151
|
Tian F, Cao J, Li Y. Enhanced Mechanic Strength and Thermal Conductivities of Mica Composites with Mimicking Shell Nacre Structure. NANOMATERIALS 2022; 12:nano12132155. [PMID: 35807990 PMCID: PMC9268294 DOI: 10.3390/nano12132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022]
Abstract
As the main insulation of high-voltage motors, the poor mechanical and thermal conductivities of mica paper restrict the motor’s technological advances. This paper prepared multilayer toughening mica composites with a highly ordered “brick-mud” stacking structure by mimicking the natural conch nacre structure. We investigated the mechanical, thermal, and breakdown properties by combined study of tensile strength, stiffness, thermal conductivity, and breakdown strength at varying mica and nanocellulose contents. The results show that thermal conductivity of the mica/chitosan composites were gradually enhanced with the increase in mica content and the composite shows the optimal synthetic performance at 50 wt% mica content. Further addition of the nanocellulose can extremely enhance the thermal conductivities of mica/chitosan composites. The composite with 5 wt% nanocellulose obtained the maximal thermal conductivity of 0.71 W/(m·K), which was about 1.7 times that of the mica/chitosan composite (0.42 W/(m·K)) and much higher than normal mica tape (0.20 W/(m·K)). Meanwhile, the breakdown strength and tensile strength of mica/chitosan/nanocellulose composite also demonstrated substantial improvement. The application of the mica/chitosan/nanocellulose composite is expected to essentially enhance the stator power density and heat dissipation ability of large-capacity generators and HV electric motors.
Collapse
Affiliation(s)
- Fuqiang Tian
- School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China;
- Correspondence:
| | - Jinmei Cao
- School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China;
| | - Yiming Li
- State Grid Beijing Electric Power Company Maintenance Branch, Beijing 100089, China;
| |
Collapse
|
152
|
Micro/Nano Periodic Surface Structures and Performance of Stainless Steel Machined Using Femtosecond Lasers. MICROMACHINES 2022; 13:mi13060976. [PMID: 35744590 PMCID: PMC9230448 DOI: 10.3390/mi13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
The machining of micro/nano periodic surface structures using a femtosecond laser has been an academic frontier and hotspot in recent years. With an ultrahigh laser fluence and an ultrashort pulse duration, femtosecond laser machining shows unique advantages in material processing. It can process almost any material and can greatly improve the processing accuracy with a minimum machining size and heat-affected zone. Meanwhile, it can fabricate a variety of micro/nano periodic surface structures and then change a material's surface performance dramatically, such as the material's wetting performance, corrosive properties, friction properties, and optical properties, demonstrating great application potential in defense, medical, high-end manufacturing, and many other fields. In recent years, the research is gradually deepening from the basic theory to optimization design, intelligent control, and application technology. Nowadays, while focusing on metal structure materials, especially on stainless steel, research institutions in the field of micro and nano manufacturing have conducted systematic and in-depth experimental research using different experimental environments and laser-processing parameters. They have prepared various surface structures with different morphologies and periods with sound performance, and are one step closer to many civilian engineering applications. This paper reviews the study of micro/nano periodic surface structures and the performance of stainless steel machined using a femtosecond laser, obtains the general evolution law of surface structure and performance with the femtosecond laser parameters, points out several key technical challenges for future study, and provides a useful reference for the engineering research and application of femtosecond laser micro/nano processing technology.
Collapse
|
153
|
Abstract
ConspectusUsing a limited selection of ordinary components and at ambient temperature, nature has managed to produce a wide range of incredibly diverse materials with astonishingly elegant and complex architectures. Probably the most famous example is nacre, or mother-of-pearl, the inner lining of the shells of abalone and certain other mollusks. Nacre is 95% aragonite, a hard but brittle calcium carbonate mineral, that exhibits fracture toughness exceedingly greater than that of pure aragonite, when tested in the direction perpendicular to the platelets. No human-made composite outperforms its constituent materials by such a wide margin. Nature's unique ability to combine the desirable properties of components into a material that performs significantly better than the sum of its parts has sparked strong interest in bioinspired materials design.Inspired by this complex hierarchical architecture, many processing routes have been proposed to replicate one or several of these features. New processing techniques point to a number of laboratory successes that hold promise in mimicking nacre. We pioneered one of them, ice templating, in 2006. When a suspension of particles is frozen, particles are rejected by the growing ice crystals and concentrate in the space between the crystals. After the ice is freeze-dried, the resulting scaffold is a porous body that can eventually be pressed to increase the density and then be infiltrated with a second phase, providing multilayered, lamellar complex composites with a microstructure reminiscent of nacre. The composites exhibit a marked crack deflection during crack propagation, enhancing the damage resistance of the materials, offering an interesting trade-off of strength and toughness.Freezing as a path to build complex composites has turned out to be a rich line of research and development. Understanding and controlling the freezing routes and associated phenomena has become a multidisciplinary endeavor. A step forward in the complexity was achieved with the use of anisotropic particles. Ice-induced segregation and alignment of platelets can yield dense, inorganic composites (nacre-like alumina) with a complex architecture and microstructure, replicating several of the morphological features of nacre. Now, a different class of complex composites is quickly arising: engineered living materials, developed in the soft matter and biology communities. The material-agnostic nature of the freezing routes, the use of an aqueous system, the absence of organic solvents, and the low temperatures being used are all strong assets for the development of such complex composites. More complex building blocks, such as cells or bacteria, can be frozen. Understanding the fundamental mechanisms controlling the interactions between the ice crystals and the objects as well as the interactions between the soft objects themselves and their fate is essential in this context.In this Account, we highlight our efforts over the past decade to achieve the controlled synthesis of nacre-like composites and understand the associated processes and properties. We describe the unique hierarchical and chemical structure of nacre and the fabrication strategies for processing nacre-like composites. We also try to explain why natural materials work so well and see how we can implement these lessons in synthetic composites. Finally, we provide an outlook on the new trends and ongoing challenges in this field. We hope that this Account will inspire future developments in the field of ice templating and bioinspired materials.
Collapse
Affiliation(s)
- Sylvain Deville
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Antoni P. Tomsia
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Sylvain Meille
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS UMR 5510, 69621 Villeurbanne, France
| |
Collapse
|
154
|
Chen Y, Dang B, Fu J, Zhang J, Liang H, Sun Q, Zhai T, Li H. Bioinspired Construction of Micronano Lignocellulose into an Impact Resistance "Wooden Armor" With Bouligand Structure. ACS NANO 2022; 16:7525-7534. [PMID: 35499235 DOI: 10.1021/acsnano.1c10725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The demand for advanced safeguards has increased with a rise in terrorism and international conflicts. Traditional impact-resistant glass and ceramics have relatively high performance but have several drawbacks as well, such as inflexibility, heaviness, and high processing energy consumption. Herein, we propose sustainable lignocellulosic duplicates: the Pirarucu scale-inspired structures that can serve as "wood armor" with impressive damage tolerance. By accurately assembling a rigid laminated lignocellulose, with a soft shear-thickened fluid interlayer, into a Bouligand-like structure, the artificial wooden armor exhibits a 10-fold increase in impact resistance. This observation is similar to that of typical engineering materials (e.g., ceramics, glass, and alloys). However, our proposed material structure has the capability of blocking the enormous impact of a bullet while notably having approximately half the density of typical engineering materials. The high durability and damage resistance of wooden armor effectively prevents catastrophic damage when it is impacted upon. The design strategy presents a method for lightweight, high-performance, and sustainable bioinspired materials for special security applications.
