151
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
152
|
Das DK, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh PW, Hilton M, Wagner G, Lang MJ, Reinherz EL. Pre-T Cell Receptors (Pre-TCRs) Leverage Vβ Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands. J Biol Chem 2016; 291:25292-25305. [PMID: 27707880 DOI: 10.1074/jbc.m116.752865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αβTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cβ FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαβ and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vβ patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of β chains with self-reactivity but is occluded by α subunit replacement of pTα upon αβTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αβTCR repertoire tuning via the pre-TCR.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Robert J Mallis
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Jonathan S Duke-Cohan
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Rebecca E Hussey
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Paul W Tetteh
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Mark Hilton
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Gerhard Wagner
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Matthew J Lang
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, .,the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37235
| | - Ellis L Reinherz
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and .,Medicine, Harvard Medical School, and
| |
Collapse
|
153
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
154
|
Gilles FM, Llubaroff R, Pastorino C. Fluctuation-induced forces between rings threaded around a polymer chain under tension. Phys Rev E 2016; 94:032503. [PMID: 27739844 DOI: 10.1103/physreve.94.032503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 06/06/2023]
Abstract
We characterize the fluctuation properties of a polymer chain under external tension and the fluctuation-induced forces between two ring molecules threaded around the chain. The problem is relevant in the context of fluctuation-induced forces in soft-matter systems, features of liquid interfaces, and to describe the properties of polyrotaxanes and slide-ring materials. We perform molecular-dynamics simulations of the Kremer-Grest bead-spring model for the polymer and a simple ring-molecule model in the canonical ensemble. We study transverse fluctuations of the stretched chain as a function of chain stretching and in the presence of ring-shaped threaded molecules. The fluctuation spectra of the chains are analyzed in equilibrium at constant temperature, and the differences in the presence of two-ring molecules are compared. For the rings located at fixed distances, we find an attractive fluctuation-induced force between the rings, proportional to the temperature and decaying with the ring distance. We characterize this force as a function of ring distance, chain stretching, and ring radius, and we measure the differences between the free chain spectrum and the fluctuations of the chain constrained by the rings. We also compare the dependence and range of the force found in the simulations with theoretical models coming from different fields.
Collapse
Affiliation(s)
- F M Gilles
- Departamento de Física de la Materia Condensada, CAC-CNEA, Av. Gral. Paz 1499, 1650, Pcia. de Buenos Aires, Argentina
- CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - R Llubaroff
- Departamento de Física de la Materia Condensada, CAC-CNEA, Av. Gral. Paz 1499, 1650, Pcia. de Buenos Aires, Argentina
- Facultad Regional Avellaneda, Universidad Tecnológica Nacional (UTN-FRA), Buenos Aires, Argentina
| | - C Pastorino
- Departamento de Física de la Materia Condensada, CAC-CNEA, Av. Gral. Paz 1499, 1650, Pcia. de Buenos Aires, Argentina
- CONICET, Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| |
Collapse
|
155
|
Min D, Arbing MA, Jefferson RE, Bowie JU. A simple DNA handle attachment method for single molecule mechanical manipulation experiments. Protein Sci 2016; 25:1535-44. [PMID: 27222403 PMCID: PMC4972209 DOI: 10.1002/pro.2952] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
Manipulating single molecules and systems of molecules with mechanical force is a powerful technique to examine their physical properties. Applying force requires attachment of the target molecule to larger objects using some sort of molecular tether, such as a strand of DNA. DNA handle attachment often requires difficult manipulations of the target molecule, which can preclude attachment to unstable, hard to obtain, and/or large, complex targets. Here we describe a method for covalent DNA handle attachment to proteins that simply requires the addition of a preprepared reagent to the protein and a short incubation. The handle attachment method developed here provides a facile approach for studying the biomechanics of biological systems.
