151
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
152
|
Groß M. Wie unordentlich sind Proteine? CHEM UNSERER ZEIT 2018. [DOI: 10.1002/ciuz.201880011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
153
|
van Haren J, Charafeddine RA, Ettinger A, Wang H, Hahn KM, Wittmann T. Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol 2018; 20:252-261. [PMID: 29379139 PMCID: PMC5826794 DOI: 10.1038/s41556-017-0028-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
End-binding proteins, EBs, are adaptors that recruit functionally diverse +TIP proteins to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP protein complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue light-sensitive protein-protein interaction module between the microtubule- and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. In contrast, blue light-mediated π-EB1 photo-dissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (ch-TOG, XMAP215). Local π-EB1 photo-dissociation allows subcellular microtubule dynamics control at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as template to optically control other intracellular protein activities.
Collapse
Affiliation(s)
- Jeffrey van Haren
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Rabab A Charafeddine
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Andreas Ettinger
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.,Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, München, Germany
| | - Hui Wang
- University of North Carolina, Chapel Hill, NC, USA
| | - Klaus M Hahn
- University of North Carolina, Chapel Hill, NC, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA.
| |
Collapse
|
154
|
Dine E, Toettcher JE. Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles. Biochemistry 2018; 57:2432-2436. [PMID: 29373016 DOI: 10.1021/acs.biochem.7b01173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has recently become clear that large-scale macromolecular self-assembly is a rule, rather than an exception, of intracellular organization. A growing number of proteins and RNAs have been shown to self-assemble into micrometer-scale clusters that exhibit either liquid-like or gel-like properties. Given their proposed roles in intracellular regulation, embryo development, and human disease, it is becoming increasingly important to understand how these membraneless organelles form and to map their functional consequences for the cell. Recently developed optogenetic systems make it possible to acutely control cluster assembly and disassembly in live cells, driving the separation of proteins of interest into liquid droplets, hydrogels, or solid aggregates. Here we propose that these approaches, as well as their evolution into the next generation of optogenetic biophysical tools, will allow biologists to determine how the self-assembly of membraneless organelles modulates diverse biochemical processes.
Collapse
Affiliation(s)
- Elliot Dine
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| | - Jared E Toettcher
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
155
|
Blacklock KM, Yang L, Mulligan VK, Khare SD. A computational method for the design of nested proteins by loop-directed domain insertion. Proteins 2018; 86:354-369. [PMID: 29250820 DOI: 10.1002/prot.25445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
The computational design of novel nested proteins-in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)-would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop-Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker-to-parent domain superimposition followed by insert-to-linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid-based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near-native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain-inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross-domain placement tests, native insert-parent domain combinations were ranked as the best-scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi-domain protein complexes with any combination of inserted or tandem domain connections.
Collapse
Affiliation(s)
- Kristin M Blacklock
- Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Lu Yang
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Vikram K Mulligan
- Institute for Protein Design and Department of Biochemistry, University of Washington, Seattle, Washington
| | - Sagar D Khare
- Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, New Jersey.,Center for Integrative Proteomics Research, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
156
|
Blacklock KM, Yachnin BJ, Woolley GA, Khare SD. Computational Design of a Photocontrolled Cytosine Deaminase. J Am Chem Soc 2017; 140:14-17. [PMID: 29251923 DOI: 10.1021/jacs.7b08709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is growing interest in designing spatiotemporal control over enzyme activities using noninvasive stimuli such as light. Here, we describe a structure-based, computation-guided predictive method for reversibly controlling enzyme activity using covalently attached photoresponsive azobenzene groups. Applying the method to the therapeutically useful enzyme yeast cytosine deaminase, we obtained a ∼3-fold change in enzyme activity by the photocontrolled modulation of the enzyme's active site lid structure, while fully maintaining thermostability. Multiple cycles of switching, controllable in real time, are possible. The predictiveness of the method is demonstrated by the construction of a variant that does not photoswitch as expected from computational modeling. Our design approach opens new avenues for optically controlling enzyme function. The designed photocontrolled cytosine deaminases may also aid in improving chemotherapy approaches that utilize this enzyme.
Collapse
Affiliation(s)
- Kristin M Blacklock
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers University , New Brunswick, New Jersey 08854, United States
| | - Brahm J Yachnin
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers University , New Brunswick, New Jersey 08854, United States
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Center for Integrative Proteomics Research, Rutgers University , New Brunswick, New Jersey 08854, United States
| |
Collapse
|
157
|
Liaunardy-Jopeace A, Murton BL, Mahesh M, Chin JW, James JR. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct Mol Biol 2017; 24:1155-1163. [PMID: 29083415 PMCID: PMC5736103 DOI: 10.1038/nsmb.3492] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
LCK is a tyrosine kinase essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active site lysine is replaced by a photo-caged equivalent, using genetic code expansion. This enabled fine temporal and spatial control over kinase activity, allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that auto-phosphorylation of the LCK active site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, the T cell coreceptors, can enhance LCK activity, helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics.