Collapse
Affiliation(s)
- Yipeng Chen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinzhou Fu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayi Zhang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Haoyue Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingfeng Sun
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Research Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Research Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
155
|
Yu Y, Kong K, Tang R, Liu Z. A Bioinspired Ultratough Composite Produced by Integration of Inorganic Ionic Oligomers within Polymer Networks. ACS NANO 2022; 16:7926-7936. [PMID: 35482415 DOI: 10.1021/acsnano.2c00663] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nacre-inspired laminates are promising materials for their excellent mechanics. However, the interfacial defects between organic-inorganic phases commonly lead to the crack propagation and fracture failure of these materials under stress. A natural biomineral, bone, has much higher bending toughness than the nacre. The small size of inorganic building units in bone improves the organic-inorganic interaction, which optimizes the material toughness. Inspired by these biological structures, here, an ultratough nanocomposite laminate is prepared by the integration of ultrasmall calcium phosphate oligomers (CPO, 1 nm in diameter) within poly(vinyl alcohol) (PVA) and sodium alginate (Alg) networks through a simple three-step strategy. Owing to the small size of inorganic building units, strong multiple molecular interactions within integrated organic-inorganic hierarchical structure are built. The resulting laminates exhibit ultrahigh bending strain (>50% without fracture) and toughness (21.5-31.0 MJ m-3), which surpass natural nacre and almost all of the synthetic laminate materials that have been reported so far. Moreover, the mechanics of this laminate is tunable by changing the water content within the bulk structure. This work provides a way for the development of organic-inorganic nanocomposites with ultrahigh bending toughness by using inorganic ionic oligomers, which can be useful in the fields of tough protective materials and energy absorbing materials.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
156
|
Huang W, Montroni D, Wang T, Murata S, Arakaki A, Nemoto M, Kisailus D. Nanoarchitected Tough Biological Composites from Assembled Chitinous Scaffolds. Acc Chem Res 2022; 55:1360-1371. [PMID: 35467343 DOI: 10.1021/acs.accounts.2c00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusOver hundreds of millions of years, organisms have derived specific sets of traits in response to common selection pressures that serve as guideposts for optimal biological designs. A prime example is the evolution of toughened structures in disparate lineages within plants, invertebrates, and vertebrates. Extremely tough structures can function much like armor, battering rams, or reinforcements that enhance the ability of organisms to win competitions, find mates, acquire food, escape predation, and withstand high winds or turbulent flow. From an engineering perspective, biological solutions are intriguing because they must work in a multifunctional context. An organism rarely can be optimally designed for only one function or one environmental condition. Some of these natural systems have developed well-orchestrated strategies, exemplified in the biological tissues of numerous animal and plant species, to synthesize and construct materials from a limited selection of available starting materials. The resulting structures display multiscale architectures with incredible fidelity and often exhibit properties that are similar, and frequently superior, to mechanical properties exhibited by many engineered materials. These biological systems have accomplished this feat through the demonstrated ability to tune size, morphology, crystallinity, phase, and orientation of minerals under benign processing conditions (i.e., near-neutral pH, room temperature, etc.) by establishing controlled synthesis and hierarchical 3D assembly of nano- to microscaled building blocks. These systems utilize organic-inorganic interactions and carefully controlled microenvironments that enable kinetic control during the synthesis of inorganic structures. This controlled synthesis and assembly requires orchestration of mineral transport and nucleation. The underlying organic framework, often consisting of polysaccharides and polypeptides, in these composites is critical in the spatial and temporal regulation of these processes. In fact, the organic framework is used not only to provide transport networks for mineral precursors to nucleation sites but also to precisely guide the formation and phase development of minerals and significantly improve the mechanical performance of otherwise brittle materials.Over the past 15 years, we have focused on a few of these extreme performing organisms, (Wang , Adv. Funct. Mater. 2013, 23, 2908; Weaver , Science 2012, 336, 1275; Huang , Nat. Mater. 2020, 19, 1236; Rivera , Nature 2020, 586, 543) investigating not only their ultrastructural features and mechanical properties but in some cases, how these assembled structures are mineralized. In specific instances, comparative analyses of multiscale structures have pinpointed which design principles have arisen convergently; when more than one evolutionary path arrives at the same solution, we have a good indication that it is the best solution. This is required for survival under extreme conditions. Indeed, we have found that there are specific architectural features that provide an advantage toward survival by enabling the ability to feed effectively or to survive against predatory attacks. In this Account, we describe 3 specific design features, nanorods, helicoids, and nanoparticles, as well as the interfaces in fiber-reinforced biological composites. We not only highlight their roles in the specific organisms but also describe how controlled syntheses and hierarchical assembly using organic (i.e., often chitinous) scaffolds lead to these integrated macroscale structures. Beyond this, we provide insight into multifunctionality: how nature leverages these existing structures to potentially add an additional dimension toward their utility and describe their translation to biomimetic materials used for engineering applications.
Collapse
Affiliation(s)
- Wei Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Devis Montroni
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Taifeng Wang
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Michiko Nemoto
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
157
|
Xu Z, Wu M, Gao W, Bai H. A sustainable single-component "Silk nacre". SCIENCE ADVANCES 2022; 8:eabo0946. [PMID: 35559674 PMCID: PMC9106289 DOI: 10.1126/sciadv.abo0946] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 05/31/2023]
Abstract
Synthetic composite materials constructed by hybridizing multiple components are typically unsustainable due to inadequate recyclability and incomplete degradation. In contrast, biological materials like silk and bamboo assemble pure polymeric components into sophisticated multiscale architectures, achieving both excellent performance and full degradability. Learning from these natural examples of bio-based "single-component" composites will stimulate the development of sustainable materials. Here, we report a single-component "Silk nacre," where nacre's typical "brick-and-mortar" structure has been replicated with silk fibroin only and by a facile procedure combining bidirectional freezing, water vapor annealing, and densification. The biomimetic design endows the Silk nacre with mechanical properties superior to those of homogeneous silk material, as well as to many frequently used polymers. In addition, the Silk nacre shows controllable plasticity and complete biodegradability, representing an alternative substitute to conventional composite materials.