Collapse
Affiliation(s)
- Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, Los Angeles, California
| | - Mark A Arbing
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, Los Angeles, California
| | - Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, Los Angeles, California
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
156
|
Faure G, Ogurtsov AY, Shabalina SA, Koonin EV. Role of mRNA structure in the control of protein folding. Nucleic Acids Res 2016; 44:10898-10911. [PMID: 27466388 PMCID: PMC5159526 DOI: 10.1093/nar/gkw671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Specific structures in mRNA modulate translation rate and thus can affect protein folding. Using the protein structures from two eukaryotes and three prokaryotes, we explore the connections between the protein compactness, inferred from solvent accessibility, and mRNA structure, inferred from mRNA folding energy (ΔG). In both prokaryotes and eukaryotes, the ΔG value of the most stable 30 nucleotide segment of the mRNA (ΔGmin) strongly, positively correlates with protein solvent accessibility. Thus, mRNAs containing exceptionally stable secondary structure elements typically encode compact proteins. The correlations between ΔG and protein compactness are much more pronounced in predicted ordered parts of proteins compared to the predicted disordered parts, indicative of an important role of mRNA secondary structure elements in the control of protein folding. Additionally, ΔG correlates with the mRNA length and the evolutionary rate of synonymous positions. The correlations are partially independent and were used to construct multiple regression models which explain about half of the variance of protein solvent accessibility. These findings suggest a model in which the mRNA structure, particularly exceptionally stable RNA structural elements, act as gauges of protein co-translational folding by reducing ribosome speed when the nascent peptide needs time to form and optimize the core structure.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
157
|
Trovato F, O'Brien EP. Insights into Cotranslational Nascent Protein Behavior from Computer Simulations. Annu Rev Biophys 2016; 45:345-69. [PMID: 27297399 DOI: 10.1146/annurev-biophys-070915-094153] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of protein stability and function in vivo begins during protein synthesis, when the ribosome translates a messenger RNA into a nascent polypeptide. Cotranslational processes involving a nascent protein include folding, binding to other macromolecules, enzymatic modification, and secretion through membranes. Experiments have shown that the rate at which the ribosome adds amino acids to the elongating nascent chain influences the efficiency of these processes, with alterations to these rates possibly contributing to diseases, including some types of cancer. In this review, we discuss recent insights into cotranslational processes gained from molecular simulations, how different computational approaches have been combined to understand cotranslational processes at multiple scales, and the new scenarios illuminated by these simulations. We conclude by suggesting interesting questions that computational approaches in this research area can address over the next few years.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
158
|
Kawaguchi R, Kiryu H. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome. BMC Bioinformatics 2016; 17:203. [PMID: 27153986 PMCID: PMC4858847 DOI: 10.1186/s12859-016-1067-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/29/2016] [Indexed: 02/08/2023] Open
Abstract
Background RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Results Our novel software, “ParasoR”, is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. Conclusions We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1067-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Risa Kawaguchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
159
|
Mechano-adaptive sensory mechanism of α-catenin under tension. Sci Rep 2016; 6:24878. [PMID: 27109499 PMCID: PMC4843013 DOI: 10.1038/srep24878] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
The contractile forces in individual cells drive the tissue processes, such as morphogenesis and wound healing, and maintain tissue integrity. In these processes, α-catenin molecule acts as a tension sensor at cadherin-based adherens junctions (AJs), accelerating the positive feedback of intercellular tension. Under tension, α-catenin is activated to recruit vinculin, which recruits actin filaments to AJs. In this study, we revealed how α-catenin retains its activated state while avoiding unfolding under tension. Using single-molecule force spectroscopy employing atomic force microscopy (AFM), we found that mechanically activated α-catenin fragment had higher mechanical stability than a non-activated fragment. The results of our experiments using mutated and segmented fragments showed that the key intramolecular interactions acted as a conformational switch. We also found that the conformation of α-catenin was reinforced by vinculin binding. We demonstrate that α-catenin adaptively changes its conformation under tension to a stable intermediate state, binds to vinculin, and finally settles into a more stable state reinforced by vinculin binding. Our data suggest that the plastic characteristics of α-catenin, revealed in response to both mechanical and biochemical cues, enable the functional-structural dynamics at the cellular and tissue levels.
