151
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
152
|
Alt FW, Schwer B. DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 2018; 71:158-163. [PMID: 30195640 DOI: 10.1016/j.dnarep.2018.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early work from about two decades ago implicated DNA double-strand break (DSB) formation and repair in neuronal development. Findings emerging from recent studies of DSBs in proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide an overview of some findings and speculate on what may lie ahead.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.
| | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
153
|
Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 2018; 560:243-247. [PMID: 30069053 DOI: 10.1038/s41586-018-0389-3] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is a devastating and incurable brain tumour, with a median overall survival of fifteen months1,2. Identifying the cell of origin that harbours mutations that drive GBM could provide a fundamental basis for understanding disease progression and developing new treatments. Given that the accumulation of somatic mutations has been implicated in gliomagenesis, studies have suggested that neural stem cells (NSCs), with their self-renewal and proliferative capacities, in the subventricular zone (SVZ) of the adult human brain may be the cells from which GBM originates3-5. However, there is a lack of direct genetic evidence from human patients with GBM4,6-10. Here we describe direct molecular genetic evidence from patient brain tissue and genome-edited mouse models that show astrocyte-like NSCs in the SVZ to be the cell of origin that contains the driver mutations of human GBM. First, we performed deep sequencing of triple-matched tissues, consisting of (i) normal SVZ tissue away from the tumour mass, (ii) tumour tissue, and (iii) normal cortical tissue (or blood), from 28 patients with isocitrate dehydrogenase (IDH) wild-type GBM or other types of brain tumour. We found that normal SVZ tissue away from the tumour in 56.3% of patients with wild-type IDH GBM contained low-level GBM driver mutations (down to approximately 1% of the mutational burden) that were observed at high levels in their matching tumours. Moreover, by single-cell sequencing and laser microdissection analysis of patient brain tissue and genome editing of a mouse model, we found that astrocyte-like NSCs that carry driver mutations migrate from the SVZ and lead to the development of high-grade malignant gliomas in distant brain regions. Together, our results show that NSCs in human SVZ tissue are the cells of origin that contain the driver mutations of GBM.
Collapse
|
154
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
155
|
Dou Y, Gold HD, Luquette LJ, Park PJ. Detecting Somatic Mutations in Normal Cells. Trends Genet 2018; 34:545-557. [PMID: 29731376 PMCID: PMC6029698 DOI: 10.1016/j.tig.2018.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/12/2023]
Abstract
Somatic mutations have been studied extensively in the context of cancer. Recent studies have demonstrated that high-throughput sequencing data can be used to detect somatic mutations in non-tumor cells. Analysis of such mutations allows us to better understand the mutational processes in normal cells, explore cell lineages in development, and examine potential associations with age-related disease. We describe here approaches for characterizing somatic mutations in normal and non-tumor disease tissues. We discuss several experimental designs and common pitfalls in somatic mutation detection, as well as more recent developments such as phasing and linked-read technology. With the dramatically increasing numbers of samples undergoing genome sequencing, bioinformatic analysis will enable the characterization of somatic mutations and their impact on non-cancer tissues.
Collapse
Affiliation(s)
- Yanmei Dou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Equal contributions
| | - Heather D Gold
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Bioinformatics and Integrative Genomics PhD Program, Harvard Medical School, Boston, MA, USA; Equal contributions
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Bioinformatics and Integrative Genomics PhD Program, Harvard Medical School, Boston, MA, USA; Equal contributions
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
156
|
Increased DNA Copy Number Variation Mosaicism in Elderly Human Brain. Neural Plast 2018; 2018:2406170. [PMID: 30050570 PMCID: PMC6046114 DOI: 10.1155/2018/2406170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 11/30/2022] Open
Abstract
Aging is a complex process strongly determined by genetics. Previous reports have shown that the genome of neuronal cells displays
somatic genomic mosaicism including DNA copy number variations (CNVs). CNVs represent a significant source of genetic variation in the human
genome and have been implicated in several disorders and complex traits, representing a potential mechanism that contributes to neuronal diversity
and the etiology of several neurological diseases and provides new insights into the normal, complex functions of the brain. Nonetheless, the features of somatic CNV mosaicism in nondiseased elderly brains have not been investigated. In the present study, we demonstrate a highly significant increase in the number of CNVs in nondiseased elderly brains compared to the blood. In two neural tissues isolated from paired postmortem samples (same individuals), we found a significant increase in the frequency of deletions in both brain areas, namely, the frontal cortex and cerebellum. Also, deletions were found to be significantly larger when present only in the cerebellum. The sizes of the variants described here were in the 150–760 kb range, and importantly, nearly all of them were present in the Database of Genomic Variants (common variants). Nearly all evidence of genome structural variation in human brains comes from studies detecting changes in single cells which were interpreted as derived from independent, isolated mutational events. The observations based on array-CGH analysis indicate the existence of an extensive clonal mosaicism of CNVs within and between the human brains revealing a different type of variation that had not been previously characterized.