Collapse
Affiliation(s)
- Zongpu Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingrui Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Gao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
158
|
Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. SOFT MATTER 2022; 18:3447-3464. [PMID: 35470362 DOI: 10.1039/d2sm00265e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of adhesion has revealed a significant impact on numerous applications such as wound healing, drug delivery, electrically conductive adhesive, dental adhesive, and wood industry. Nanotechnology has continued to be the primary means to achieve adhesion. Among them, biological systems based on the unique structure of the nano-levels have developed excellent adhesion capabilities after billions of years of evolution and natural selection. Therefore, the research on bionic adhesion inspired by biological systems has gradually emerged. This review firstly focuses on the mechanism of adhesion, and secondly reports the effects of different nanomaterials on adhesion properties. Then based on the structure of mussels, geckos, tree frogs, octopuses, and other organisms, the research progress of biomimetic nanotechnology to achieve adhesion is summarized. Finally, the applications, challenges, and future directions of nanotechnology in new adhesive materials are provided.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
- School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
159
|
Zhang C, Li Q, Wang T, Miao Y, Qi J, Sui Y, Meng Q, Wei F, Zhu L, Zhang W, Cao P. An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics potassium ion capacitors. NANOSCALE 2022; 14:6339-6348. [PMID: 35411905 DOI: 10.1039/d2nr01110g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potassium-ion capacitors (PICs) have drawn appreciable attention because PICs can masterly integrate the virtues of the high energy density of battery-type anode and high power density of capacitor-type cathode. However, the sanguine scenario involves the incompatible capacity and sluggish kinetics in the PIC device. Herein, we report the synthesis of nitrogen and phosphorus-doped network porous carbon materials (NPMCs) via a self-sacrifice template strategy, which possesses a desired three-dimensional structure and prosperous electrochemical properties for K+ storage capacity. The obtained hierarchical porous carbon delivers a high reversible capacity of 420 mA h g-1 at 0.05 A g-1 and good cycling performance owing to its high concentration of reversible carbon defects and strong charge transfer kinetics. As expected, an advanced PIC device was assembled with a working voltage as high as 4.5 V, delivering an extraordinary energy density of 81.6 W h kg-1 as well as a splendid long life. Systematic characterization analysis combined with density functional theory calculations indicates that the strategy for preparing PIC devices with outstanding performance in this work can provide new insights for the development of PICs for an extensive range of applications.
Collapse
Affiliation(s)
- Chenchen Zhang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Tongde Wang
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yidong Miao
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Jiqiu Qi
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Yanwei Sui
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Qingkun Meng
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Fuxiang Wei
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Lei Zhu
- Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Wen Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Peng Cao
- Department of Chemical & Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
160
|
Wang Y, Dai B, Ma C, Zhang Q, Huang K, Luo X, Liu X, Ying Y, Xie L. Cross-Wavelength Hierarchical Metamaterials Enabled for Trans-Scale Molecules Detection Simultaneously. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105447. [PMID: 35261180 PMCID: PMC9069183 DOI: 10.1002/advs.202105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Metamaterials have attracted increasing attention in sensing applications. However, the critical feature sizes of meta-atom span several orders of magnitude in length scale, almost all the metamaterials are designed to operate at limited bands. It is challenging for a single type of meta-atom with ultra-broadband adaptability. Inspired by the natural hierarchical architectures, herein, the authors introduce a new constructing scheme of cross-wavelength hierarchical metamaterials with a single type of meta-atom that can realize enhancement of terahertz (THz) resonance and surface-enhanced Raman scattering (SERS) at the same time. By combining multiple subwavelength structures at different hierarchical levels into a single meta-atom, the obtained metamaterial can operate in two frequencies and realize multiple functionalities. Armed with this hierarchical metamaterial, detecting analytes as small as sub-nanoscale chemical molecules or as big as microscale biomolecules simultaneously can be realized in one single metamaterial for the first time. As a proof-of-concept example, a smart sensory packaging is developed, which allowed them to real-time monitor the kinetic growth of pathogenic bacteria and their metabolites in food without opening the packaging. They believe that their work will provide a valuable example that satisfies the unmet need for multiscale functional meta-devices.
Collapse
Affiliation(s)
- Yingli Wang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Benhui Dai
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Chan Ma
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Qi Zhang
- Department of PhysicsNanjing UniversityNanjing210008China
| | - Kang Huang
- School of Chemical SciencesThe University of AucklandAuckland1142New Zealand
| | - Xuan Luo
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Yibin Ying
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Lijuan Xie
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
161
|
Solidification of uranium mill tailings by MBS-MICP and environmental implications. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
162
|
Ping H, Wagermaier W, Horbelt N, Scoppola E, Li C, Werner P, Fu Z, Fratzl P. Mineralization generates megapascal contractile stresses in collagen fibrils. Science 2022; 376:188-192. [PMID: 35389802 DOI: 10.1126/science.abm2664] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During bone formation, collagen fibrils mineralize with carbonated hydroxyapatite, leading to a hybrid material with excellent properties. Other minerals are also known to nucleate within collagen in vitro. For a series of strontium- and calcium-based minerals, we observed that their precipitation leads to a contraction of collagen fibrils, reaching stresses as large as several megapascals. The magnitude of the stress depends on the type and amount of mineral. Using in-operando synchrotron x-ray scattering, we analyzed the kinetics of mineral deposition. Whereas no contraction occurs when the mineral deposits outside fibrils only, intrafibrillar mineralization generates fibril contraction. This chemomechanical effect occurs with collagen fully immersed in water and generates a mineral-collagen composite with tensile fibers, reminiscent of the principle of reinforced concrete.
Collapse
Affiliation(s)
- Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nils Horbelt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Chenghao Li
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road No. 122, Wuhan 430070, China
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
163
|
Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C. Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105727. [PMID: 35182053 PMCID: PMC9036007 DOI: 10.1002/advs.202105727] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that involves excess reactive oxygen species (ROS) and osteochondral defects. Although multiple approaches have been developed for osteochondral regeneration, how to balance the biochemical and physical microenvironment in OA remains a big challenge. In this study, a bioceramic scaffold by 3D printed akermanite (AKT) integrated with hair-derived antioxidative nanoparticles (HNPs)/microparticles (HMPs) for ROS scavenging and osteochondral regeneration has been developed. The prepared bioscaffold with multi-mimetic enzyme effects, which can scavenge a broad spectrum of free radicals in OA, can protect chondrocytes under the ROS microenvironment. Importantly, the bioscaffold can distinctly stimulate the proliferation and maturation of chondrocytes due to the stimulation of the glucose transporter pathway (GLUT) via HNPs/HMPs. Furthermore, it significantly accelerated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo results showed that the bioscaffold can effectively enhance the osteochondral regeneration compared to the unmodified scaffold. The work shows that integration of antioxidant and mechanical properties via the bioscaffold is a promising strategy for osteochondral regeneration in OA treatment.
Collapse
Affiliation(s)
- Cuijun Deng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Quan Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Haotian Chen
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Chang Xu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Qishuai Feng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Feng Yin
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| |
Collapse
|
164
|
Dörres T, Bartkiewicz M, Herrmann K, Schöttle M, Wagner D, Wang Z, Ikkala O, Retsch M, Fytas G, Breu J. Nanoscale-Structured Hybrid Bragg Stacks with Orientation- and Composition-Dependent Mechanical and Thermal Transport Properties: Implications for Nacre Mimetics and Heat Management Applications. ACS APPLIED NANO MATERIALS 2022; 5:4119-4129. [PMID: 35372797 PMCID: PMC8961742 DOI: 10.1021/acsanm.2c00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 05/10/2023]
Abstract
Layered nanomaterials fascinate researchers for their mechanical, barrier, optical, and transport properties. Nacre is a biological example thereof, combining excellent mechanical properties by aligned submicron inorganic platelets and nanoscale proteinic interlayers. Mimicking nacre with advanced nanosheets requires ultraconfined organic layers aimed at nacre-like high reinforcement fractions. We describe inorganic/polymer hybrid Bragg stacks with one or two fluorohectorite clay layers alternating with one or two poly(ethylene glycol) layers. As indicated by X-ray diffraction, perfect one-dimensional crystallinity allows for homogeneous single-phase materials with up to a 84% clay volume fraction. Brillouin light spectroscopy allows the exploration of ultimate mechanical moduli without disturbance by flaws, suggesting an unprecedentedly high Young's modulus of 162 GPa along the aligned clays, indicating almost ideal reinforcement under these conditions. Importantly, low heat conductivity is observed across films, κ⊥ = 0.11-0.15 W m-1 K-1, with a high anisotropy of κ∥/κ⊥ = 28-33. The macroscopic mechanical properties show ductile-to-brittle change with an increase in the clay volume fraction from 54% to 70%. Conceptually, this work reveals the ultimate elastic and thermal properties of aligned layered clay nanocomposites in flaw-tolerant conditions.