Collapse
|
160
|
Abstract
During translation, a plethora of protein factors bind to the ribosome and regulate protein synthesis. Many of those factors are guanosine triphosphatases (GTPases), proteins that catalyze the hydrolysis of guanosine 5'-triphosphate (GTP) to promote conformational changes. Despite numerous studies, the function of elongation factor 4 (EF-4/LepA), a highly conserved translational GTPase, has remained elusive. Here, we present the crystal structure at 2.6-Å resolution of the Thermus thermophilus 70S ribosome bound to EF-4 with a nonhydrolyzable GTP analog and A-, P-, and E-site tRNAs. The structure reveals the interactions of EF-4 with the A-site tRNA, including contacts between the C-terminal domain (CTD) of EF-4 and the acceptor helical stem of the tRNA. Remarkably, EF-4 induces a distortion of the A-site tRNA, allowing it to interact simultaneously with EF-4 and the decoding center of the ribosome. The structure provides insights into the tRNA-remodeling function of EF-4 on the ribosome and suggests that the displacement of the CCA-end of the A-site tRNA away from the peptidyl transferase center (PTC) is functionally significant.
Collapse
|
161
|
Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions. Cell 2016; 163:1267-1280. [PMID: 26590426 DOI: 10.1016/j.cell.2015.10.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 01/13/2023]
Abstract
Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3' of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4's gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements.
Collapse
|
162
|
-1 Programmed Ribosomal Frameshifting as a Force-Dependent Process. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:45-72. [PMID: 26970190 PMCID: PMC7102820 DOI: 10.1016/bs.pmbts.2015.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
-1 Programmed ribosomal frameshifting is a translational recoding event in which ribosomes slip backward along messenger RNA presumably due to increased tension disrupting the codon-anticodon interaction at the ribosome's coding site. Single-molecule physical methods and recent experiments characterizing the physical properties of mRNA's slippery sequence as well as the mechanical stability of downstream mRNA structure motifs that give rise to frameshifting are discussed. Progress in technology, experimental assays, and data analysis methods hold promise for accurate physical modeling and quantitative understanding of -1 programmed ribosomal frameshifting.
Collapse
|
163
|
Nilsson OB, Müller-Lucks A, Kramer G, Bukau B, von Heijne G. Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. J Mol Biol 2016; 428:1356-1364. [DOI: 10.1016/j.jmb.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
164
|
Marino J, von Heijne G, Beckmann R. Small protein domains fold inside the ribosome exit tunnel. FEBS Lett 2016; 590:655-60. [PMID: 26879042 DOI: 10.1002/1873-3468.12098] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 11/09/2022]
Abstract
Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel.
Collapse
Affiliation(s)
- Jacopo Marino
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, University of Munich, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, University of Munich, Germany
| |
Collapse
|
165
|
Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. Proc Natl Acad Sci U S A 2016; 113:E829-38. [PMID: 26831095 DOI: 10.1073/pnas.1520560113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the importance of the nonuniform progression of elongation in translation is well recognized, there have been few attempts to explore this process by directly profiling nascent polypeptides, the relevant intermediates of translation. Such approaches will be essential to complement other approaches, including ribosome profiling, which is extremely powerful but indirect with respect to the actual translation processes. Here, we use the nascent polypeptide's chemical trait of having a covalently attached tRNA moiety to detect translation intermediates. In a case study, Escherichia coli SecA was shown to undergo nascent polypeptide-dependent translational pauses. We then carried out integrated in vivo and in vitro nascent chain profiling (iNP) to characterize 1,038 proteome members of E. coli that were encoded by the first quarter of the chromosome with respect to their propensities to accumulate polypeptidyl-tRNA intermediates. A majority of them indeed undergo single or multiple pauses, some occurring only in vitro, some occurring only in vivo, and some occurring both in vivo and in vitro. Thus, translational pausing can be intrinsically robust, subject to in vivo alleviation, or require in vivo reinforcement. Cytosolic and membrane proteins tend to experience different classes of pauses; membrane proteins often pause multiple times in vivo. We also note that the solubility of cytosolic proteins correlates with certain categories of pausing. Translational pausing is widespread and diverse in nature.