Collapse
|
157
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
158
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
159
|
Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol 2018; 135:811-826. [PMID: 29705908 PMCID: PMC5954077 DOI: 10.1007/s00401-018-1850-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
Abstract
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
160
|
Dockendorff TC, Labrador M. The Fragile X Protein and Genome Function. Mol Neurobiol 2018; 56:711-721. [PMID: 29796988 DOI: 10.1007/s12035-018-1122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Mariano Labrador
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
161
|
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition with no current treatment available. Although advances in genetics and genomics have identified hundreds of genes associated with ASD, very little is known about the pathophysiology of ASD and the functional contribution of specific genes to ASD phenotypes. Improved understanding of the biological function of ASD-associated genes and how this heterogeneous group of genetic variants leads to the disease is needed in order to develop therapeutic strategies. Here, we review the current state of ASD research related to gene discovery and examples of emerging molecular mechanisms (protein translation and alternative splicing). In addition, we discuss how patient-derived three-dimensional brain organoids might provide an opportunity to model specific genetic variants in order to define molecular and cellular defects that could be amenable for developing and screening personalized therapies related to ASD.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, 75390-9111 TX, USA
| |
Collapse
|
162
|
Abstract
Loss-of-function mutations in a single allele of the gene encoding DEP domain-containing 5 protein (DEPDC5) are commonly linked to familial focal epilepsy with variable foci; however, a subset of patients presents with focal cortical dysplasia that is proposed to result from a second-hit somatic mutation. In this issue of the JCI, Ribierre and colleagues provide several lines of evidence to support second-hit DEPDC5 mutations in this disorder. Moreover, the authors use in vivo, in utero electroporation combined with CRISPR-Cas9 technology to generate a murine model of the disease that recapitulates human manifestations, including cortical dysplasia-like changes, focal seizures, and sudden unexpected death. This study provides important insights into familial focal epilepsy and provides a preclinical model for evaluating potential therapies.
Collapse
|
163
|
Revollo JR, Dad A, McDaniel LP, Pearce MG, Dobrovolsky VN. Genome-wide mutation detection by interclonal genetic variation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:61-69. [PMID: 29704995 DOI: 10.1016/j.mrgentox.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Genetic toxicology assays estimate mutation frequencies by phenotypically screening for the activation or inactivation of endogenous or exogenous reporter genes. These reporters can only detect mutations in narrow areas of the genome and their use is often restricted to certain in vitro and in vivo models. Here, we show that Interclonal Genetic Variation (ICGV) can directly identify mutations genome-wide by comparing sequencing data of single-cell clones derived from the same source or organism. Upon ethyl methanesulfonate (EMS) exposure, ICGV detected greater levels of mutation in a dose- and time-dependent manner in E. coli. In addition, ICGV was also able to identify a ∼20-fold increase in somatic mutations in T-cell clones derived from an N-ethyl-N-nitrosourea (ENU)-treated rat vs. a vehicle-treated rat. These results demonstrate that the genetic differences of single-cell clones can be used for genome-wide mutation detection.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Lea P McDaniel
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
164
|
Iwamoto K. Understanding the epigenetic architecture of psychiatric disorders: Modifications and beyond. Psychiatry Clin Neurosci 2018; 72:194. [PMID: 29633529 DOI: 10.1111/pcn.12646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
165
|
Affiliation(s)
- Saera Song
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
166
|
Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018; 44:267-285. [PMID: 29369391 DOI: 10.1111/nan.12465] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022]
Abstract
Somatic mutations are postzygotic mutations which may lead to mosaicism, the presence of cells with genetic differences in an organism. Their role in cancer is well established, but detailed investigation in health and other diseases has only been recently possible. This has been empowered by the improvements of sequencing techniques, including single-cell sequencing, which can still be error-prone but is rapidly improving. Mosaicism appears relatively common in the human body, including the normal brain, probably arising in early development, but also potentially during ageing. In this review, we first discuss theoretical considerations and current evidence relevant to somatic mutations in the brain. We present a framework to explain how they may be integrated with current views on neurodegeneration, focusing mainly on sporadic late-onset neurodegenerative diseases (Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis). We review the relevant studies so far, with the first evidence emerging in Alzheimer's in particular. We also discuss the role of mosaicism in inherited neurodegenerative disorders, particularly somatic instability of tandem repeats. We summarize existing views and data to present a model whereby the time of origin and spatial distribution of relevant somatic mutations, combined with any additional risk factors, may partly determine the development and onset age of sporadic neurodegenerative diseases.