Collapse
Affiliation(s)
- Theresa Dörres
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | | | - Kai Herrmann
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Marius Schöttle
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Daniel Wagner
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - Zuyuan Wang
- School of
Mechanical and Electrical Engineering, University
of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, P.O. Box 15100, Espoo FI-00076, Finland
| | - Markus Retsch
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Josef Breu
- Bavarian
Polymer Institute (BPI) and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95440, Germany
| |
Collapse
|
165
|
Insight into Crystallization Features of MOR Zeolite Synthesized via Ice-Templating Method. Catalysts 2022. [DOI: 10.3390/catal12030301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hydrothermal, solvothermal or ionothermal routes are usually employed for the synthesis of zeolite, which is often accompanied by a high energy consumption, high cost and low efficiency. We have developed a novel route for the rapid and high yield synthesis of mordenite (MOR) zeolite via an ice-templating method. In comparison with traditional hydrothermal synthesis, not only the high yield, but also the superior crystallinity, large reduction in water level and reaction pressure, simple device and conventional silica sources by this route can have great potential for the commercial production of pure MOR zeolite. Moreover, the changed bonding environment of silicon atoms in MOR zeolite, that is, a relative decrease in the tetrahedrally coordinated Si–O–Si bond, and accordingly, an increase in the T–OH (T = Si, Al) groups and Si–O–Al sites, remarkably enhances its acid strength.
Collapse
|
166
|
Meng YF, Zhu YB, Zhou LC, Meng XS, Yang YL, Zhao R, Xia J, Yang B, Lu YJ, Wu HA, Mao LB, Yu SH. Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108267. [PMID: 34957604 DOI: 10.1002/adma.202108267] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The high fracture toughness of mollusk nacre is predominantly attributed to the structure-associated extrinsic mechanisms such as platelet sliding and crack deflection. While the nacre-mimetic structures are widely adopted in artificial ceramics, the extrinsic mechanisms are often weakened by the relatively low tensile strength of the platelets with a large aspect ratio, which makes the fracture toughness of these materials much lower than expected. Here, it is demonstrated that the fracture toughness of artificial nacre materials with high inorganic contents can be improved by residual stress-induced platelet strengthening, which can catalyze more effective extrinsic toughening mechanisms that are specific to the nacre-mimetic structures. Thereby, while the absolute fracture toughness of the materials is not comparable with advanced ceramic-based composites, the toughness amplification factor of the material reaches 16.1 ± 1.1, outperforming the state-of-the-art biomimetic ceramics. The results reveal that, with the merit of nacre-mimetic structural designs, the overall fracture toughness of the artificial nacre can be improved by the platelet strengthening through extrinsic toughening mechanisms, although the intrinsic fracture toughness may decrease at platelet level due to the strengthening. It is anticipated that advanced structural ceramics with exceeding performance can be fabricated through these unconventional strategies.
Collapse
Affiliation(s)
- Yu-Feng Meng
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Li-Chuan Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xiang-Sen Meng
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Ran Zhao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Bo Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Jie Lu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Li-Bo Mao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
167
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
168
|
Zhao D, Pang B, Zhu Y, Cheng W, Cao K, Ye D, Si C, Xu G, Chen C, Yu H. A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107857. [PMID: 34964189 DOI: 10.1002/adma.202107857] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/16/2021] [Indexed: 05/23/2023]
Abstract
In nature, stiffness-changing behavior is essential for living organisms, which, however, is challenging to achieve in synthetic materials. Here, a stiffness-changing smart material, through developing interchangeable supramolecular configurations inspired from the dermis of the sea cucumber, which shows extreme, switchable mechanical properties, is reported. In the hydrated state, the material, possessing a stretched, double-stranded supramolecular network, showcases a soft-gel behavior with a low stiffness and high pliability. Upon the stimulation of ethanol to transform into the coiled supramolecular configuration, it self-adjusts to a hard state with nearly 500-times enhanced stiffness from 0.51 to 243.6 MPa, outstanding load-bearing capability (over 35 000 times its own weight), and excellent puncture/impact resistance with a specific impact strength of ≈116 kJ m-2 (g cm-3 )-1 (higher than some metals and alloys such as aluminum, and even comparable to the commercially available protective materials such as D3O and Kevlar). Moreover, this material demonstrates reconfiguration-dependent self-healing behavior and designable formability, holding great promise in advanced engineering fields that require both high-strength durability and good formability. This work may open up a new perspective for the development of self-regulating materials from supramolecular-scale configuration regulation.
Collapse
Affiliation(s)
- Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Bo Pang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kaiyue Cao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Dongdong Ye
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
169
|
Abstract
The lightweight and high-strength functional nanocomposites are important in many practical applications. Natural biomaterials with excellent mechanical properties provide inspiration for improving the performance of composite materials. Previous studies have usually focused on the bionic design of the material's microstructure, sometimes overlooking the importance of the interphase in the nanocomposite system. In this Perspective, we will focus on the construction and control of the interphase in confined space and the connection between the interphase and the macroscopic properties of the materials. We shall survey the current understanding of the critical size of the interphase and discuss the general rules of interphase formation. We hope to raise awareness of the interphase concept and encourage more experimental and simulation studies on this subject, with the aim of an optimal design and controllable preparation of polymer nanocomposite materials.