Collapse
|
166
|
Sharma AK, Bukau B, O'Brien EP. Physical Origins of Codon Positions That Strongly Influence Cotranslational Folding: A Framework for Controlling Nascent-Protein Folding. J Am Chem Soc 2016; 138:1180-95. [PMID: 26716464 DOI: 10.1021/jacs.5b08145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An emerging paradigm in the field of in vivo protein biophysics is that nascent-protein behavior is a type of nonequilibrium phenomenon, where translation-elongation kinetics can be more important in determining nascent-protein behavior than the thermodynamic properties of the protein. Synonymous codon substitutions, which change the translation rate at select codon positions along a transcript, have been shown to alter cotranslational protein folding, suggesting that evolution may have shaped synonymous codon usage in the genomes of organisms in part to increase the amount of folded and functional nascent protein. Here, we develop a Monte Carlo-master-equation method that allows for the control of nascent-chain folding during translation through the rational design of mRNA sequences to guide the cotranslational folding process. We test this framework using coarse-grained molecular dynamics simulations and find it provides optimal mRNA sequences to control the simulated, cotranslational folding of a protein in a user-prescribed manner. With this approach we discover that some codon positions in a transcript can have a much greater impact on nascent-protein folding than others because they tend to be positions where the nascent chain populates states that are far from equilibrium, as well as being dependent on a complex ratio of time scales. As a consequence, different cotranslational profiles of the same protein can have different critical codon positions and different numbers of synonymous mRNA sequences that encode for them. These findings explain that there is a fundamental connection between the nonequilibrium nature of cotranslational processes, nascent-protein behavior, and synonymous codon usage.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
167
|
Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Mechanisms of ribosome stalling by SecM at multiple elongation steps. eLife 2015; 4. [PMID: 26670735 PMCID: PMC4737659 DOI: 10.7554/elife.09684] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Regulation of translating ribosomes is a major component of gene expression control network. In Escherichia coli, ribosome stalling by the C-terminal arrest sequence of SecM regulates the SecA-dependent secretion pathway. Previous studies reported many residues of SecM peptide and ribosome exit tunnel are critical for stalling. However, the underlying molecular mechanism is still not clear at the atomic level. Here, we present two cryo-EM structures of the SecM-stalled ribosomes at 3.3–3.7 Å resolution, which reveal two different stalling mechanisms at distinct elongation steps of the translation cycle: one is due to the inactivation of ribosomal peptidyl-transferase center which inhibits peptide bond formation with the incoming prolyl-tRNA; the other is the prolonged residence of the peptidyl-RNA at the hybrid A/P site which inhibits the full-scale tRNA translocation. These results demonstrate an elegant control of translation cycle by regulatory peptides through a continuous, dynamic reshaping of the functional center of the ribosome. DOI:http://dx.doi.org/10.7554/eLife.09684.001 Many genes code for proteins that carry out essential tasks. The instructions in a gene are first copied into a messenger RNA (mRNA), and a molecular machine known as a ribosome reads the copied instructions in groups of three letters at a time (called codons). The ribosome translates the order of the codons into a sequence of amino acids; each amino acid is carried into the ribosome by a transfer RNA (tRNA) molecule. As it translates, the ribosome joins each new amino acid to the one before it, like the links in a chain. Finally, the newly built protein chain passes through a tunnel to exit the ribosome. Ribosomes do not build all proteins at a constant rate; there are many examples of proteins that stall when they are in the ribosome exit tunnel. It is thought that this stalling is an important way for cells to control the expression of proteins. SecM is a bacterial protein that stalls while it is being made. Previous research has shown that a sequence of amino acids in SecM (called the arrest sequence) interacts with components of the ribosome tunnel. This interaction leads to stalling, and regulates the translation of another important bacterial protein (called SecA) that is encoded downstream on the same mRNA as SecM. If SecM-induced stalling takes place, the translation of SecA actually increases. Nevertheless, it remains poorly understood how SecM stalls in the ribosome. Zhang et al. have now solved the structures of SecM proteins stalled inside ribosomes using a method called cryo-electron microscopy. This approach identified two different states of SecM present in the ribosome, which corresponded to two different stalling mechanisms. The addition of an amino acid to a growing protein occurs in stages. First, the tRNA that carries the amino acid to the ribosome and bind to it in a region known as the A-site. After this, the tRNA moves to the P-site where the attached amino acid is incorporated into the elongating protein chain. Zhang et al. observed that the arrest sequence of SecM and the ribosome tunnel interact extensively. These interactions are strong and alter the configuration of both the A-site and P-site of the ribosome. This has two major consequences for translation. First, the tRNA cannot be stably accommodated in the A-site and secondly, its passage to the P-site is slowed down. Both these mechanisms contribute to stalling. This study provides a detailed analysis of how the ribosome can adjust to control translation. It also highlights that codon-specific control of translation constitutes an important component of how gene expression is regulated. DOI:http://dx.doi.org/10.7554/eLife.09684.002
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xijiang Pan
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
168
|
Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex. Int J Mol Sci 2015; 16:23723-44. [PMID: 26473825 PMCID: PMC4632723 DOI: 10.3390/ijms161023723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.