Collapse
Affiliation(s)
- M Leija-Salazar
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Piette
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| | - C Proukakis
- Department of Clinical Neuroscience, University College London Institute of Neurology, London, UK
| |
Collapse
|
167
|
Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay. Proc Natl Acad Sci U S A 2018; 115:1919-1924. [PMID: 29432181 DOI: 10.1073/pnas.1719907115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.
Collapse
|
168
|
Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, Pletikos M, Pattni R, Chen BJ, Venturini E, Riley-Gillis B, Sestan N, Urban AE, Abyzov A, Vaccarino FM. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 2018; 359:550-555. [PMID: 29217587 PMCID: PMC6311130 DOI: 10.1126/science.aan8690] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.
Collapse
Affiliation(s)
- Taejeong Bae
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Bo Zhou
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Tanmoy Roychowdhury
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel Franjic
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Mihovil Pletikos
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Reenal Pattni
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, CA 94305, USA
| | | | | | | | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| | - Alexander E Urban
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA.
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| |
Collapse
|
169
|
Castrillo JI, Lista S, Hampel H, Ritchie CW. Systems Biology Methods for Alzheimer’s Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods Mol Biol 2018; 1750:31-66. [PMID: 29512064 DOI: 10.1007/978-1-4939-7704-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan I Castrillo
- Genetadi Biotech S.L. Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
| | - Simone Lista
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, F-75013, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
170
|
Sha L, Xu Q. Postzygotic mosaic mutations in autism spectrum disorder and other neuropsychiatric disorders. Sci Bull (Beijing) 2017; 62:1624-1625. [PMID: 36659377 DOI: 10.1016/j.scib.2017.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Longze Sha
- State Key Laboratory of Medical Molecular Biology & Neuroscience center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology & Neuroscience center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
171
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
172
|
Abstract
The underlying mechanisms and functional significance of pancreatic β cell heterogeneity are an intensive area of investigation. In a recent Cell paper, Enge and colleagues (2017) performed single-cell RNA sequencing of human pancreatic cells and concluded that with age, pancreatic cells become transcriptionally noisy and accumulate somatic mutations.
Collapse
Affiliation(s)
- Avital Swisa
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
173
|
Single-cell analysis of diversity in human stem cell-derived neurons. Cell Tissue Res 2017; 371:171-179. [PMID: 29185070 DOI: 10.1007/s00441-017-2728-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023]
Abstract
Neural stem and progenitor cells produce one of the most remarkable organs in nature, the human brain. Among neural stem cell progeny, post-mitotic neurons are likewise remarkably diverse. Single-cell transcriptomic approaches are now cataloging a long-sought-after molecular taxonomy of neuronal diversity in the brain. Contemporary single-cell omic classifications of neuronal diversity build from electrophysiological approaches that for decades have measured and cataloged diverse biophysical properties of single neurons. With the widespread application of human pluripotent stem cell-based models of neurogenesis to investigate disease pathology and to develop new drugs, a high-resolution understanding of neuronal diversity in vivo is essential to benchmark the state of in vitro models of human neurological disease.
Collapse
|
174
|
Chu WK, Edge P, Lee HS, Bansal V, Bafna V, Huang X, Zhang K. Ultraaccurate genome sequencing and haplotyping of single human cells. Proc Natl Acad Sci U S A 2017; 114:12512-12517. [PMID: 29078313 PMCID: PMC5703283 DOI: 10.1073/pnas.1707609114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10-8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs.