Collapse
Affiliation(s)
- Jin Huang
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People’s Republic
of China
| | - Jiajia Zhou
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, People’s Republic of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Mingjie Liu
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
| |
Collapse
|
170
|
Pan ZZ, Lv W, Yang QH, Nishihara H. Aligned Macroporous Monoliths by Ice-Templating. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Wei Lv
- Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Institute of Multidisciplinary Research for Advance Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
171
|
Mao LB, Yu SH. Detecting and curing the voids in nacre-inspired layered MXene films. Sci Bull (Beijing) 2022; 67:347-349. [PMID: 36546084 DOI: 10.1016/j.scib.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
172
|
Protein-assisted biomimetic synthesis of nanoscale gadolinium-integrated polypyrrole for synergetic and ultrasensitive electrochemical assays of nicardipine in biological samples. Anal Chim Acta 2022; 1199:339567. [DOI: 10.1016/j.aca.2022.339567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/01/2023]
|
173
|
Wu K, Song Y, Zhang X, Zhang S, Zheng Z, Gong X, He L, Yao H, Ni Y. A Prestressing Strategy Enabled Synergistic Energy-Dissipation in Impact-Resistant Nacre-Like Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104867. [PMID: 35023329 PMCID: PMC8867135 DOI: 10.1002/advs.202104867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Indexed: 05/22/2023]
Abstract
The application of prestresses is a valuable strategy for enhancing the overall mechanical performances of structural materials. Residual stresses, acting as prestresses, exist naturally in biological structural materials, such as the nacre with the 3D "brick-and-mortar" arrangement. Although regulation of the tablets sliding has recently been demonstrated to be vital to improve toughness in synthetic nacre-like structures, the effects of prestresses on the tablets-sliding mechanism in these nacre-like structures remain unclear. Here, by a combination of simulation, additive manufacturing, and drop tower testing the authors reveal that, at a critical prestress, synergistic effects between the prestress-enhanced tablets sliding and prestress-weakened structural integrality result in optimized impact resistance of nacre-like structures. Furthermore, the prestressing strategy is easily implemented to a designed nacre-inspired separator to enhance the impact resistance of lithium batteries. The findings demonstrate that the prestressing strategy combined with bioinspired architectures can be exploited for enhancing the impact resistance of engineering structural materials and energy storage devices.
Collapse
Affiliation(s)
- Kaijin Wu
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yonghui Song
- Division of Nanomaterials and ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Shuaishuai Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhijun Zheng
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Linghui He
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Hong‐Bin Yao
- Division of Nanomaterials and ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryInstitute of Biomimetic Materials & ChemistryUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yong Ni
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
174
|
Poloni E, Rafsanjani A, Place V, Ferretti D, Studart AR. Stretchable Soft Composites with Strain-Induced Architectured Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104874. [PMID: 34632656 DOI: 10.1002/adma.202104874] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Colors enable interaction and communication between living species in a myriad of biological and artificial environments. While living organisms feature low-power mechanisms to dynamically control color in soft tissues, man-made color-changing devices remain predominantly rigid and energy intensive. Here, architectured composites that display striking color changes when stretched in selective directions under ambient light with minimum power input are reported. The orientation-dependent color change results from the rotation of reflective coated platelets that are embedded in a soft polymer matrix and pre-aligned in a well-defined architecture. The light reflected by the platelets generates structural color defined by the oxide coating on the platelet surface. By magnetically programming the initial orientation and spatial distribution of selected platelets within the soft matrix, composites with strain-modulated color-changing effects that cannot be achieved using state-of-the-art technologies are created. The proposed concept of strain-induced architectured color can be harnessed to develop low-power smart stretchable displays, tactile synthetic skins, and autonomous soft robotic devices that undergo fast and reversible color changes through the mechano-optic coupling programmed within their soft composite architecture.
Collapse
Affiliation(s)
- Erik Poloni
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Ahmad Rafsanjani
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Vadim Place
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - David Ferretti
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
175
|
A Collagen(Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
176
|
Liang X, Chen G, Lin S, Zhang J, Wang L, Zhang P, Lan Y, Liu J. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107106. [PMID: 34888962 DOI: 10.1002/adma.202107106] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m-2 along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as ≈100-300 J m-2 , making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m-2 along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches.
Collapse
Affiliation(s)
- Xiangyu Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangda Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiajun Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Wang
- Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Lan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, U.K
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
177
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
178
|
Ning Y, Armes SP, Li D. Polymer-Inorganic Crystalline Nanocomposite Materials via Nanoparticle Occlusion. Macromol Rapid Commun 2022; 43:e2100793. [PMID: 35078274 DOI: 10.1002/marc.202100793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Indexed: 11/10/2022]
Abstract
Efficient occlusion of guest nanoparticles into host single crystals opens up a straightforward and versatile way to construct functional crystalline nanocomposites. This new technique has attracted increasing research interest because it enables the composition, structure and property of the resulting nanocomposites to be well-controlled. In this review article, we aim to provide a comprehensive summary of nanoparticle occlusion within inorganic crystals. First, we summarize recently-developed strategies for the occlusion of various colloidal particles (e.g., diblock copolymer nanoparticles, polymer-modified inorganic nanoparticles, oil droplets, etc.) within host crystals (e.g., CaCO3 , ZnO or ZIF-8). Second, new results pertaining to spatially-controlled occlusion and the physical mechanism of nanoparticle occlusion are briefly discussed. Finally, we highlight the physicochemical properties and potential applications of various functional nanocomposite crystals constructed via nanoparticle occlusion and we also offer our perspective on the likely future for this research topic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin Ning
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Dan Li
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
179
|
Zhang X, Zou L, Chen J, Dai P, Pan J. Design and Preparation of CNTs/Mg Layered Composites. MATERIALS 2022; 15:ma15030864. [PMID: 35160809 PMCID: PMC8836932 DOI: 10.3390/ma15030864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022]
Abstract
In order to effectively solve the problem of strength and ductility mismatch of magnesium (Mg) matrix composites, carbon nanotubes (CNTs) are added as reinforcement. However, it is difficult to uniformly disperse CNTs in a metal matrix to form composites. In this paper, electrophoretic deposition (EPD) was used to obtain layered units, and then the CNTs/Mg layered units were sintered by spark plasma sintering to synthesize layered CNTs/Mg composites. The deposition morphology of the layered units obtained by EPD and the microstructure, damping properties, and mechanical properties of the composite material were analyzed. The results show that the strength and ductility of the composite sample sintered at 590 °C were improved compared with the layered pure Mg and the composite sample sintered at 600 °C. Compared with pure Mg, the composites rolled by 40% had a much higher strength but no significant decrease in ductility. The damping properties of the CNTs/Mg composites were tested. The damping–test-temperature curve (tanδ~T) rose gradually with increasing temperature in the range of room temperature to 350 °C, and two internal friction peaks appeared. The damping properties of the tested composites at room temperature decreased with increasing frequency. The layered structure of the CNTs/Mg had ultra-high strengthening efficiency and maintained its ductility. The layered units prepared by EPD can uniformly disperse the CNTs in the composites.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, University Town, Fuzhou City 350118, China; (X.Z.); (P.D.); (J.P.)
| | - Linchi Zou
- College of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, University Town, Fuzhou City 350118, China; (X.Z.); (P.D.); (J.P.)
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, 3 Xueyuan Road, University Town, Fuzhou City 350118, China
- Correspondence: (L.Z.); (J.C.); Tel.: +86-153-0590-4017 (L.Z.); +86-186-9572-7617 (J.C.)
| | - Junfeng Chen
- School of Materials Science and Engineering, Qishan Campus, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou City 350116, China
- Correspondence: (L.Z.); (J.C.); Tel.: +86-153-0590-4017 (L.Z.); +86-186-9572-7617 (J.C.)
| | - Pinqiang Dai
- College of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, University Town, Fuzhou City 350118, China; (X.Z.); (P.D.); (J.P.)