Collapse
Affiliation(s)
| | - Ben L Murton
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC-LMB, Cambridge, UK
| | - Mohan Mahesh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - John R James
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC-LMB, Cambridge, UK
| |
Collapse
|
158
|
Kolar K, Weber W. Synthetic biological approaches to optogenetically control cell signaling. Curr Opin Biotechnol 2017; 47:112-119. [DOI: 10.1016/j.copbio.2017.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
|
159
|
Zhou XX, Fan LZ, Li P, Shen K, Lin MZ. Optical control of cell signaling by single-chain photoswitchable kinases. Science 2017; 355:836-842. [PMID: 28232577 DOI: 10.1126/science.aah3605] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Protein kinases transduce signals to regulate a wide array of cellular functions in eukaryotes. A generalizable method for optical control of kinases would enable fine spatiotemporal interrogation or manipulation of these various functions. We report the design and application of single-chain cofactor-free kinases with photoswitchable activity. We engineered a dimeric protein, pdDronpa, that dissociates in cyan light and reassociates in violet light. Attaching two pdDronpa domains at rationally selected locations in the kinase domain, we created the photoswitchable kinases psRaf1, psMEK1, psMEK2, and psCDK5. Using these photoswitchable kinases, we established an all-optical cell-based assay for screening inhibitors, uncovered a direct and rapid inhibitory feedback loop from ERK to MEK1, and mediated developmental changes and synaptic vesicle transport in vivo using light.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Linlin Z Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Pengpeng Li
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Kang Shen
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Neurobiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
160
|
Diaz JE, Morgan CW, Minogue CE, Hebert AS, Coon JJ, Wells JA. A Split-Abl Kinase for Direct Activation in Cells. Cell Chem Biol 2017; 24:1250-1258.e4. [PMID: 28919041 DOI: 10.1016/j.chembiol.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
To dissect the cellular roles of individual kinases, it is useful to design tools for their selective activation. We describe the engineering of a split-cAbl kinase (sKin-Abl) that is rapidly activated in cells with rapamycin and allows temporal, dose, and compartmentalization control. Our design strategy involves an empirical screen in mammalian cells and identification of split site in the N lobe. This split site leads to complete loss of activity, which can be restored upon small-molecule-induced dimerization in cells. Remarkably, the split site is transportable to the related Src Tyr kinase and the distantly related Ser/Thr kinase, AKT, suggesting broader applications to kinases. To quantify the fold induction of phosphotyrosine (pTyr) modification, we employed quantitative proteomics, NeuCode SILAC. We identified a number of known Abl substrates, including autophosphorylation sites and novel pTyr targets, 432 pTyr sites in total. We believe that this split-kinase technology will be useful for direct activation of protein kinases in cells.
Collapse
Affiliation(s)
- Juan E Diaz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Charles W Morgan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
161
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
162
|
Gehrig S, Macpherson JA, Driscoll PC, Symon A, Martin SR, MacRae JI, Kleinjung J, Fraternali F, Anastasiou D. An engineered photoswitchable mammalian pyruvate kinase. FEBS J 2017; 284:2955-2980. [PMID: 28715126 PMCID: PMC5637921 DOI: 10.1111/febs.14175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/24/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Changes in allosteric regulation of glycolytic enzymes have been linked to metabolic reprogramming involved in cancer. Remarkably, allosteric mechanisms control enzyme function at significantly shorter time-scales compared to the long-term effects of metabolic reprogramming on cell proliferation. It remains unclear if and how the speed and reversibility afforded by rapid allosteric control of metabolic enzymes is important for cell proliferation. Tools that allow specific, dynamic modulation of enzymatic activities in mammalian cells would help address this question. Towards this goal, we have used molecular dynamics simulations to guide the design of mPKM2 internal light/oxygen/voltage-sensitive domain 2 (LOV2) fusion at position D24 (PiL[D24]), an engineered pyruvate kinase M2 (PKM2) variant that harbours an insertion of the light-sensing LOV2 domain from Avena Sativa within a region implicated in allosteric regulation by fructose 1,6-bisphosphate (FBP). The LOV2 photoreaction is preserved in the PiL[D24] chimera and causes secondary structure changes that are associated with a 30% decrease in the Km of the enzyme for phosphoenolpyruvate resulting in increased pyruvate kinase activity after light exposure. Importantly, this change in activity is reversible upon light withdrawal. Expression of PiL[D24] in cells leads to light-induced increase in labelling of pyruvate from glucose. PiL[D24] therefore could provide a means to modulate cellular glucose metabolism in a remote manner and paves the way for studying the importance of rapid allosteric phenomena in the regulation of metabolism and enzyme control.