Collapse
|
169
|
Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria. Proc Natl Acad Sci U S A 2015; 112:E5513-22. [PMID: 26392525 DOI: 10.1073/pnas.1513001112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SecDF interacts with the SecYEG translocon in bacteria and enhances protein export in a proton-motive-force-dependent manner. Vibrio alginolyticus, a marine-estuarine bacterium, contains two SecDF paralogs, V.SecDF1 and V.SecDF2. Here, we show that the export-enhancing function of V.SecDF1 requires Na+ instead of H+, whereas V.SecDF2 is Na+-independent, presumably requiring H+. In accord with the cation-preference difference, V.SecDF2 was only expressed under limited Na+ concentrations whereas V.SecDF1 was constitutive. However, it is not the decreased concentration of Na+ per se that the bacterium senses to up-regulate the V.SecDF2 expression, because marked up-regulation of the V.SecDF2 synthesis was observed irrespective of Na+ concentrations under certain genetic/physiological conditions: (i) when the secDF1VA gene was deleted and (ii) whenever the Sec export machinery was inhibited. VemP (Vibrio export monitoring polypeptide), a secretory polypeptide encoded by the upstream ORF of secDF2VA, plays the primary role in this regulation by undergoing regulated translational elongation arrest, which leads to unfolding of the Shine-Dalgarno sequence for translation of secDF2VA. Genetic analysis of V. alginolyticus established that the VemP-mediated regulation of SecDF2 is essential for the survival of this marine bacterium in low-salinity environments. These results reveal that a class of marine bacteria exploits nascent-chain ribosome interactions to optimize their protein export pathways to propagate efficiently under different ionic environments that they face in their life cycles.
Collapse
|
170
|
Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, Johansson M, Müller-Lucks A, Trovato F, Puglisi JD, O'Brien EP, Beckmann R, von Heijne G. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Rep 2015; 12:1533-40. [PMID: 26321634 PMCID: PMC4571824 DOI: 10.1016/j.celrep.2015.07.065] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. Cotranslational folding is studied by arrest-peptide-mediated force measurements Single-molecule measurements show that a pulling force prevents ribosome stalling A ribosome-tethered zinc-finger domain is visualized by cryo-EM (electron microscopy) The zinc-finger domain is shown to fold deep inside the ribosome exit tunnel
Collapse
Affiliation(s)
- Ola B Nilsson
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Rickard Hedman
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Jacopo Marino
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Stephan Wickles
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Lukas Bischoff
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Magnus Johansson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Annika Müller-Lucks
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, CiPS-M, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 106 91 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden.
| |
Collapse
|
171
|
Ritchie DB, Woodside MT. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 2015; 34:43-51. [PMID: 26189090 PMCID: PMC7126019 DOI: 10.1016/j.sbi.2015.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada; National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G2M9, Canada.
| |
Collapse
|
172
|
Affiliation(s)
- Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|