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, 3 Xueyuan Road, University Town, Fuzhou City 350118, China
| | - Jian Pan
- College of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, University Town, Fuzhou City 350118, China; (X.Z.); (P.D.); (J.P.)
| |
Collapse
|
180
|
Zhao D, Zhang W, Chen ZZ. Viscoelasticity Investigation of Semiconductor NP (CdS and PbS) Controlled Biomimetic Nanoparticle Hydrogels. Front Chem 2022; 9:816944. [PMID: 35127655 PMCID: PMC8807550 DOI: 10.3389/fchem.2021.816944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
The viscoelastic properties of colloidal nanoparticles (NPs) make opportunities to construct novel compounds in many different fields. The interparticle forces of inorganic particles on colloidal NPs are important for forming a mechanically stable particulate network especially the NP-based soft matter in the self-assembly process. Here, by capping with the same surface ligand L-glutathione (GSH), two semiconductor NP (CdS and PbS) controlled biomimetic nanoparticle hydrogels were obtained, namely, CdS@GSH and PbS@GSH. The dependence of viscoelasticity of colloidal suspensions on NP sizes, concentrations, and pH value has been investigated. The results show that viscoelastic properties of CdS@GSH are stronger than those of PbS@GSH because of stronger surface bonding ability of inorganic particles and GSH. The hydrogels formed by the smaller NPs demonstrate the higher stiffness due to the drastic change of GSH configurations. Unlike the CdS@GSH hydrogel system, the changes of NP concentrations and pH value had great influence on the PbS@GSH hydrogel system. The higher the proportion of water in the small particle size PbS@GSH hydrogel system, the greater the mechanical properties. The stronger the alkalinity in the large particle size PbS@GSH hydrogel system, the greater the hardness and storage modulus. Solution˗state nuclear magnetic resonance (NMR) indicated that the ligand GSH forms surface layers with different thickness varying from different coordination modes which are induced by different semiconductor NPs. Moreover, increasing the pH value of the PbS@GSH hydrogel system will dissociate the surface GSH molecules to form Pb2+ and GSH complexes which could enhance the viscoelastic properties.
Collapse
Affiliation(s)
- Dan Zhao
- School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Dan Zhao, ; Zhi-Zhou Chen,
| | - Wang Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhi-Zhou Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
- *Correspondence: Dan Zhao, ; Zhi-Zhou Chen,
| |
Collapse
|
181
|
Abstract
Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.
Collapse
|
182
|
yao Y, Guan D, zhang C, Liu J, zhu X, Huang T, Liu J, Cui H, Lin JX, Tang K, Li F. Silkworm spinning inspired 3D printing towards high strength scaffold for bone regeneration. J Mater Chem B 2022; 10:6946-6957. [DOI: 10.1039/d2tb01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the silkworm spinning process for production of tough cocoon, a gradient printing-assembly technique with silk fibroin (SF) and hydroxyapatite (HA) to achieve high strength scaffold for bone regeneration...
Collapse
|
183
|
Liu X, Li B, Wang W, Li Z, Xiong Q. Hydrogels with both mechanical strength and luminescence anisotropy. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01050j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How to produce luminescent materials with anisotropic emission properties in a universal manner remains an open issue. We here report a range of hydrogels with both anisotropic mechanical strength and...
Collapse
|
184
|
Wang M, Deng H, Jiang T, Wang Y. Biomimetic remineralization of human dentine via a “bottom-up” approach inspired by nacre formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112670. [DOI: 10.1016/j.msec.2022.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 11/29/2022]
|
185
|
Yang Y, Wang Z, He Q, Li X, Lu G, Jiang L, Zeng Y, Bethers B, Jin J, Lin S, Xiao S, Zhu Y, Wu X, Xu W, Wang Q, Chen Y. 3D Printing of Nacre-Inspired Structures with Exceptional Mechanical and Flame-Retardant Properties. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9840574. [PMID: 35169712 PMCID: PMC8817185 DOI: 10.34133/2022/9840574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Flame-retardant and thermal management structures have attracted great attention due to the requirement of high-temperature exposure in industrial, aerospace, and thermal power fields, but the development of protective fire-retardant structures with complex shapes to fit arbitrary surfaces is still challenging. Herein, we reported a rotation-blade casting-assisted 3D printing process to fabricate nacre-inspired structures with exceptional mechanical and flame-retardant properties, and the related fundamental mechanisms are studied. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) modified boron nitride nanoplatelets (BNs) were aligned by rotation-blade casting during the 3D printing process to build the "brick and mortar" architecture. The 3D printed structures are more lightweight, while having higher fracture toughness than the natural nacre, which is attributed to the crack deflection, aligned BN (a-BNs) bridging, and pull-outs reinforced structures by the covalent bonding between TMSPMA grafted a-BNs and polymer matrix. Thermal conductivity is enhanced by 25.5 times compared with pure polymer and 5.8 times of anisotropy due to the interconnection of a-BNs. 3D printed heat-exchange structures with vertically aligned BNs in complex shapes were demonstrated for efficient thermal control of high-power light-emitting diodes. 3D printed helmet and armor with a-BNs show exceptional mechanical and fire-retardant properties, demonstrating integrated mechanical and thermal protection.
Collapse
Affiliation(s)
- Yang Yang
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Ziyu Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing He
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Xiangjia Li
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
- Epstein Department of Industrial and Systems Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Brandon Bethers
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jie Jin
- Epstein Department of Industrial and Systems Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA
- ShadeCraft Robotics Inc., Pasadena, CA 91105, USA
| | - Shuang Lin
- Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089, USA
| | - Siqi Xiao
- Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089, USA
| | - Yizhen Zhu
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E Tyler Mall, Tempe, AZ 85281, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xianke Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Wenwu Xu
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
186
|
Rizwan M, Basirun WJ, Razak BA, Alias R. Bioinspired ceramics for bone tissue applications. CERAMIC SCIENCE AND ENGINEERING 2022:111-143. [DOI: 10.1016/b978-0-323-89956-7.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
187
|
Wu Y, Liang Y, Mei C, Cai L, Nadda A, Le QV, Peng Y, Lam SS, Sonne C, Xia C. Advanced nanocellulose-based gas barrier materials: Present status and prospects. CHEMOSPHERE 2022; 286:131891. [PMID: 34416587 DOI: 10.1016/j.chemosphere.2021.131891] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose based gas barrier materials have become an increasingly important subject, since it is a widespread environmentally friendly natural polymer. Previous studies have shown that super-high gas barrier can be achieved with pure and hierarchical nanocellulose films fabricated through simple suspension or layer-by-layer technique either by itself or incorporating with other polymers or nanoparticles. Improved gas barrier properties were observed for nanocellulose-reinforced composites, where nanocellulose partially impermeable nanoparticles decreased gas permeability effectively. However, for nanocellulose-based materials, the higher gas barrier performance is jeopardized by water absorption and shape deformation under high humidity conditions which is a challenge for maintaining properties in material applications. Thus, numerous investigations have been done to solve the problem of water absorption in nanocellulose-based materials. In this literature review, gas barrier properties of pure, layer-by-layer and composite nanocellulose films are investigated. The possible theoretical gas barrier mechanisms are described, and the prospects for nanocellulose-based materials are discussed.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Yunyi Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Yucheng Peng
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
188
|