Collapse
Affiliation(s)
- Wai Keung Chu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Peter Edge
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Ho Suk Lee
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Vikas Bansal
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093;
| | - Xiaohua Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093;
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
175
|
Bland KM, Casey ZO, Handwerk CJ, Holley ZL, Vidal GS. Inducing Cre-lox Recombination in Mouse Cerebral Cortex Through In Utero Electroporation. J Vis Exp 2017:56675. [PMID: 29286375 PMCID: PMC5755431 DOI: 10.3791/56675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-autonomous neuronal functions of genes can be revealed by causing loss or gain of function of a gene in a small and sparse population of neurons. To do so requires generating a mosaic in which neurons with loss or gain of function of a gene are surrounded by genetically unperturbed tissue. Here, we combine the Cre-lox recombination system with in utero electroporation in order to generate mosaic brain tissue that can be used to study the cell-autonomous function of genes in neurons. DNA constructs (available through repositories), coding for a fluorescent label and Cre recombinase, are introduced into developing cortical neurons containing genes flanked with loxP sites in the brains of mouse embryos using in utero electroporation. Additionally, we describe various adaptations to the in utero electroporation method that increase survivability and reproducibility. This method also involves establishing a titer for Cre-mediated recombination in a sparse or dense population of neurons. Histological preparations of labeled brain tissue do not require (but can be adapted to) immunohistochemistry. The constructs used guarantee that fluorescently labeled neurons carry the gene for Cre recombinase. Histological preparations allow morphological analysis of neurons through confocal imaging of dendritic and axonal arbors and dendritic spines. Because loss or gain of function is achieved in sparse mosaic tissue, this method permits the study of cell-autonomous necessity and sufficiency of gene products in vivo.
Collapse
|
176
|
|
177
|
Habibi L, Salmani H. Pivotal Impacts of Retrotransposon Based Invasive RNAs on Evolution. Front Microbiol 2017; 8:1957. [PMID: 29067016 PMCID: PMC5641331 DOI: 10.3389/fmicb.2017.01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022] Open
Abstract
RNAs have long been described as the mediators of gene expression; they play a vital role in the structure and function of cellular complexes. Although the role of RNAs in the prokaryotes is mainly confined to these basic functions, the effects of these molecules in regulating the gene expression and enzymatic activities have been discovered in eukaryotes. Recently, a high-resolution analysis of the DNA obtained from different organisms has revealed a fundamental impact of the RNAs in shaping the genomes, heterochromatin formation, and gene creation. Deep sequencing of the human genome revealed that about half of our DNA is comprised of repetitive sequences (remnants of transposable element movements) expanded mostly through RNA-mediated processes. ORF2 encoded by L1 retrotransposons is a cellular reverse transcriptase which is mainly responsible for RNA invasion of various transposable elements (L1s, Alus, and SVAs) and cellular mRNAs in to the genomic DNA. In addition to increasing retroelements copy number; genomic expansion in association with centromere, telomere, and heterochromatin formation as well as pseudogene creation are the evolutionary consequences of this RNA-based activity. Threatening DNA integrity by disrupting the genes and forming excessive double strand breaks is another effect of this invasion. Therefore, repressive mechanisms have been evolved to control the activities of these invasive intracellular RNAs. All these mechanisms now have essential roles in the complex cellular functions. Therefore, it can be concluded that without direct action of RNA networks in shaping the genome and in the development of different cellular mechanisms, the evolution of higher eukaryotes would not be possible.
Collapse
|
178
|
Linker SB, Marchetto MC, Narvaiza I, Denli AM, Gage FH. Examining non-LTR retrotransposons in the context of the evolving primate brain. BMC Biol 2017; 15:68. [PMID: 28800766 PMCID: PMC5554003 DOI: 10.1186/s12915-017-0409-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Researchers have long sought to understand the genetic basis of the cognitive differences between primates, with particular focus on the human brain. Although all mutational types have worked in concert with evolutionary forces to generate the current human brain, in this review we will explore the impact of mobile elements, specifically non-LTR retrotransposons. Non-LTR retrotransposons have contributed coding and regulatory sequences to the genome throughout evolution. During primate evolution there have been multiple waves of LINE retrotransposition as well as the birth of new mobile elements such as the SINEs Alu and SVA and we will explore what kinds of impacts these may have had on the evolving human brain.
Collapse
Affiliation(s)
- Sara B Linker
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Maria C Marchetto
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Iñigo Narvaiza
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Ahmet M Denli
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037-1002, USA.
| |
Collapse
|
179
|
L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet 2017; 33:802-816. [PMID: 28797643 DOI: 10.1016/j.tig.2017.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.
Collapse
|
180
|
Skariah G, Seimetz J, Norsworthy M, Lannom MC, Kenny PJ, Elrakhawy M, Forsthoefel C, Drnevich J, Kalsotra A, Ceman S. Mov10 suppresses retroelements and regulates neuronal development and function in the developing brain. BMC Biol 2017; 15:54. [PMID: 28662698 PMCID: PMC5492891 DOI: 10.1186/s12915-017-0387-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. Results Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. Conclusions Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Joseph Seimetz
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Miles Norsworthy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohamed Elrakhawy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Craig Forsthoefel
- College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Auinash Kalsotra
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Stephanie Ceman
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
181
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|