, Transtrum MK, Bikman BT, Price JC. Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient Signals. Mol Cell Proteomics 2016; 16:243-254. [PMID: 27932527 PMCID: PMC5294211 DOI: 10.1074/mcp.m116.063255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Indexed: 01/01/2023] Open
Abstract
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1–4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5–7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).
Collapse
Affiliation(s)
| | | | | | - Eric Evans
- From the ‡Department of Chemistry and Biochemistry
| | | | - Jared Knecht
- From the ‡Department of Chemistry and Biochemistry
| | - Eric Hexem
- From the ‡Department of Chemistry and Biochemistry
| | - Fredrick F Peelor
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | - Benjamin F Miller
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | - Karyn L Hamilton
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | | | - Benjamin T Bikman
- ‖Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602
| | - John C Price
- From the ‡Department of Chemistry and Biochemistry,
| |
Collapse
|