Chen C, Qian J, Chen H, Zhang H, Yang L, Jiang X, Zhang X, Li X, Ma J, Sun D. Molecular Origin of the Biologically Accelerated Mineralization of Hydroxyapatite on Bacterial Cellulose for More Robust Nanocomposites. NANO LETTERS 2021; 21:10292-10300. [PMID: 34846904 DOI: 10.1021/acs.nanolett.1c03411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomineralization generates hierarchically structured minerals with vital biological functions in organisms. This strategy has been adopted to construct complex architectures to achieve similar functionalities, mostly under chemical environments mimicking biological components. The molecular origin of the biofacilitated mineralization process is elusive. Herein, we describe the mineralization of hydroxyapatite (HAp) accompanying the biological secretion of nanocellulose by Acetobacter xylinum. In comparison with mature cellulose, the newly biosynthesized cellulose molecules greatly accelerate the nucleation rate and facilitate the uniform distribution of HAp crystals, thereby generating composites with a higher Young modulus. Both simulations and experiments indicate that the biological metabolism condition allows the easier capture of calcium ions by the more abundant hydroxyl groups on the glucan chain before the formation of hydrogen bonding, for the subsequent growth of HAp crystals. Our work provides more insights into the biologically accelerated mineralization process and presents a different methodology for the generation of biomimetic nanocomposites.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Hongwei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Lei Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xiaohong Jiang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xiaoyu Li
- Department of Polymer Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| |
Collapse
|
189
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
190
|
Zhang X, Ma Y, Wan J, Yuan J, Wang D, Wang W, Sun X, Meng Q. Biomimetic Nanomaterials Triggered Ferroptosis for Cancer Theranostics. Front Chem 2021; 9:768248. [PMID: 34869212 PMCID: PMC8635197 DOI: 10.3389/fchem.2021.768248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, as a recently discovered non-apoptotic programmed cell death with an iron-dependent form, has attracted great attention in the field of cancer nanomedicine. However, many ferroptosis-related nano-inducers encountered unexpected limitations such as immune exposure, low circulation time, and ineffective tumor targeting. Biomimetic nanomaterials possess some unique physicochemical properties which can achieve immune escape and effective tumor targeting. Especially, certain components of biomimetic nanomaterials can further enhance ferroptosis. Therefore, this review will provide a comprehensive overview on recent developments of biomimetic nanomaterials in ferroptosis-related cancer nanomedicine. First, the definition and character of ferroptosis and its current applications associated with chemotherapy, radiotherapy, and immunotherapy for enhancing cancer theranostics were briefly discussed. Subsequently, the advantages and limitations of some representative biomimetic nanomedicines, including biomembranes, proteins, amino acids, polyunsaturated fatty acids, and biomineralization-based ferroptosis nano-inducers, were further spotlighted. This review would therefore help the spectrum of advanced and novice researchers who are interested in this area to quickly zoom in the essential information and glean some provoking ideas to advance this subfield in cancer nanomedicine.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jipeng Wan
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Diqing Wang
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Institute of Optical Functional Materials for Biomedical Imaging, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
191
|
Zhang W, Zhao Q, Hou Y, Shen Z, Fan L, Zhou S, Lu Y, Archer LA. Dynamic interphase-mediated assembly for deep cycling metal batteries. SCIENCE ADVANCES 2021; 7:eabl3752. [PMID: 34851670 PMCID: PMC8635427 DOI: 10.1126/sciadv.abl3752] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 05/31/2023]
Abstract
Secondary batteries based on earth-abundant, multivalent metals provide a promising path for high energy density and potentially low-cost electricity storage. Poor anodic reversibility caused by disordered metal crystallization during battery charging remains a fundamental, century-old challenge for the practical use of deep cycling metal batteries. We report that dynamic interphases formed by anisotropic nanostructures dispersed in a battery electrolyte provide a general method for achieving ordered assembly of metal electrodeposits and high anode reversibility. Interphases formed by anisotropic graphitic carbon nitride nanostructures in colloidal electrolytes are shown to promote formation of vertically aligned and spatially compact (~100% compactness) zinc electrodeposits with unprecedented, high levels of reversibility (>99.8%), even at quite high areal capacity (6 to 20 milliampere hour per square centimeter). It is also reported that the same concept enables uniform growth of compact magnesium and aluminum electrodeposits, defining a general pathway toward energy-dense metal batteries based on earth-abundant anode chemistries.
Collapse
Affiliation(s)
- Weidong Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU–Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Qing Zhao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yunpeng Hou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zeyu Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU–Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Lei Fan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU–Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shaodong Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU–Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Lynden A. Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
192
|
Liu L, Zhu M, Xu X, Li X, Ma Z, Jiang Z, Pich A, Wang H, Song P. Dynamic Nanoconfinement Enabled Highly Stretchable and Supratough Polymeric Materials with Desirable Healability and Biocompatibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105829. [PMID: 34599781 DOI: 10.1002/adma.202105829] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lightweight polymeric materials are highly attractive platforms for many potential industrial applications in aerospace, soft robots, and biological engineering fields. For these real-world applications, it is vital for them to exhibit a desirable combination of great toughness, large ductility, and high strength together with desired healability and biocompatibility. However, existing material design strategies usually fail to achieve such a performance portfolio owing to their different and even mutually exclusive governing mechanisms. To overcome these hurdles, herein, for the first time a dynamic hydrogen-bonded nanoconfinement concept is proposed, and the design of highly stretchable and supratough biocompatible poly(vinyl alcohol) (PVA) with well-dispersed dynamic nanoconfinement phases induced by hydrogen-bond (H-bond) crosslinking is demonstrated. Because of H-bond crosslinking and dynamic nanoconfinement, the as-prepared PVA nanocomposite film exhibits a world-record toughness of 425 ± 31 MJ m-3 in combination with a tensile strength of 98 MPa and a large break strain of 550%, representing the best of its kind and even outperforming most natural and artificial materials. In addition, the final polymer exhibits a good self-healing ability and biocompatibility. This work affords new opportunities for creating mechanically robust, healable, and biocompatible polymeric materials, which hold great promise for applications, such as soft robots and artificial ligaments.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Menghe Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaodong Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Zhewen Ma
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhen Jiang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| |
Collapse
|
193
|
Ye X, Li B, Wang Z, Li J, Zhang J, Wan X. Tuning organic crystal chirality by the molar masses of tailored polymeric additives. Nat Commun 2021; 12:6841. [PMID: 34824273 PMCID: PMC8617073 DOI: 10.1038/s41467-021-27236-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Hierarchically ordered chiral crystals have attracted intense research efforts for their huge potential in optical devices, asymmetric catalysis and pharmaceutical crystal engineering. Major barriers to the application have been the use of costly enantiomerically pure building blocks and the difficulty in precise control of chirality transfer from molecular to macroscopic level. Herein, we describe a strategy that offers not only the preferred formation of one enantiomorph from racemic solution but also the subsequent enantiomer-specific oriented attachment of this enantiomorph by balancing stereoselective and non-stereoselective interactions. It is demonstrated by on-demand switching the sign of fan-shaped crystal aggregates and the configuration of their components only by changing the molar mass of tailored polymeric additives. Owing to the simplicity and wide scope of application, this methodology opens an immediate opportunity for facile and efficient fabrication of one-handed macroscopic aggregates of homochiral organic crystals from racemic starting materials.