Collapse
Affiliation(s)
- Stefanie Gehrig
- Cancer Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Paul C. Driscoll
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Alastair Symon
- Instrument Prototyping Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Stephen R. Martin
- Structural Biology Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - James I. MacRae
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Jens Kleinjung
- Computational BiologyThe Francis Crick InstituteLondonUK
| | - Franca Fraternali
- Randall Division of Cell and Molecular BiophysicsKing's CollegeLondonUK
| | | |
Collapse
|
163
|
Dagliyan O, Karginov AV, Yagishita S, Gale ME, Wang H, DerMardirossian C, Wells CM, Dokholyan NV, Kasai H, Hahn KM. Engineering Pak1 Allosteric Switches. ACS Synth Biol 2017; 6:1257-1262. [PMID: 28365983 DOI: 10.1021/acssynbio.6b00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineered domain inserted away from the active site responds to rapamycin to allosterically control activity of the PAK1 isoform. To examine the mechanism of rapamycin-induced PAK1 activation, we used molecular dynamics with graph theory to predict amino acids involved in allosteric communication with the active site. This analysis revealed allosteric pathways that were exploited to generate kinase switches. Activation of PAK1 resulted in transient cell spreading in metastatic breast cancer cells, and long-term dendritic spine enlargement in mouse hippocampal CA1 neurons.
Collapse
Affiliation(s)
| | - Andrei V. Karginov
- Department
of Pharmacology, University of Illinois at Chicago, Chicago Illinois 60612, United States
| | - Sho Yagishita
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | - Madeline E. Gale
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Celine DerMardirossian
- Department
of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, United States
| | - Claire M. Wells
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Haruo Kasai
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | | |
Collapse
|
164
|
Goedhart J, van Unen J. Molecular perturbation strategies to examine spatiotemporal features of Rho GEF and Rho GTPase activity in living cells. Small GTPases 2017; 10:178-186. [PMID: 28521592 PMCID: PMC6548299 DOI: 10.1080/21541248.2017.1302551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Much of our current knowledge of Rho GTPase networks and the regulation by Rho guanine exchange factors (Rho GEFs) and Rho GTPase activating proteins (Rho GAPs) is based on population-based techniques. Over the last decades, technologies that enable single cell analysis with high spatial and temporal resolution have revealed that Rho GTPase activity in cells is regulated on second timescales and at submicrometer length scales. Therefore, perturbation methods with matching spatial and temporal resolution are crucial to further our understanding of Rho GTPase signaling. Here, we give a brief overview of the components of Rho GTPase signaling networks and review a range of existing perturbation strategies that target a specific component of the Rho GTPase signaling module. The advantages and limitations of each perturbation method are discussed. Several recommendations are formulated to guide future studies aimed at addressing spatiotemporal aspects of Rho GEF and Rho GTPase signaling.
Collapse
Affiliation(s)
- Joachim Goedhart
- a Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam , Amsterdam , The Netherlands
| | - Jakobus van Unen
- a Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
165
|
Liu Q, Tucker CL. Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol 2017; 40:17-23. [PMID: 28527343 DOI: 10.1016/j.cbpa.2017.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Optogenetic tools offer fast and reversible control of protein activity with subcellular spatial precision. In the past few years, remarkable progress has been made in engineering photoactivatable systems regulating the activity of cellular proteins. In this review, we discuss general strategies in designing and optimizing such optogenetic tools and highlight recent advances in the field, with specific focus on applications regulating protein catalytic activity.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
166
|
Eleftheriou C, Cesca F, Maragliano L, Benfenati F, Maya-Vetencourt JF. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. J Exp Neurosci 2017; 11:1179069517703354. [PMID: 28579827 PMCID: PMC5415353 DOI: 10.1177/1179069517703354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.
Collapse
Affiliation(s)
- Cyril Eleftheriou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | | |
Collapse
|
167
|
Self-Referential Encoding on Modules of Anticodon Pairs-Roots of the Biological Flow System. Life (Basel) 2017; 7:life7020016. [PMID: 28383509 PMCID: PMC5492138 DOI: 10.3390/life7020016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/22/2022] Open
Abstract
The proposal that the genetic code was formed on the basis of (proto)tRNA Dimer-Directed Protein Synthesis is reviewed and updated. The tRNAs paired through the anticodon loops are an indication on the process. Dimers are considered mimics of the ribosomes-structures that hold tRNAs together and facilitate the transferase reaction, and of the translation process-anticodons are at the same time codons for each other. The primitive protein synthesis system gets stabilized when the product peptides are stable and apt to bind the producers therewith establishing a self-stimulating production cycle. The chronology of amino acid encoding starts with Glycine and Serine, indicating the metabolic support of the Glycine-Serine C1-assimilation pathway, which is also consistent with evidence on origins of bioenergetics mechanisms. Since it is not possible to reach for substrates simpler than C1 and compounds in the identified pathway are apt for generating the other central metabolic routes, it is considered that protein synthesis is the beginning and center of a succession of sink-effective mechanisms that drive the formation and evolution of the metabolic flow system. Plasticity and diversification of proteins construct the cellular system following the orientation given by the flow and implementing it. Nucleic acid monomers participate in bioenergetics and the polymers are conservative memory systems for the synthesis of proteins. Protoplasmic fission is the final sink-effective mechanism, part of cell reproduction, guaranteeing that proteins don't accumulate to saturation, which would trigger inhibition.
Collapse
|
168
|
Vogt N. Precision switches for protein control. Nat Methods 2017. [DOI: 10.1038/nmeth.4214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|