Collapse
Affiliation(s)
- Xichong Ye
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Bowen Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Zhaoxu Wang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jing Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jie Zhang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
194
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
195
|
Huang Y, Xie H, Fang W, Zou Z, Fu Z. Silk fibroin directs the formation of monetite nanocrystals and their assembly into hierarchical composites. J Mater Chem B 2021; 9:9136-9141. [PMID: 34693962 DOI: 10.1039/d1tb01821c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural biominerals are usually composite materials produced through mineralization of inorganic crystals within an organic matrix. Silk fibroin is known to be capable of directing the nucleation and growth of hydroxyapatite crystals. Here, we used silk films as the substrate to induce the mineralization of calcium phosphate. We show that the silk fibroin in solution could induce the formation of monetite crystals with a hierarchical structure, which are assembled by well aligned single crystals of monetite. In addition, we show that silk fibroins are incorporated inside the crystals. Therefore, the self-assembly of silk fibroin during the crystallization process is critical for the formation of such hierarchical structures.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Weijian Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
196
|
Mechanically excellent nacre-inspired protective steel-concrete composite against hypervelocity impacts. Sci Rep 2021; 11:21930. [PMID: 34754011 PMCID: PMC8578474 DOI: 10.1038/s41598-021-01308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Steel-concrete (SC) composite widely used in military defensive project is due to its impressive mechanical properties, long-lived service, and low cost. However, the growing use of hypervelocity kinetic weapons in the present war puts forward higher requirements for the anti-explosion and penetration performance of military protection engineering. Here, inspired by the special 'brick-and-mortar' (BM) structural feature of natural nacre, we successfully construct a nacre-inspired steel-concrete (NISC) engineering composite with 2510 kg/m3, possessing nacre-like lamellar architecture via a bottom-up assembling technique. The NISC engineering composite exhibits nacreous BM structural similarity, high compressive strength of 68.5 MPa, compress modulus of 42.0 GPa, Mohs hardness of 5.5, Young's modulus of 41.5 GPa, and shear modulus of 18.4 GPa, higher than pure concrete. More interestingly, the hypervelocity impact tests reveal the penetration capability of our NISC target material is obviously stronger than that of pure concrete, enhanced up to about 46.8% at the striking velocity of 1 km/s and approximately 30.9% at the striking velocity of 2 km/s, respectively, by examining the damages of targets, the trajectories, penetration depths, and residual projectiles. This mechanically integrated enhancement can be attributed to the nacre-like BM structural architecture derived from assembling the special steel-bar array frame-reinforced concrete platelets. This study highlights a key role of nacre-like structure design in promoting the enhanced hypervelocity impact resistance of steel-concrete composites.
Collapse
|
197
|
Huang J, Liu Y, Liu C, Xie L, Zhang R. Heterogeneous distribution of shell matrix proteins in the pearl oyster prismatic layer. Int J Biol Macromol 2021; 189:641-648. [PMID: 34425123 DOI: 10.1016/j.ijbiomac.2021.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Shell formation in molluscan bivalves is regulated by organic matrices composed of biological macromolecules, but how these macromolecules assemble in vitro remains elusive. Prismatic layer in the pearl oyster Pinctada fucata consists of polygonal prisms enveloped by thick organic matrices. In this study, we found that the organic matrices were heterogeneously distributed, with highly acidic fractions (EDTA-soluble and EDTA-insoluble) embedded inside the prism columns, while basic EDTA-insoluble faction as inter-column framework enveloping the prisms. The intra-column matrix was enriched in aspartic acid whereas the inter-column matrix was enriched in glycine, tyrosine and phenylalanine. Moreover, the intra-column matrix contained sulfo group further contributing to its acidic property. Proteomics data showed that the intra-column proteins mainly consisted of acidic proteins, while some typical matrix proteins were absent. The absent matrix proteins such as shematrin family and KRMP family were highly basic and contained aromatic amino acids, suggesting that electric charge and hydrophobic effect might play a role in the matrix heterogeneity. Interestingly, chitin metabolism related proteins were abundant in the inter-column matrix, which may be involved in reconstructing the prism organic matrix. Overall, our study suggests that each single prism grew in an enclosed organic envelope and the organic matrix undergoes rearrangement, thus leading to the peculiar growth of the prismatic layer.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China.
| |
Collapse
|
198
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
199
|
Hao M, Wang Y, Li L, Lu Q, Sun F, Li L, Yang X, Li Y, Liu M, Feng S, Feng S, Zhang T. Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. SOFT MATTER 2021; 17:9057-9065. [PMID: 34581395 DOI: 10.1039/d1sm01027a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogel-based soft and stretchable materials with skin/tissue-like mechanical properties provide new avenues for the design and fabrication of wearable sensors. However, synthesizing multifunctional hydrogels that simultaneously possess excellent mechanical, electrical and electromagnetic interference (EMI) shielding effectiveness is still a great challenge. In this work, the freeze-casting method is employed to fabricate a multifunctional hydrogel by filling Fe3O4 clusters into poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) and polyvinyl alcohol (PVA) composite aqueous solution. The hydrogel possesses superior electrical and mechanical properties as well as great electromagnetic wave shielding properties. Benefiting from the high stretchability (∼904.5%) and fast sensing performance (response time ∼9 ms and self-recovery time ∼12 ms within the strain range ∼100%), the monitoring of human activities and manipulation of a remote-controlled toy car using the hydrogel-based stretchable strain sensors are successfully demonstrated. In addition, a great EMI shielding effectiveness with more than 46 dB in the frequencies of 8-12.5 GHz can be obtained, which provides an alternative strategy for designing next-generation EMI shielding materials. These results indicate that the multifunctional hydrogels can be used as flexible and stretchable sensing electronics requiring effective EMI shielding.
Collapse
Affiliation(s)
- Mingming Hao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yongfeng Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Qifeng Lu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fuqin Sun
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lili Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xianqing Yang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yue Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Mengyuan Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Sijia Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
| | - Ting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| |
Collapse
|
200
|
Dong W, Wang Y, Zhang Y, Song X, Peng H, Jiang H. Bilayer rGO-Based Photothermal Evaporator for Efficient Solar-Driven Water Purification [ ] *. Chemistry 2021; 27:17428-17436. [PMID: 34623718 DOI: 10.1002/chem.202103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 01/19/2023]
Abstract
Interfacial evaporation has emerged as a promising approach to produce freshwater. However, an urgent concern is that, due to the illegal discharge of industrial wastewater, most water bodies are polluted by trace volatile organic compounds (VOCs), which are easily volatilized and enriched in the collected water during the interfacial evaporation process. Herein, a bilayer photothermal evaporator was reasonably designed for contaminated water purification. The bottom hydrophilic rGO-sodium alginate (SA) sheets purposefully disintegrate water transport channels, thus quickly removing VOCs through physical adsorption. The rGO-SA-TiO2 upper layer sufficiently absorbs incident light and therefore persistently generates reactive oxidizing species to degrade upward VOCs. Notably, the oriented microchannels inside the evaporator allow sustained light reflections to improve the utilization of solar energy. The evaporation rate can reach 1.63 kg m-2 h-1 with a considerably high VOC removal efficiency of up to 96 %. Such an integrated bilayer evaporator provides an effective strategy to obtain clean water via solar distillation.
Collapse
Affiliation(s)
- Weichao Dong
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yuchao Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Yajing Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P.R. China
| | - Xiangju Song
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hui Peng
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Heqing Jiang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| |
Collapse
|